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Abstract

The goal of software inspections and tests is to reduce
the expected cost of software failure over the life of
a product. This paper extends the use of defect trig-

gers, the events which cause defects to be discovered,
to help evaluate the e�ectiveness of inspection and test
activities. In the case of inspections, the defect trigger
is de�ned as a set of values which associate the skills
of the inspector with the discovered defect. Similarly,
for tests, the defect trigger values embody the various
strategies being used in creating test scenarios.

The usefulness of triggers in evaluating the e�ective-
ness of software inspections and tests is demonstrated
by evaluating the inspection and test activities of some
software products. These evaluations are used to point
to both de�ciencies in inspection and test strategies,
and progress made in improving such strategies.

1 Introduction

Validation is a key activity that is essential to checking
the correctness of the design and implementation of a
software product against some prede�ned criteria [1].
It aims at �nding software defects (design and imple-
mentation errors) early in the development process to
reduce the costs of removing these defects. These costs
have been shown to increase with progress in the soft-
ware development process: IBM [2], AT&T [3], GTE
[4], and TRW [5].
Validation may include the reviews and walk-

throughs [6] held by a design team to check that the
re�nements of accepted requirements are proceeding as
desired through each transformation stage. However,
the informal nature of such reviews and walk-throughs
leaves some doubts about their overall e�ectiveness and
their repeatability [1, 7].

Unlike the informal reviews and walk-throughs held
by development teams, software inspections are for-
mal evaluations of the work items of a software product
[2, 8]. A software inspection is led by an independent
moderator with the intended purposes of e�ectively
and e�ciently �nding defects early in the development
process, recording these defects as a basis for analysis
and history, and initiating rework to correct such de-
fects. Reworked items are subsequently reinspected to
ensure their quality.
Software developers can literally remove a part from

the development line, rework it at the most appropriate
time in the process, and replace it in the development
line. Hence, inspections ensure that a higher level of
quality is shipped to the testers and ultimately to the
users of a software product.
Many attempts to evaluate the e�ectiveness of soft-

ware inspections and prove their usefulness have been
reported. These attempts looked at the inspection data
of various software products and inferred some general
observations from these data. They are based on the
concepts of statistical defect modeling [9].
Wenneson used statistics to develop some guidelines

for conducting software inspections [10]. In particular,
he observed that defect density, i.e., the number of de-
fects found per thousand lines of code (Defects/KLOC)
declines with increasing inspection rates (KLOC/hour).
Further, this decline tails o� for high inspection rates.
Plots of defect density versus inspection rate for the
releases of a product are used to estimate such high
inspection rates.
In a separate study, Schulmeyer and McManus also

used statistical techniques to analyze design and code
inspections data [11]. For each component of a software
product, the inspection rate (KLOC/hour), the defects
found per inspection hour (Defects/hour), the defect
density (Defects/KLOC), and the (hours of prepara-
tion)/(hour of inspection) ratio were computed. Plots
of the control charts of each parameter were then gen-
erated and their values were correlated. Components
with the lowest inspection rates, the highest number of
defects found per inspection hour, the highest defect
density, and the highest preparation rates were deemed
troublesome.
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Software testing is the process of executing the
ode of a software product with the intention of �nding
efects [12, 13]. Reliability measures, such as interfail

imes [14], can be used to track progress during test.
Software testing presents a problem in economics.
ith large systems, it is almost always true that more

ests will �nd more defects. The question is not
hether all the defects have been found but whether
he cost of discovering the remaining defects can be
usti�ed. This trade-o� should consider the probabil-
ty of �nding more defects in test, the marginal cost of
oing so, the probability of the users encountering the
emaining defects, and the impact of these remaining
efects on the users. Unfortunately, the general lack
f data on the software process prevents making intel-
igent trade-o� decisions.
Statistical usage testing attempts to make such a

rade-o� decision by testing software the way users in-
end to use it [15]. First, the usage probability distribu-
ions of a software product are speci�ed. They de�ne all
ossible usage patterns and scenarios, including erro-
eous and unexpected usage, together with their prob-
bilities of occurrence. Test cases are then derived from
he distributions, such that every test represents actual
sage and will e�ectively rehearse user experience with
he product. Next, each test case is executed and its
esults are veri�ed against system speci�cations. As a
esult, errors left behind at the completion of statistical
sage testing tend to be those infrequently encountered
y users.
Card used statistical measures such as testing e�-

iency, delivered error rate, and total defect rate to
valuate whether a product release is under or out of
tatistical control [16]. Testing e�ciency is de�ned as
he percentage of all defects found during system veri�-
ation testing (SVT). In e�ect, it measures the quality
f the testing activity. Delivered error rate is de�ned as
he percentage of noncosmetic defects found during op-
ration. Total defect rate is de�ned as the percentage of
ll noncosmetic defects reported during SVT and �eld
peration. The control limits of each product release
re computed as the average of the total defect rates
f all releases of this product. A new release is then
udged out of control if its total defect rate is greater
han the control limit and it is deemed under statistical
ontrol otherwise.
The goal of this paper is to present a technique for
ssessing the e�ectiveness of inspection and test activ-
ties that is based on a classi�cation scheme of defects.
he technique enables in-process feedback to develop-
rs by extracting signatures on the development process
rom such defects [17]. Attributes, such as defect type

nd defect trigger, are assigned to each defect. Defect
ype speci�es the actual �x of a defect and defect trig-
ger points to the event that helped detect such defect.
These attributes are key to a more systematic evalua-
tion of the e�ectiveness of software inspection and test
processes. Such processes may involve di�erent soft-
ware technologies that can also be indirectly assessed.
The paper is organized as follows. Section 2 proposes

a technique for evaluating the e�ectiveness of software
inspection and test activities. Subsequently, the trig-
ger set used to evaluate design and code inspections is
de�ned in section 2.1, the trigger set used to evaluate
unit and function test scenarios is de�ned in section 2.2,
and the set of defect types of a development process is
de�ned in section 2.3. Section 3 discusses the use of the
proposed technique in evaluating the inspection process
of a software product. The use of this technique in eval-
uating the test process of another software product is
presented in section 4. Section 5 presents the conclu-
sion of the paper.

