
11

CIS 610, W98 / M Young & M Pezzè 2/25/98 1

Integration & System Testing

22

Integration and system testing comprises several steps during different
development phases:

Acceptance test planning: In this step, that is part of requirements
elicitation, the software engineers define the strategies for acceptance
testing and identify the criteria to accept the final product.

System test planning: In this step, that is part of requirements
specification, the software engineers define the strategies for systems
testing.

Create functional tests: requirements specifications are mapped to
functional test cases, to be used during system testing.

Integration and unit test planning: definition of goals and process for
integration testing. Integration testing and design strategies are defined
and mutually related.

Generate oracles: Detailed design specifications are used to produce
testing oracles to be used during unit testing.

•

CIS 610, W98 / M Young & M Pezzè 2/25/98 2

Integration and System Testing:
Main Activities

Requirements
Elicitation

Requirements
Specification

Architectural
Design

Detail
Design

✓ Identify
qualities

✓Acceptance
test planning

✓ Validate
specifications

✓System test
planning

✓Create
functional
tests

✓ Architectural
design
inspection

✓Integration
& unit test
planning

✓ Design
inspections

✓Generate
oracles

✓ Generate
black-box test
cases

✓ Automated
design
analyses

33

(cont......)

Integration test execution: During integration and delivery, integration
tests are defined and executed according to the plans defined during the
architectural design. Communication and interface errors are identified
and corrected.

System test execution: Functional tests defined during requirements
specifications are executed. The functionalities of the system as a
whole are exercised according to the requirements specifications.

Acceptance test execution:Tests defined as part requirements elicitation
are executed. The functionalities of the whole system are tested with
respect to the expectations of the final users.

CIS 610, W98 / M Young & M Pezzè 2/25/98 3

Integration and System Testing:
Main Activities

Detail
Design

✓ Design
inspections

✓ Generate
oracles

✓ Unit test
planning

✓ Automated
design
analyses

Unit
Coding

✓ Code
inspections

✓ Create
scaffolding

✓ Unit test
execution

✓ Automated
code analyses

✓ Coverage
analysis

Integration &
Delivery

✓ Integration
test
execution

✓ System test
execution

✓ Acceptance
test
execution

✓ Deliver
regression test
suite

Maintenance

✓ Regression test
execution

✓ Revise
regression test
suite

44

Unit, integration, and system testing are complementary activities with
different goals and execution procedures.

Unit testing focuses of the behavior of small units. Tests can be derived from
module specifications or source code. Complex scaffoldings to set up the
environment and check the results are usually required.

Integration testing focuses on communication and interface problems that may
arise during module integration. Tests can be derived from module interfaces
and detailed architecture specifications. some scaffolding is required, usually
derivable from unit testing scaffoldings.

System testing focuses on the behavior of the system as a whole. Tests are
derived from requirements specifications; code is seen as a black box. The
system can be executed without the support of scaffoldings (a partial exception
is embedded code, where some simulation of the embedding environment may
be required).

CIS 610, W98 / M Young & M Pezzè 2/25/98 4

Unit Vs. Integration Vs. System
Testing

Unit Testing

visibility of code
details

from module
specifications

Integration Testing System Testing

from interface
specifications

from requirements
specifications

visibility of the
integration structure

no visibility of code

complex scaffolding
required

some scaffolding
required

no drivers/stubs
required

attention to
behavior of single
modules

attention to
interactions among
modules

attention to system
functionalities

55

Both system and acceptance testing focuses on the whole system, but they are
performed in different ways with different goals.

System testing is performed by the developers who have large visibility (and
knowledge) of the structure of the system, but are not final users of the system
itself; acceptance testing is performed by the final users who know very little
about the structure of the system and its details, but are perfectly aware of the
actual requirements of the operative environment.

System testing is mostly based on requirements specifications, i.e., the
viewpoint of the developers and aims at verifying the system, i.e., check is the
system has been built correctly (according to the requirements specifications).
Acceptance testing is mostly based on the feeling of the final users, and aims at
validating the system, i.e., check if the system is correct, by meeting the
expectations of the final users.

CIS 610, W98 / M Young & M Pezzè 2/25/98 5

System Vs. Acceptance Testing

• System testing
– The software is compared with the

requirements specifications (verification)
– Usually performed by the developer

• Acceptance testing
– The software is compared with the end-user

requirements (validation)

– Usually performed by the customer (buyer)
– Sometime distinguished among α- β-testing for

general purpose products

66

Well tested (even correct) units may still cause problems when integrated due
to:

bad use of interfaces, when units violate hypothesis on the interfaces of
used modules

wrong hypothesis on the behavior of the used components, that results
in bad use of returned value.

use of poor scaffolding. Scaffoldings approximate the “embedding”.
When the quality of scaffoldings is reduced to contain costs, their
behavior may be a bad approximation of the embedding and thus the
module may behave differently than expected when “embedded” in the
final system.

