
11

CIS 610, W98 / M Young & M Pezzè 2/23/98 1

Test Oracles

CIS 610, W98 / M Young & M Pezzè 2/23/98 2

What is an oracle?

13245
35968
....

An ÒInspectorÓ of executions:
do test executions produce 

acceptable results?

An oracle can be:
human being

machine
a former version of the same program

another program
.....



22

CIS 610, W98 / M Young & M Pezzè 2/23/98 3

What is a good oracle?

Testing large, complex applications may 
require millions of test runs 

ewfcdgvr09-4tfewv95gff9btbfd766dv0

erfjmvesf78-6rsdvv45fvf6bfdfb666gf7

gygirfnm55-8nyfng43nhynhum001bn4

hnhnghn88-7hgmh11vfnnhnhm888hh6

ewfcdgvr09-4tfewv95gff9btbfd766dv0

erfjmvesf78-6rsdvv45fvf6bfdfb666gf7

gygirfnm55-8nyfng43nhynhum001bn4

hnhnghn88-7hgmh11vfnnhnhm888hh6

..........
..........

..........
..........

...

The size of the 
outputs to be 

inspected exceed 
the capabilities of 

human eyes  

human eyes are slow and 
unreliable examiners even of 

small number of outputs

So ... automated oracles are essential

CIS 610, W98 / M Young & M Pezzè 2/23/98 4

Can oracles be automatically 
produced?

Oracles can be easily derived from a
“golden versiongolden version” 
of the program

BUT...

how often do we have a “golden version?” 

almost never ....

what to do then?

let’s try to find an acceptable approximation...



33

CIS 610, W98 / M Young & M Pezzè 2/23/98 5

How can we build acceptable 
oracles? 

There is NO universal recipeThere is NO universal recipe

➪ application domains 
➪ development environments
➪ development phases

• GUI
• protocols
• .....

• no specifications
• informal specifications
• formal specifications
• .......

• system testing
• regression testing
• ........

Different solutions for different

CIS 610, W98 / M Young & M Pezzè 2/23/98 6

Oracles from System Specifications

• An essential part of requirements 
specification:  Making specified properties 
checkable

• System oracles are designed early
– NOT after system design

• Subsystem oracles are a part of 
architectural design and system build plan
– “design for test”



44

CIS 610, W98 / M Young & M Pezzè 2/23/98 7

Narrowing for Checkability 

• Objective:  
Passengers are not 
frustrated by waiting

• Specified property:  
Elevator responds 
within 60 seconds, 
99% of the time

• Excluded solution:  
Install a mirror  in the 
waiting area

•Example: Elevator  
response

Uncheckable requirements can 
often be narrowed to checkable 
properties (often sufficient but not 
necessary conditions)

1 2 3 4 5 6 7 8 

CIS 610, W98 / M Young & M Pezzè 2/23/98 8

Oracles from Design

Example: UML design notations
• Message sequence charts

– A UML message sequence chart indicates a test case 
and expected outcome, which can be interpreted by a 
driver and oracle 

– Typical of “scenario-based” oracles
• scenarios combine test case with special oracle

• StateChart (finite state acceptor)
– A UML finite state machine describes all permissible 

behaviors of a module 
• oracle can be used with large numbers of automatically 

generated test cases



55

CIS 610, W98 / M Young & M Pezzè 2/23/98 9

Oracles from Code Documentation

Parnas’ tabular 
annotations 
precisely 
describe the 
functional 
behavior of the 
unit. The table 
can be evaluated 
with respect to 
the produced 
outputs to check 
for their 
correctness .

DISPLAY 1 Display 1 Specification

Find(x,A,j,present)

R0(,) = ((1≤n) and [for all (1≤i≤n) ⇒ Α[ι] ″∏Α[ι+1]]) ⇒

present’=

j’           |

∃ ι[(1″ι″ ν) ανδ (Α[ι]=ξ)] =  
true false

‘A[j]=‘x true

true false and NC(x,A)

Display 1 Program
procedure find (...)
..........
end {find}

Display 1 Specifications of the Invoked Programs

..........

* from: Parnas, Madey, Iglewski, Precise Documentation of Well-
Structured Programs, IEEE-TSE Vol.. 20 N. 12 Dec 1994

*

CIS 610, W98 / M Young & M Pezzè 2/23/98 10

Harness vs. Embedded Assertions

Driver

Stubs

Unit or 
Subsystem

Oracle
Driver

Stubs

Unit or 
Subsystem

Oracle

Oracle

Oracle

Embedded assertions  act as oracles 
within the unit under test



66

CIS 610, W98 / M Young & M Pezzè 2/23/98 11

Assertions as Oracles

/* 
 * Alphabetic sort of an array of strings
 */
void  sort( char *words[ ],  int nwords ) 
{

. . . 
     assert( is_sorted(words, nwords) );
     return; 
}

CIS 610, W98 / M Young & M Pezzè 2/23/98 12

Oracle Design Exercise 1

Devise an oracle for this function: 
void escape_html_specials( char *in, char *

out); 
– Input:  String of ASCII text

– Output: Same string EXCEPT each special html 
character (&, #, <, etc.) is replaced by entity 
name or numeric code 

– Example:  “<Analysis & Test>” 
becomes “&lt;Analysis &amp; Test&gt;”



77

CIS 610, W98 / M Young & M Pezzè 2/23/98 13

Oracle Exercise 2: Shortest Path

• Devise an oracle for a module or program that 
finds the shortest weighted path in a graph
– or, more realistically:  find train route from city X to 

city Y minimizing changes and total time

• Input:  source city, destination city, set of (A,B,d) 
where A and B are cities, d is a positive integer

• Output: sequence (source,x1,d0), (x1,x2,d1), ... , 
(xn,dest,dn) minimizing d0+d1+...+dn 

CIS 610, W98 / M Young & M Pezzè 2/23/98 14

Automation

• Capture/Playback/Compare
– for interaction scenarios
– especially for regression testing
– typical problem: low-level compare

• ex:  bitmap compare fails because of changed font

• Scripting with expected output checks
• similar limitations as playback/compare

• Embedded assertions & self-checks
– simple support (e.g., C assert macro) in most 

languages, typically with compile-time disabling
• support for quantification, “before” values, etc. is currently 

rare  (available in some research tools; also Gnu “nana”)