2 Evaluation Technique

This paper presents a technique for assessing the e�ec-
tiveness of inspection and test activities [18, 19] that
enhances Orthogonal Defect Classi�cation (ODC) [17].
ODC classi�cation assumes that a defect measures the
semantic content of the error, without explicit direct
mapping to an existing process or an implied process.
A wide range of reported bene�ts has resulted from ap-
plying this technique to software development. Bene�ts
as little as 5 person-days for a 5 KLOC project and as
high as 848 person-days for a 100 KLOC project were
documented [20].

The classi�cation enables in-process feedback to de-
velopers when the attributes explain in their distrib-
ution the progress of the process. To do so, the at-
tributes should be di�erent enough that they capture
the needed information and complete enough that they
span the process space. These conditions are explained
concisely in the necessary and su�cent conditions for
ODC [17]. Once such conditions are established, the
classi�cation essentially provides the purpose of state-
variable type measurement, when collected over a sam-
ple in the defect stream.
In the evaluation technique, attributes, such as de-

fect type and defect trigger, are assigned to each defect.
Defect type speci�es the actual �x of a defect [21] and
defect trigger points to the event that helped detect
such defect [22]. These attributes are key to a more
systematic evaluation of the e�ectiveness of software
inspection and test processes. Such processes may in-
volve di�erent software technologies that can also be
indirectly assessed.
The set of values of an attribute is derived by itera-



tive re�nement. Starting with an initial set of attribute
values, the values of the attributes of a defect found
during inspection or test are picked from the elements
of this set. When all the elements of the current set of
attribute values fail to provide a value appropriate for
this defect, a new value is added to the current set. All
defects are then reclassi�ed using the new, augmented
set of attribute values. Only extensive classi�cation of
the defects of numerous software products can prove
the stability of the latest set of attribute values. These
values should o�er some consistency between the stages
of the software development process and should not de-
pend on the speci�cs of a software product or a software
organization.
The technique consists of three major activities: data

gathering, data classi�cation, and data interpretation.
The data gathering activity has the aim of collecting
and recording the defects of a design inspection, a code
inspection or a test execution. This is followed by the
data classi�cation activity. During this latter activ-
ity, the defect type and defect trigger of each defect are
speci�ed and checked. The trigger is decided by the de-
sign inspector, the code inspector, or the test scenario
planner, and the defect type is determined by the soft-
ware designer or the programmer correcting the defect.
The classi�ed data is then used in the data interpreta-
tion activity.
Data interpretation includes evaluating an inspec-

tion or a test activity and tracking progress between
the various activities of a stage and between the var-
ious stages of the software development process. The
�ndings of such evaluations report both the strengths
and the weaknesses of an inspection or a test activity
and are presented to the software development team.
Reported strengths signal the start of the next activ-
ity, while reported weaknesses are followed by speci�c
actions that aim at improving the outcome of the cur-
rent activity. Such actions may result from performing
causal analysis on a small subset of high impact defects
that are identi�ed during data interpretation.
To evaluate the outcome of an inspection or test ac-

tivity, both expected and observed percentages of the
values of defect type, defect trigger, and the cross-
product (defect type, defect trigger) are computed.
The percentage expected is estimated based on histori-
cal data, when available [18, 19]. In the absence of such
historical data, the percentage expected for the values
of a single attribute is estimated, a-priori, by the de-
velopment team of a software product, and is based
on their intuitive knowledge of current progress in de-
velopment. Further, the percentage expected for the
values of the cross-product (defect type, defect trigger)
is estimated as the product of the expected percent-
ages of the corresponding defect type and defect trig-
ger values. Di�erences between observed and expected
percentages form the basis for evaluating an inspection
or a test activity. Likewise, di�erences between the ob-
served percentages of similar charts are used to evaluate
the progress of successive inspection and test activities.

2.1 Trigger in Design/Code Inspection

Design and code inspection includes those stages in
which high-level design (HLD) documents (e.g. design
speci�cation documents), low-level design (LLD) docu-
ments (e.g. design structures documents), or code are
inspected. During such inspections, a trigger describes
the event that helps an inspector detect a defect of the
design document or the code segment. Only one such
trigger may be chosen for any given defect.

The set of design/code inspection triggers that fol-
low has been derived by considering the activities per-
formed by di�erent inspectors in accomplishing their
task. Defects found from these triggers can potentially
be identi�ed by the inspector of a design document or a
code segment. Hence, triggers are linked to the level of
skills of the inspection team, and their distribution can
help evaluate the inspection process. They are de�ned
as:

Design Conformance: The document reviewer or
the code inspector detects the defect while com-
paring the design element or code segment being
inspected with its speci�cation in the preceding
stage(s).

Understanding Details: The inspector detects the
defect while trying to understand the details of the
structure and/or operation of a component. This
trigger may be further re�ned into:

Operational Semantics: The inspector had in
mind the 
ow of logic required to implement
the function when the defect was noticed.

Side E�ects: The additional e�ect or side e�ect
of some documented or some implemented ac-
tion was under review when the defect was
discovered.

Concurrency: The inspector was considering the
serialization necessary for controlling a shared
resource when the defect was discovered.

Backward Compatibility: The inspector used ex-
tensive product experience to determine an incom-
patibility between the functionality described by
the design document or the code, and that of ear-
lier versions of the same product.



Lateral Compatibility: The inspector with broad-
based experience detected an incompatibility be-
tween the functionality described by the design
document or the code, and the other (sub)systems
and services with which it must interface.

Rare Situation: The inspector used extensive experi-
ence or product knowledge to foresee some system
behavior which is not considered or addressed by
the documented design or code under review.

Document Consistency/Completeness: The de-
fect surfaces because of some inconsistency or in-
completeness within the document.

Language Dependencies: The developer detects the
defect while checking the language-speci�c details
of the implementation of a component or a func-
tion.