CIS 610, W98 / M Young & M Pezzè 2/25/98 6

Integration Testing

• Integration of well-tested modules may
cause errors due to:
– Bad use of the interfaces

(bad interface specifications implementation)
– Wrong hypothesis on the behavior of related

modules
(bad functional specification implementation)

– Use of poor drivers/stubs: a module may
behave correctly with (simple) drivers/stubs,
but result in failures when integrated with
actual (complex) modules.

77

Integration testing can be based on different strategies:

big bang: all units are put together and tested. This strategy does not
require drivers and stubs, but makes the job of the software engineers
very hard, because faults can hardly be related to subset of modules.

top down: units are merged starting from the more general to the more
detailed ones. This strategies requires complex stubs, but does not
require drivers.

bottom up: units are merged starting from the more detailed to the more
general ones. This strategies requires complex drivers, but does not
require stubs.

threads: units are merged according to expected execution threads

critical modules: units are merged according to their criticality level.

Although integration testing and design strategies are not strictly related,
careful choices of them can optimize effort: top-down and bottom-up
integration testing strategies are more suited to traditional design strategies;
threads integration testing strategies are more suited to incremental design;
critical module integration testing strategies are more suited to prototype based
approaches (e.g., the spiral model).

CIS 610, W98 / M Young & M Pezzè 2/25/98 7

Integration Testing vs. Design
Strategies

Integration Testing
Strategies

Design Testing
StrategiesBig Bang

Critical Modules

Top Down

Bottom Up

Threads

Traditional

Incremental

Prototype
(spiral)

Preferable
matching

88

System testing approaches are partition strategies: the input domain is
partitioned in equivalence classes from which tests are derived. Specific
system testing strategies differ in the way the input domain is partitioned and
in the way tests are derived from partitions. In this tutorial, we illustrate the
principle by referring to the Category-partition method proposed by Ostrand
and Balcer.

CIS 610, W98 / M Young & M Pezzè 2/25/98 8

Partition Testing

• Basic idea: Divide program input space into
(quasi-) equivalence classes
– Underlying idea of specification-based,

structural, and fault-based testing

99

The Category-partition method is based on four main steps:

a detailed analysis of the (informal) specifications that aims at
identifying individual functionalities (functional units) that can be
tested separately. Each functional unit is described by giving the
calling environment (parameters and non-local variables). Functional
units are then classified into categories.

categories are partitioned into choices, that identify different sets of
values for each element of the calling environment

constraints are added to reduce the number of choices by eliminating
trivial ones.

tests and test documentation is finally produced.

CIS 610, W98 / M Young & M Pezzè 2/25/98 9

The Category-Partition Method

STEP 1: Analyze the specification:
– Identify individual functional units that can be tested

separately. For each unit identify:
• parameters and characteristics
• environment and characteristics

– classify units into categories

STEP 2: Partition the categories into choices
STEP 3: Determine constraints among the

choices
STEP 4: Write tests and documentation

1010

EXAMPLE:

This is an example of function unit identified as part of the first step of the
category-partition method.

CIS 610, W98 / M Young & M Pezzè 2/25/98 10

The Category-Partition Method:
an example

......... *
Command:

find
Syntax:

find <pattern> <file>
Function:

The find command is used to locate one or more instances of a given pattern
in a file. All lines in the file that contain the pattern are written to standard
output. A line containing the pattern is written only once, regardless of the
number of times the pattern occurs in it.
The pattern is any sequence of characters whose length does not exceed the
maximum length of a line in the file. To include a blank in the pattern, the
entire pattern must be enclosed in quotes (“). To include a quotation mark in
the pattern, two quotes in a row (““) must be used.

...........

* From Ostrand, Balcer, The Category-
Partition Method for Specifying and
Generating Functional Tests

1111

EXAMPLE:

once identified a functional unit, we must identify the calling environment and
define categories. This activity can be based on the explicit content of the
specification or on implicit assumptions, that are usually clear to the expert
developers.

This step often helps in highlighting ambiguities and incompleteness in the
original specifications.

CIS 610, W98 / M Young & M Pezzè 2/25/98 11

Step A - analyze the specification:
identify categories

• find is an individual function that can be tested
separately

• parameters: pattern, file
• characteristics (pattern)

– explicit (immediately derivable from specs):
• pattern length
• pattern enclosed in quotes
• pattern contains blanks
• pattern contains enclosed quotes

– implicit (“hidden” in specs):
• quoted patters with/without blanks
• several successive quotes included in the pattern
•

1212

EXAMPLE:

categories are then partitioned into choices. For the chosen example, choices
are the size of the pattern, the presence of quoting or embedded blanks, the
presence of embedded quotes, the number of occurrences of the pattern in the
file, etc.