2.2 Trigger in Unit/Function Testing

During the unit/function testing stages, a trigger cap-
tures the intent behind creating the test case which,
when executed, uncovered the defect and can therefore
potentially be identi�ed by the designer of a test sce-
nario. To choose the right trigger, the test designer
must decide if the test case that found the defect was
written with a black box or white box model in mind.
In white box testing, the tester must be familiar with

the internals of a body of code. This is in contrast with
black box testing where the tester relies upon the ability
to invoke the execution of one or more bodies of code,
where little is known of the internals. In Function Test,
a body of code would implement an externally invoked
function, whereas in Unit Test, a body of code could
be a single module. Sample black box test cases of a
�le management system are presented in Figure 1.

White Box Triggers

Simple Path Coverage: The test case that found
the defect was created by the tester with the spe-
ci�c intention of exercising branches in the code.
In other words, the test case was motivated by
knowledge of speci�c branches in the code, and not
by knowledge of module functionality that could
be invoked by a caller external to the module. Fur-
thermore, a branch targeted for execution by the
tester was exercised only once by the test case.

Combinational Path Coverage: Same as Simple
Path Coverage | except that branches targeted for
execution by the tester were exercised more than
once by the test case. In other words, the tester at-
tempted to invoke the execution of these branches
Coverage Sequencing Interaction Variation

create(�le, r) create(�le 1, rw) create(�le, r) create(�le, r)
modify(�le) create(�le 2, rw) delete(�le) create(�le, w)
delete(�le) modify(�le 2) modify(�le) create(�le, rw)

modify(�le 1)
delete(�le 2)
delete(�le 1)

Figure 1: Sample Black Box Test Cases.

under several di�erent conditions. In contrast, the
Simple Path Coverage case above only attempts
to cover the branches and does not exercise them
under di�erent conditions.

Side E�ects: The defect surfaced because of some
unanticipated behavior which was not speci�cally
tested for.

Black Box Triggers

Test Coverage: The test case that found the defect
was a straightforward attempt to exercise a single
body of code using a single input. An input is a
single combination of parameter values. Note that,
this test case does not link the executions of bodies
of code as in Test Sequencing or Test Interaction.
Instead, it is an obvious test case of a body of code.

Test Sequencing: The test case that found the defect
executed, in sequence, two or more bodies of code
each of which can be invoked independently by the
tester.

Test Interaction: The test case that found the de-
fect initiated an interaction between two or more
bodies of code each of which can be invoked inde-
pendently by the tester. The interaction was more
involved than a simple sequence of the executions.

Test Variation: The test case that found the defect
was a straightforward attempt to exercise a single
body of code using di�erent inputs. An input is a
single combination of parameter values.

Side E�ects: The defect surfaced because of some
unanticipated behavior which was not speci�cally
tested for.

2.3 Defect Type

Defect type describes a software �x, and is therefore
usually chosen by the programmer making the correc-
tion. In other words, the selection is implied by the
eventual correction. A distinction is made between an



Triggers

Design Conformance

Understanding Details

Backward Compatibility

Lateral Compatibility

Rare Situation In
sp

ec
to

r’s
 E

xp
er

ie
nc

e

N
ew

/T
ra

in
ed

V
er

y 
E

xp
er

ie
nc

ed

X

X

X

X

X

C
ro

ss
 P

ro
du

ct

W
ith

in
 P

ro
du

ct

Requirements Document
Design Specification Document

Design Structures Document

Operational Semantics
Side Effects
Concurrency

Document Consistency/Completeness

Language Dependencies

X

X

X

X

W
ith

in
 P

ro
je

ct

Triggers

Simple Path Coverage

Combinational Path Coverage

Side Effects

Test Sequencing

Test Interaction

T
es

t P
la

nn
er

’s
 E

xp
er

ie
nc

e

N
ew

/T
ra

in
ed

X

X

C
ro

ss
 P

ro
du

ct

W
ith

in
 P

ro
du

ct

Test Coverage

Test Variation

X

X

W
ith

in
 P

ro
je

ct

XX X
XX

V
er

y 
E

xp
er

ie
nc

ed

X X

XX

(a)

(b)

W
hi

te
 B

ox
B

la
ck

 B
ox

X

Side Effects

Figure 2: Level of Experience Associated with Triggers.
error of omission (Missing) and an error of commis-
sion (Incorrect). Only one defect type can be selected,
and it must be further classi�ed as either Missing or
Incorrect. Defect type is linked to the software devel-
opment paradigm used by the developers of a team.
Hence, the defect types of the function-oriented and
the object-oriented design and programming paradigms
di�er. The defect types of a typical software develop-
ment process that involves function-oriented design and
programming are de�ned as follows:

Assignment: Value(s) assigned incorrectly or not as-
signed at all.

Checking: Errors caused by missing or incorrect vali-
dation of parameters or data in conditional state-
ments.

Algorithm: E�ciency or correctness problems that
can be �xed by (re)implementing an algorithmor a
local data structure without the need for request-
ing a design change. A �x involving multiple as-

signment or checking corrections may be of type
algorithm.

Timing/Serialization: Necessary serialization of a
shared resource is missing, the wrong resource is
serialized, or the wrong serialization technique is
employed.

Interface: Communication problem between modules,
components, and device drivers via macros, call
statements, control blocks, or parameter lists.

Function: The error should require a formal design
change, as it a�ects signi�cant capability, end-user
interfaces, product interfaces, interfaces with hard-
ware architecture, or global data structure(s).

Build/Package/Merge: Problems encountered dur-
ing the driver build process, in library systems, or
with management of change or version control.

Documentation: The problem is with the written
description contained in user guides, installation
manuals, prologs, and code comments. This is not
to be confused with errors in documented design
which might be classi�ed as a function or an inter-

face defect type.
3 Inspection Process Evaluation

The concept of the trigger �ts very well into assess-
ing the e�ectiveness and eventually the completeness
of a design or a code inspection. In such an inspec-
tion, the requirements document which speci�es the
product requirements, and the design speci�cation doc-
ument which de�nes the functionality of the product,
are reviewed by an independent team of software plan-
ners, designers and developers. Moreover, the design
structures document which describes the implementa-
tion details of the product, and the code that imple-
ments the product, are reviewed by the members of
the development team. A critical part of this inspection
process is to assess whether such documents have been
reviewed by enough people with the right skill level.
The importance of such assessment cannot be under-
stated because the process that follows design and code
inspections, tests the product implementation. Hence,
any missing or incorrect information will have a serious
impact on testing and maintaining this product.
For each design/code inspection trigger, the skill re-

quired by the inspector can be assessed. Figure 2(a)
shows the skill level appropriate for each trigger. Note
that some of the triggers, such as checking for the con-
sistency and/or completeness of a document, may not



require substantial knowledge or experience of the sub-
ject product, whereas lateral compatibility clearly indi-
cates the need for people with knowledge of more than
just the product under inspection. Similarly, backward
compatibility requires people with experience within
the product. People who can identify rare situations
need a lot of experience, both with the product and
otherwise.
Given that defect triggers can be mapped to skills re-

quired to �nd the defect, the defect trigger distribution
can help gain insight into the e�ectiveness of an inspec-
tion. It is common to also have several inspections of
a design document or a code segment, each incorpo-
rating the accepted comments from earlier ones. Thus,
the change in the trigger distribution may be tracked
to verify if it re
ects anticipated trends.

3.1 Project A

3.1.1 Design Inspection Evaluation

The usefulness of defect classi�cation in evaluating de-
sign inspections is illustrated by presenting the results
of inspecting the design speci�cation document of a
software product (Product A). The document describes
the functionality of the product and was inspected by a
team of independent software engineers. The proposed
technique was used to evaluate the �rst inspection of
this document, and pointed to the need for a second in-
spection of the same design document. A total of 255
defects were detected during these two inspections; 153
defects (60%) were detected and �xed in the original
design document during the �rst inspection and an ad-
ditional 102 defects (40%) were detected and �xed in
the updated design document during the second inspec-
tion. Figure 3 shows the (defect type, defect trigger)
distributions of both inspections. By suggesting a sec-
ond round of inspections that uncovered 40% of the
defects, the proposed technique helped reduce the cost
of �xing these defects in subsequent stages of develop-
ment of this product.

In Figure 3(a), documentation accounted for 40% of
the total number of defects. Hence, the design docu-
ment itself was considered inconsistent and incomplete.
Further, the percentages of function (28%), interface
(19%), and algorithm (7%) defects were signi�cant but
expected. But would an additional inspection at this
stage have been cost e�ective in terms of additional
defects uncovered for the e�ort expended? And what
aspects of the design should be focussed on to yield the
most defects?

To answer these questions, the distribution of defect
trigger from the �rst inspection (Figure 3(a)) was con-
sidered. The defects discovered by backward compat-
(a)

(b)
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Figure 3: Trigger Distributions for Two HLD Inspec-
tions for Project A.
ibility (8%), rare situation (5%), and lateral compati-
bility (3%) were disproportionately low when compared
to operational semantics (52%) and document consis-
tency/completeness (20%). The team also concluded
that design conformance (12%) was as expected.

While uncovering a high percentage of function, in-
terface, and algorithm defects (54%) is explainable at
this stage of the design, the small percentage of such
defects triggered by backward compatibility, rare situ-
ation, and lateral compatibility was cause for concern;
(backward compatibility, function) is only 2% of the
distribution in Figure 3(a), (backward compatibility,
interface) is 1%, (backward compatibility, algorithm) is
1%, (rare situation, function) is 2%, and (lateral com-
patibility, function) is 3%. Given that this product
was improving the functionality of a previous release
by signi�cantly enhancing its interactions with other
products, the team concluded that either their design
was excellent or their inspection was de�cient.

In looking back to the triggers association with level
of experience (Figure 2(a)), it became obvious that the
defects so far discovered had been discovered by re-
viewers with, or using, little experience in this or other
related software and hardware products. Therefore, the
development team decided that initiating a second in-
spection of the updated design speci�cation document
using a team of very experienced software engineers
would be cost e�ective. To validate this decision, the
defects from the second design inspection were classi-



�ed and analyzed. Figure 3(b) shows the distribution of
(defect type, defect trigger) for this second inspection.
In this second inspection, documentation accounted

for 51% of the total number of defects. The percentages
of function (20%), algorithm (13%), and interface (6%)
defects were as expected. Most documentation, func-
tion, and interface defects were missing while most al-
gorithm defects were incorrect. Furthermore, a drop in
the overall percentage of function, interface, and algo-
rithm defects pointed to a more stable design. However,
the increase in documentation defects implied that the
design document may still have been inconsistent and
incomplete.
On the other hand, the distribution of triggers which

uncovered the additional defects (Figure 3(b)) changed
remarkably in terms of backward compatibility (37%)
and lateral compatibility (18%). The percentage in-
creases of (backward compatibility, function) to 10%,
(backward compatibility, interface) to 5%, (backward
compatibility, algorithm) to 7%, (lateral compatibility,
function) to 7%, and (lateral compatibility, algorithm)
to 3% were further proof of the e�ectiveness of this sec-
ond inspection. As a result, the team felt more con�-
dent in proceeding to the next stage of the development
process.

3.1.2 Code Inspection Evaluation

The usefulness of defect classi�cation in evaluating code
inspections is illustrated by presenting the results of in-
specting the actual code of the previous software prod-
uct. Such an inspection was carried out by the develop-
ment team of this product. The technique proposed in
this paper was used to evaluate the �rst code inspec-
tion and pointed to the need for a second inspection
of this code. A total of 333 defects were detected dur-
ing these two inspections; 78 defects (23.4%) were �xed
following the �rst inspection and an additional 255 de-
fects (76.6%) were detected by the second inspection.
Figure 4 shows the (defect type, defect trigger) distri-
butions of both inspections. By suggesting a second
round of inspections that uncovered 76.6% of the de-
fects, the proposed technique helped reduce the cost of
�xing these defects in subsequent test stages.
The �rst inspection resulted in signi�cantly high per-

centages of function (36%), interface (9%), and algo-
rithm (6%) defects. Further, 43% of function defects
were missing and would require the insertion of new
logic to resolve, instead of simply �xing in place. Af-
ter examining the distribution of defect triggers (Figure
4(a)), which was dominated by operational semantics
(42%), the team decided that this may have been a
cursory inspection because of the relatively low per-
centages of concurrency (7%), backward compatibility
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tions for Project A.