CIS 610, W98 / M Young & M Pezzè 2/25/98 12

Step B - partition categories

Parameters:
Pattern size:

empty
single character
many characters
longer than any line in the file

Quoting:
pattern is quoted
pattern is not quoted
pattern is improperly quoted

Embedded blanks:
no
one
several

Parameters (cont....)
Embedded quotes:

no
one
several

File name:
....

Environment:
Number of occurrences of
pattern in a file:

none
one
several

Pattern occurrences on
target line:

....

1313

The simple choice of one item for each partition can generate too many test
cases, most of which useless. For example, if the pattern is empty, the
occurrences of quotes in the patterns are meaningless. In this step, partitions
are annotated with keywords:

[property <name>] defines a name for a property. For example, Pattern size:
single character is named as NonEmpty.

[if <property name>] indicates the conditions for choosing the
property. For example, the choice of a non quoted pattern is
meaningful only for properties of type NonEmpty

[error] indicates that the corresponding test is an erroneous input, and
thus does not have to be combined with other choices. For example, a
pattern longer than any line in the file is an erroneous input.

[single] indicates that the property shall be exercised in only one
combination.

CIS 610, W98 / M Young & M Pezzè 2/25/98 13

Step C: Determine Constraints
Parameters:

Pattern size:
empty [property Empty]
single character [property NonEmpty]
many characters [property NonEmpty]
longer than any line in the file [error]

Quoting:
pattern is quotes [property Quoted]
pattern is not quotes [if NonEmpty]
pattern is improperly quotes [error]

........
Environment:

Number of occurrence of pattern in a file:
none [if NonEmpty] [single]
one [if NonEmpty] [property Match]

.....

1414

The category partition methods provides a methodology to define system tests.
Its efficacy relies on the ability of identifying function units, categories and
partitions. The presented example suggests that categories and partitions must
cover all possible combinations of input data, must take care of boundary cases
(e.g., empty pattern), and must consider erroneous conditions (e.g., pattern
longer than any line in the file). The method itself does not require such cases
to be covered, but a good implementation will satisfy the following important
principles:

partition testing: identify an “even” partition of the input domain

boundary testing: check all boundary conditions

erroneous condition testing: check erroneous inputs

Constraints are important for optimization and feasibility of derived tests, but
not for the selection of the tests themselves.

The same principles are implemented by other methods, that substitute
categories and constraints with

condition tables

cause effect graphs

equivalence partitioning

Main difference among these methods is the complexity of the approach.

CIS 610, W98 / M Young & M Pezzè 2/25/98 14

Some Considerations on
the Category Partition Method

• a practical implementation of general principles:
– partition testing
– boundary testing
– erroneous conditions

• other approaches with similar goals, but different
procedures:
– condition tables
– cause effect graphs
– equivalence partitioning

1515
98

CIS 610, W98 / M Young & M Pezzè 2/25/98 15

Object Oriented Issues:
Inheritance

• Procedural programming:
– Code is structured in subroutines and modules
– Modules are composed bottom-up or top-down
– Once a subroutine has been tested, it has not to be re-tested

• Object oriented programming:
– Code is structured in classes. Inheritance is the fundamental

relationship among classes
– Inheritance allows re-use and incremental development
– In sub-classes, some operations remain unchanged in the sub-class,

others are redefined or eliminated

• Problems:
– How to perform incremental test?
– Which inherited operations need to be re-tested?

System testing is based on requirements specifications, and it is thus
independent from the specific design and implementation paradigm. Different
design and implementation paradigms can impact integration testing.

In particular, object oriented software presents new problems and challenges.

First problem derives from inheritance. Procedural code is structured in
functions and subroutines that are composed top-down or bottom-up. Once a
subroutine has been tested and integrated, it has not to be retested. Object
oriented programs are structured in classes. Inheritance among classes allows
re-use and incremental development. Sub-classes enrich ancestors by adding,
deleting or modifying state variables and methods.

The trivial approach of re-testing each class from scratch is a waste of time and
resources. Efficient incremental testing of class hierarchies must be able to
reduce the amount of test cases to be re-executed or re-designed from scratch
without reducing the confidence level of testing.

1616

EXAMPLE:

Class Circle inherits method move_to from class Shape. How can we
determine if method move-to already tested for class Shape must be re-tested
for class Circle?