(4%), and side e�ects (1%), and the lack of lateral com-
patibility and language dependencies.

Further, the weakness in design inspections was re-

ected by design conformance triggering 9% function
and 1% interface defects and by rare situation trigger-
ing 10% function and 1% algorithm defects. Conse-
quently, the team re-inspected their code with empha-
sis placed on functionality, and discovered an additional
255 defects. Figure 4(b) shows the (defect type, defect
trigger) distribution of this second inspection.

In this second inspection, the team was surprised by
the relatively low percentage of function (10%). How-
ever, algorithm (25%) and interface (18%) defects were
signi�cantly higher over the �rst inspection. They con-
cluded that the extent of function problems during the
�rst inspection had inhibited the detection of the more
usual defects discovered during a code inspection. Fur-
ther, had they simply �xed the function defects and
proceeded to the next development process stage, many
defects would have escaped into subsequent test stages.

By checking Figure 4(b), it can be concluded that the
second inspection uncovered manymore interface, algo-
rithm, assignment, and checking defects. The percent-
age increases in (side e�ects, algorithm) to 1%, (side
e�ects, interface) to 1%, and (side e�ects, function) to
1% indicate that side e�ects may mark more design

ows.
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Figure 5: Trigger Distributions through Design and
Code Inspections for Project A.
3.1.3 Progress Evaluation

The usefulness of defect classi�cation in evaluating
progress through successive stages of the development
process is illustrated by presenting the results of in-
specting the design speci�cation document, the design
structures document, and the actual code of the pre-
vious software product. Such inspections are carried
out during HLD, LLD, and code implementation, re-
spectively. The proposed technique has been used to
evaluate progress through these stages. A total of 255
(31.48%) defects were found by inspecting the design
speci�cation document, 222 (27.4%) defects were found
by inspecting the design structures document, and 333
(41.12%) defects were found during code inspection.
Figure 5 shows the (defect type, defect trigger) dis-
tributions of these inspections.

The diminishing trend of defect type function across
all three stages was initially encouraging. However, the
proportion of missing function remained constant in-
stead of decreasing with respect to incorrect function.
A closer examination of the (function, rare situation)
tuple (Figure 5) indicated that a signi�cant proportion
of these function defects were being triggered by rare
situation. Such defects may be hard to correct and were
cause for concern.
Interface and algorithmdefects increased between de-

sign structures document inspection and code inspec-
tion. They were mostly incorrect, were triggered by
operational semantics, and would probably have been
fairly easily corrected. However, the large proportion
of side e�ects triggers in design structures document
(Figure 5(b)) may have been inhibiting the discovery
of more interface and algorithm defects.
The overall decline of lateral compatibility and back-

ward compatibilitywas perceived as a progressive trend
(Figure 5). However, the signi�cant percentages of side
e�ects (29%) in design structures inspection and rare
situation (9%) in code inspection were cause for con-
cern.
Based on the absence of a clear assessment of the

progress, the team decided on a schedule adjustment.
Components that revealed function, interface, or algo-
rithm defects, that were triggered by side e�ects and
rare situation during document structures and code in-
spections, were targeted for further design structures
inspection. The remaining components were allowed
to progress to unit test. Furthermore, the team de-
cided to hold more frequent analyses of classi�ed data
during FVT to further evaluate the progress of testing
on a component basis.

3.2 Project B

The usefulness of defect classi�cation in evaluating
progress through successive stages of the development
process is also illustrated by presenting the results of in-
specting the design speci�cation document, the design
structures document, and the actual code of another
software product (Product B). Such inspections are car-
ried out during HLD, LLD, and code implementation,
respectively. The technique proposed in this paper has
been used to evaluate progress through these stages. A
total of 484 (32.97%) defects were found by inspect-
ing the design speci�cation document, 532 (36.24%)
defects were found by inspecting the design structures
document, and 452 (30.79%) defects were found during
code inspection. Figure 6 shows the distributions of
the (defect trigger, defect type) cross-product for these
inspections.
The design speci�cation document of a software

product describes the functionality of the product and
was inspected by a team of independent software en-



Total of 532 Defects

Design Conformance
Operation Semantics

Side Effects
Concurrency

Backward Compatible
Lateral Compatible

Rare Situation
Document Cons./Comp.
Language Dependency

0 10 20 30 40 50

13
48

0
0
0

10
6

22
3

Trigger

Percent

Assignment Checking Algorithm Timing/Serialization
Interface Function Build/Package/Merge Documentation

Total of 452 Defects

Design Conformance
Operation Semantics

Side Effects
Concurrency

Backward Compatible
Lateral Compatible

Rare Situation
Document Cons./Comp.
Language Dependency

0 10 20 30 40 50

15
39

0
0
0

11
5

18
10

Trigger

Percent

Assignment Checking Algorithm Timing/Serialization
Interface Function Build/Package/Merge Documentation

(a)

(b)

(c)

H
LD

 In
sp

ec
tio

n
LL

D
 In

sp
ec

tio
n

C
od

e 
In

sp
ec

tio
n

Total of 484 Defects

Design Conformance
Operation Semantics

Side Effects
Concurrency

Backward Compatible
Lateral Compatible

Rare Situation
Document Cons./Comp.
Language Dependency

0 10 20 30 40 50

21
16

6
3

2
5
5

43
0

Trigger

Percent

Assignment Checking Algorithm Timing/Serialization
Interface Function Build/Package/Merge Documentation

Figure 6: Trigger Distributions in Inspection Process
for Project B.
gineers. The proposed technique was used to evaluate
this inspection. A total of 484 defects were detected.
The distribution of their (defect trigger, defect type)
cross-product is shown in Figure 6(a).

In examining the distribution of the defect types, it
was noted that the percentage of documentation de-
fects (48%) was dominant. Hence, the design docu-
ment itself was considered incomplete and inconsistent.
Few defects were discovered by backward compatibility
(2%), lateral compatibility (5%), rare situation (5%),
and side e�ects (6%). The team also concluded that
the percentage of design conformance (21%) could be
explained.

While uncovering a good percentage of function, in-
terface, and algorithm defects (34%) is expected at this
stage of the design, the small percentage of such defects
triggered by lateral compatibility and backward com-
patibility was cause for concern. Their relatively high
percentages triggered by side e�ects were also deemed
problematic; (function, side e�ects) is 2% and (inter-
face, side e�ects) is 1% of the distribution in Figure
6(a). Given that this product was improving the func-
tionality of a previous release by signi�cantly enhanc-
ing its interactions with other products, the team con-
cluded that either their design was excellent or their
inspection was de�cient.
In looking back to the triggers association with level

of experience (Figure 2(a)), it became obvious that the
defects so far discovered had been discovered by review-
ers with, or using, little experience in this or other re-
lated software and hardware products. Further, it was
feared that the defects triggered by side e�ects were
masking some more serious design 
aws. Hence, a sec-
ond inspection of the updated design speci�cation doc-
ument using a team of very experienced software en-
gineers was recommended. However, the design team
only acknowledged the absence of an experienced mem-
ber in related hardware products and decided to pro-
ceed to the next stage of the development process. It
was also decided to monitor the percentages of defects
triggered by lateral compatibility, backward compati-
bility, rare situation, and side e�ects.
The design structures document of a software prod-

uct details the structural and logical aspects of the
product and was inspected by the development team.
The technique proposed in this paper was used to eval-
uate this inspection. A total of 532 defects were de-
tected. The distribution of their (defect trigger, defect
type) cross-product is shown in Figure 6(b).
In examining the distribution of the defect types, it

was noted that the percentage of documentation defects
(33%) was still high. Hence, the design document itself
was not deemed consistent or complete. The design
stability was improved and no defects were discovered
by backward compatibility and side e�ects. Few defects
were discovered by lateral compatibility (10%) and rare
situation (6%). The team also concluded that design
conformance (13%) was improving.
Design structures document inspection uncovered a

good percentage of function, interface, and algorithm
defects (34%). However, the percentage of interface de-
fects triggered by lateral compatibility increased from
1% in HLD (Figure 6(a)) to 3% in LLD (Figure 6(b))
and the percentage of function defects triggered by
lateral compatibility was 1% in both HLD and LLD.
These percentages were associated with a known cause,
namely, the absence of an experienced reviewer in hard-
ware related products. Hence, their presence did not
a�ect the decision of the design team to proceed to the
next stage of the development process. Again, the per-
centages of defects triggered by lateral compatibility
and rare situation were to be monitored.
The implementation code of this same software prod-



uct was inspected next by the development team. The
technique proposed in this paper was used to evaluate
this inspection. A total of 452 defects were detected.
The distribution of their (defect trigger, defect type)
cross-product is shown in Figure 6(c).

In examining the distribution of the defect types, it
was noted that the percentage of documentation defects
(34%) was still high. However, only 2% of the docu-
mentation defects were triggered by lateral compatibil-
ity and were deemed major defects. There was further
proof of design stability; no defects were discovered by
backward compatibility and side e�ects, and few de-
fects were discovered by lateral compatibility (12%) and
rare situation (6%). The team also concluded that the
percentage of design conformance (15%) could be ex-
plained. An increase in the percentage of defects trig-
gered by language dependencies (10%) was also as ex-
pected.
Code inspection uncovered a smaller, yet signi�cant,

percentage of function, interface, and algorithm de-
fects (28%) and bigger percentages of assignment and
checking defects (39%). However, the percentage of
algorithm defects triggered by lateral compatibility in-
creased to 2% (Figure 6(c)) for the �rst time and the
percentage of interface defects triggered by lateral com-
patibility increased to 3%. Similarly, the percentage of
function defects triggered by rare situation increased
to 3% (Figure 6(c)) from 1% in HLD and 2% in LLD
and the percentage of interface defects triggered by rare
situation stayed at 2%. These percentages were again
associated with the absence of very experienced review-
ers of the implementation code of this product. In or-
der to cure the above de�ciencies, a very experienced
hardware tester was added to the test team and was as-
signed the task of testing all hardware interfaces of the
product. Furthermore, the team decided to hold more
frequent analyses of classi�ed data during FVT to fur-
ther evaluate the progress of testing on a component
basis.

4 Test Process Evaluation

The concept of the trigger also �ts very well into assess-
ing the e�ectiveness and eventually the completeness of
a test scenario. In such a scenario, test cases are cre-
ated that cover all logic paths in a module or examine
whether the implemented product conforms with its ex-
ternal speci�cation. A critical part of this test process
is to assess whether the implemented product has been
adequately tested before customer use. Hence, captur-
ing the intent behind creating the test cases, or deter-
mining the trigger, is the key to improving the overall
e�ectiveness of the scenarios that test the functional-
ity of the product. The importance of such assessment
cannot be understated because a de�cient test strategy
might deliver a product with a large number of latent
defects. If such defects are found by the customers, the
product may be perceived as having low quality.

For such triggers, the skill required by the test plan-
ner can be assessed. Figure 2(b) shows the skill level
appropriate for each trigger. Note that some of the trig-
gers, such as simple path coverage in white box test-
ing, may not require substantial knowledge or experi-
ence of the subject product, whereas test interaction
in black box testing might need people with skill in
more than just the product under test. Similarly, both
test sequencing and test interaction of black box testing
may require people with experience within the product.
People who can generate test cases to achieve combi-
national path coverage in white box testing and test
variation in black box testing need a lot of experience,
both with the product and otherwise.
On the other hand, side e�ects, is an inadvertent

event that can occur during both modes of testing.
Hence, side e�ects is not associated with a particular
level of experience. When side e�ects is the trigger for
a signi�cant number of defects in a test scenario, its
presence may indicate a lack of stability in the test.