CIS 610, W98 / M Young & M Pezzè 2/25/98 16

An Example of New Problems due to
Inheritance

class Shape{
private:
 Point reference_point;
public:
 void put_reference_point(Point);
 point get_reference_point();
 void move_to(Point);
 void erase();
 virtual void rotate(int);
 virtual void draw() = 0;
 virtual float area();
 shape(point);
 shape(); }

class Circle : public Shape{
private:

 int radius; // new attribute

public:
 void rotate(int); // redefined

 void draw(); // redefined

 void circle(point p, int r);

}

Method Circle::move_to
has to be tested?

1717

A first set of approaches to the incremental testing of classes is the trivial one:
each class is re-tested as if it were newly defined. As mentioned before such
approaches are easily implementable referring to traditional testing techniques,
but they can be extremely inefficient.

A second set of approaches try to reduce the amount of tests to be executed
taking into account the tests already executed for the super classes. Such
methods are based on concepts like testing histories, that allow to determine
which test cases do not have to be re-executed, which must be re-execute, and
which must be newly defined, depending on the relation of the class with its
super-classes.

CIS 610, W98 / M Young & M Pezzè 2/25/98 17

Approaches to the Inheritance
Testing Problems

• Flattening inheritance
each subclass is tested as if all inherited features
were newly defined
– tests used in the super-classes can be reused
– many tests are redundant

• Incremental testing
reduce tests only to new  modified features
– based on testing histories
– reduced set of tests
– additional structures required

1818
119

CIS 610, W98 / M Young & M Pezzè 2/25/98 18

Object Oriented Issues:
Genericity

• Procedural programming:
– Generic modules are not present

• Object oriented programming:
– Generic modules are present in most OO languages
– key concept for the construction of reusable components

libraries, (e.g., C++ STL).

• Problems:
– When testing a generic component: What assumptions can

be made on the parameter module?
– Which method should be followed when testing a re-used

generic component?

A second class of problems for object oriented programs is given by generic
modules. Testing generic modules becomes even more difficult when dealing
with libraries, where we have little information about the use that will be done
of such classes.

Main problem of integration testing of generic modules is the identification of
parameters that can assure a good coverage of the generic class.

1919

EXAMPLE:

Class vector can be used with different parameters. Are test cases defined for
parameter int enough for parameter complex, or do we need to re-test class
vector with the new parameter. Is there a set of parameters that can ensure a
good coverage of the testing of class vector before checking it in a library?

So far few solutions exists, mainly based on the restriction of the possible
parameter, but no general solution has been thoroughly experimented so far.

CIS 610, W98 / M Young & M Pezzè 2/25/98 19

An Example of Problems due to Genericity

template <class T> vector{
 T* v;
 int sz;
public:
 vector(int);
 void sort();
 ...
}
vector(complex)

complex_vector(100);
vector(int)

integer_vector(100);

What assumptions should be
made on intint and complexcomplex to
call the corresponding sort
methods?

2020
1310

CIS 610, W98 / M Young & M Pezzè 2/25/98 20

Object Oriented Issues:
Polymorphism and late binding

• Procedural programming:
– procedure calls are statically bound

• Object oriented programming:
– An object may belong to different classes of a hierarchy ⇒

many implementations of an operation (polymorphism)
– The selection of the actual code to call is postponed until run-

time (late binding)

• Problems:
– How to cover all calls to polymorphic operations?
– How to exercise all the implementations of an operation?
– How to handle polymorphic parameters?
– Structural testing cannot be statically determined

Another class of problems of testing object oriented programs derives from
polymorphism and late binding. In procedural programs, procedure calls are
statically bound. In object oriented programs, objects can belong to different
classes of the same hierarchy and the bindings between caller and called can
be determined only at execution time.

Exhaustive testing in presence of dynamic binding presents new challenges,
that cannot be approached with traditional testing techniques.

2121

EXAMPLE:

Class Shape is specialized in different geometric figures. The call to method
area can be dynamically bound to any object of any class in the hierarchy. The
testing of the method call with an object of class Triangle, would not reveal
faults due to the binding with the method of class Square.

CIS 610, W98 / M Young & M Pezzè 2/25/98 21

An Example of Problems Due to Dynamic
Binding

Triangle

void foo(Shape polygon)
{

...
data = polygon.area;
...
}

Square Pentagon ...

Shape

Which implementation of
areaarea is actually called?

2222

Problems of testing in presence of dynamic biding are approached by reducing
the combinatorial explosion of possible combination either statically, using
matrix reduction techniques, or dynamically, using data flow analysis
techniques.

CIS 610, W98 / M Young & M Pezzè 2/25/98 22

Approaches to the Dynamic Binding
Testing Problem

• Reduction of combinatorial explosion of
the number of test cases that cover all
possible combinations of polymorphic calls
and parameters using
– static analysis (matrix reduction)
– dynamic analysis (data flow)