Given that defect triggers can be mapped to skills
required to generate the test case that �nds the defect,
the defect trigger distribution can help gain insight into
the e�ectiveness of a test scenario. It is common to
also create several test scenarios for a product, each
improving the e�ectiveness of earlier ones. Thus, the
change in the trigger distribution may be tracked to
verify that it re
ects anticipated trends.

4.1 Project C

4.1.1 Test Scenario Evaluation

The usefulness of defect classi�cation in evaluating test
scenarios is illustrated by presenting the results of the
functional or black box testing of a software product
(Product C). The proposed technique was used to eval-
uate an initial test scenario of the product functions
and pointed to the need for a second scenario for testing
further this same functionality. A total of 401 defects
were detected by these two test scenarios; 148 defects
(36.9%) were detected by executing the �rst scenario
and an additional 253 defects (63.1%) were detected
by executing the second scenario. Figure 7 shows the
(defect type, defect trigger) distributions for both sce-
narios. By suggesting a second test scenario that un-
covered 63.1% of the Function Veri�cation Test (FVT)
defects, the proposed technique helped reduce the large
costs associated with �xing these defects in the �eld.
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Figure 7: Trigger Distribution in Two Function Veri�-
cation Test Scenarios for Project C.
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igure 8: Trigger Distribution in Testing Process for
roject C.
The �rst test scenario resulted in relatively high per-
centages of assignment (24%) and checking (15%) de-
fects that were attributed to the absence of any formal
code inspections. Algorithm (20%) and interface (20%)
defects pointed to ine�cient LLD inspections. Most de-
fect types were incorrect. In contrast, the percentage of
function (2%) defects was extremely low and a cause for
concern. To help evaluate the e�ectiveness of the test
scenario, the distribution of the defect trigger (Figure
7(a)) was analyzed. It was observed that the distrib-
ution was dominated only by test coverage (67%) and
test variation (24%), while test interaction (6%) and
test sequencing (2%) were very low.

Consequently, the team decided to expand the test
scenarios with test interaction and test sequencing in
mind with the goal of discovering more function de-
fects. Further, testers with extensive experience with
the product and its underlying hardware platforms
were added to the test planning team. Figure 7(b)
shows the (defect type, defect trigger) distribution of
this second test scenario.

In the second test scenario, an additional 253 de-
fects were found, but the distribution of defect type
was not as expected. Speci�cally, function (5%) only
increased slightly, while interface (39%) increased re-
markably. However, the goal of the expanded test sce-
narios was achieved as the percentages of test sequenc-
ing (42%) and test interaction (9%) increased. The
increase in side e�ects (11%) implied that the code un-
der test was unstable. Consequently, the team con-
cluded that while the test scenarios were adequate, the
stability of the code precluded advancing to the Sys-
tem Veri�cation Test (SVT) stage of the development
process.
The percentages of interface (39%) and algorithm

(10%) led the team to conclude that design structures
document re-inspection was necessary for some compo-
nents. Likewise, the percentages of assignment (16%)
and checking (11%) indicated re-inspection of code for
certain components.

4.1.2 Progress Evaluation

The usefulness of defect classi�cation in evaluating
progress through successive stages of the development
process is illustrated by presenting the results of both
the white box and black box modes of testing for the
previous software product. White box testing and black
box testing are carried out during UT and FVT, respec-
tively. The technique proposed in this paper has been
used to evaluate progress through these two stages. A
total of 246 (38.02%) defects were found via white box
testing and 401 (61.98%) defects were found via black
box testing. Figure 8 shows the (defect type, defect
trigger) distributions of these tests.
White box testing resulted in expected percentages

of assignment (49%) and checking (13%) defects. Inter-
face (13%) and algorithm (20%) defects indicated ine�-
cient LLD inspection. Furthermore, while the percent-
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Figure 9: Trigger Distribution in Testing Process for
Project D.
ages of combinational path coverage (37%) and simple
path coverage (34%) in Figure 8(a) indicate thorough-
ness in the test, the relatively high percentage of side
e�ects (29%) needs closer examination.

When the cross-product of trigger and defect type
(Figure 8(a)) was considered, it was observed that a
signi�cant percentage of interface was being triggered
by side e�ects. In retrospect, this discovery was a warn-
ing that was ignored by the team when they decided to
proceed with FVT.

The re-iterated black box testing (Figure 8(b)) exhib-
ited more complete test scenarios. However, the same
warning signal involving a high percentage of interface
(32%) and a signi�cant proportion of side e�ects (8%)
triggering such interface defects was still present. Thus,
the team concluded that there was insu�cient progress
through white box and black box testing to justify pro-
ceeding with SVT.
4.2 Project D

A large software development project may be parti-
tioned into more manageable subprojects, referred to
as line items. Design, coding, white box testing, and
black box testing are performed on each such line item.
The mixed white/black box testing of a line item is la-
beled a line item test (LIT). Related line items are sub-
sequently integrated and tested in black box mode via
combined line item function test (CLIFT). The whole
software release in then integrated and black box tested
via Function Veri�cation Test (FVT). The usefulness of
defect classi�cation in evaluating progress through suc-
cessive stages of the development process is illustrated
by presenting the results of the LIT, CLIFT, and FVT
activities of another software product (Product D). The
proposed technique has been used to evaluate progress
through these stages. A total of 53 (16.01%) defects
were found via LIT, 119 (35.95%) defects were found
via CLIFT, and 159 (48.04%) defects were found via
FVT. Figure 9 shows the distributions of the (defect
trigger, defect type) cross-product for these tests.

Following the completion of LIT, it was noted that
the percentage of algorithm defects (29%) was domi-
nant. Further, function, interface, and algorithm ac-
counted for 51% of the defects. A large percentage
of assignment and checking defects (38%) was also re-
ported. Hence, the structures document inspection and
the code inspection of this product were deemed inef-
�cient. The development team aknowledged that they
did not conduct any formal code inspections and were
completely relying on test scenarios to uncover the de-
fects of their product. Consequently, evaluating the
e�ectiveness of such tests was exceptionally crucial.

To help evaluate such e�ectiveness, the trigger dis-
tributions of Figure 9(a) were examined. While the
percentages of combinational path coverage (23%), sim-
ple path coverage (32%), test coverage (13%), and test
variation (9%) in Figure 9(a) indicated thoroughness
in the test, the relatively high percentage of side e�ects
(19%) needed closer examination. Side e�ects triggered
relatively high percentages of function defects (4%), in-
terface defects (8%), and timing/serialization defects
(2%); these were further proof of a de�cient structures
document inspection because they pointed to detailed
design problems.

When associated with the level of experience of the
testers (Figure 2(b)), the very low percentages of test
sequencing (4%) and test interaction (0%) pointed to
the absence of testers with extensive experience with
the product and its underlying hardware platforms.
Further, it was feared that the defects triggered by side
e�ects were masking some more serious design 
aws.
Hence, more elaborate testing was recommended before



progressing to the next test activity. This recommen-
dation was partially adopted by the development team
in their decision to proceed to CLIFT activities.
Consequently, the team decided to expand the test

scenarios of CLIFT with test interaction and test se-
quencing in mind with the goal of discovering more
function, interface, and algorithm defects. Further,
testers with extensive experience with the product and
its underlying hardware platforms were added to the
test planning team. It was also decided to monitor the
percentage of defects triggered by side e�ects in subse-
quent test activities.
CLIFT test cases helped detect more algorithm de-

fects (22%). Further, function, interface, and algorithm
accounted for 47% of the defects. A large percentage
of assignment and checking defects (46%) was also re-
ported. Hence, further proof of de�cient structures doc-
ument inspection and code inspection of this product
was at hand.
While the percentages of test coverage (55%), test

variation (9%), and test sequencing (10%) in Figure
9(b) indicated thoroughness in the test, the relatively
high percentage of side e�ects (13%) was again a cause
for concern. The percentage of function defects trig-
gered by side e�ects dropped from 4% to 1%, the
percentage of interface defects triggered by side ef-
fects dropped from 8% to 3%, and the percentage
of timing/serialization defects triggered by side e�ects
dropped from 1% to 0%. However, the percentage of al-
gorithm defects triggered by side e�ects increased from
0% to 3%. They pointed to design integration problems
of the various line items of the release.
On the other hand, it was concluded that adding

testers with extensive experience with the product and
its underlying hardware platforms to the CLIFT test
planning team helped increase the percentages of test
sequencing and test interaction. Further, it was de-
cided to proceed with FVT and to defer any decisions
on re-inspecting the design structures documents or the
implementation code of the release until FVT is com-
plete. During FVT, the percentage of defects triggered
by side e�ects would be monitored and would form the
basis for any such decisions.
Following the completion of FVT, it was noted that

the percentage of algorithm defects (29%) was domi-
nant. Further, function, interface, and algorithm ac-
counted for 50% of the defects. A large percentage
of assignment and checking defects (38%) was also re-
ported. Hence, further proof of de�cient structures doc-
ument inspection and code inspection of this product
was at hand.
The percentages of test coverage (43%), test varia-

tion (14%), test sequencing (6%), and test interaction
(6%) in Figure 9(c) indicated thoroughness in the test.
However, the relatively high percentage of side e�ects
(14%) was again a cause for concern. The percentage of
function defects triggered by side e�ects dropped fur-
ther from 1% to 0% and the percentage of interface de-
fects triggered by side e�ects dropped further from 3%
to 1%. However, the percentage of algorithm defects
triggered by side e�ects increased further from 3% to
6% and the percentage of timing/serialization defects
triggered by side e�ects increased from 0% to 1%.

Consequently, the team concluded that while the test
scenarios were adequate, the stability of the design
and/or code of certain components in the release pre-
cluded advancing to the system veri�cation test (SVT)
stage where testing is performed on the actual hardware
platform of the product. The components where func-
tion, interface, algorithmor timing/serializationdefects
were triggered by side e�ects during test were targeted
for design structures document re-inspection. Simi-
larly, components where assignment and checking de-
fects were triggered by side e�ects during test were tar-
geted for code re-inspection. Following such inspection
activities, the test cases created during LIT, CLIFT,
and FVT will be re-executed and their detected defects
will be analyzed before progressing to the SVT stage of
the development process.

5 Conclusion

In the absence of viable theoretical methods for verify-
ing the correctness of software designs and implemen-
tations, software inspection and test play a vital role in
validating both. The goal of both inspections and tests
is to reduce the expected cost of software failure over
the life of a product.
This paper proposes a technique that o�ers soft-

ware designers, developers, and test planners signi�-
cant guidance for rectifying, in-process, the weaknesses
of their procedures, and for assessing the implications
of any rectifying actions on their inspection and test
processes. Such processes may involve di�erent soft-
ware technologies that can also be indirectly assessed.
The technique extends the use of defect triggers, the
events which cause defects to be discovered, to help
evaluate the e�ectiveness of inspections and test sce-
narios. In software inspections, the defect trigger is de-
�ned as a set of values which associate the skills of the
inspector with the discovered defect. Similarly, for test
scenarios, the defect trigger values embody the various
strategies being used in creating these scenarios.
The technique evaluates an inspection or a test activ-

ity and tracks progress between the various activities of
a stage and between the various stages of the software
development process. The �ndings of such evaluations



report both the strengths and the weaknesses of an in-
spection or a test activity and are presented to the soft-
ware development team. Reported strengths signal the
start of the next activity, while reported weaknesses are
followed by speci�c actions that aim at improving the
outcome of the current activity.
The usefulness of this technique in evaluating the ef-

fectiveness of software inspections and tests is demon-
strated by evaluating the inspection and test activi-
ties of some software products. These evaluations are
used to point to both de�ciencies in inspection and test
strategies, and progress made in improving such strate-
gies. The trigger distribution of the entire inspection or
test series may then used to highlight areas for further
investigation, with the aim of improving the inspection
and test processes.
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