Fundamentals of Dynamic Testing

» Three questions:

— How shall we tell if a test has succeeded or
failed?
[More next week on this, as well as process issues]
— How shall we select test cases?

— How do we know when we’re done?
[Most of today’s lecture]

Historically approached in the opposite order

CIS 610, W98 / M Young & M Pezzé 2/18/98

Inaccuracy in Dynamic Testing

Optimistic inaccuracy

(testing)
Sample of executions

Pessimistic inaccuracy
® (analysis, proofs)
Perfect verification
= exhaustive testing

“Easier” properties

* Since exhaustive testing is impossible, we must
choose a sample of executions

CIS 610, W98 / M Young & M Pezzé 2/18/98

Possible Goals of Testing

* Find faults
— Glenford Myers, The Art of Software Testing

 Provide confidence
— of reliability
— of (probable) correctness

— of detection (therefore absense) of particular
faults

CIS 610, W98 / M Young & M Pezze 2/18/98

Testing for Reliability

* Reliability is statistical, and requires a
statistically valid sampling scheme

» Programs are complex human artifacts with
few useful statistical properties

* In some cases the environment (usage) of
the program has useful statistical properties

— Usage profiles can be obtained for relatively
stable, pre-existing systems (telephones), or
systems with thoroughly modeled
environments (avionics)

CIS 610, W98 / M Young & M Pezze 2/18/98

Certifying Ultra-High reliability

* Problem: How can | show that system X
has an expected failure rate of 10-9/hour?

— example: probability that software will ever
bring down an Airbus A320

e Butler & Finelli estimate

— for 102 per 10 hour mission
— requires; 1010 hours testing with 1 computer

— or: 10° hours (114 years) testing with 10,000
computers
[ACM Sigsoft 91, Conf. on SW for Critical Systems]

CIS 610, W98 / M Young & M Pezze 2/18/98

Arbitrary # Random

» A common error in attempting to obtain
statistical confidence measures
— Avrbitrary distributions may be modeled by adversary
functions, not by uniform distributions
» Example:

— If failures were distributed randomly through the
execution space of a database program, it would fail at
a uniform rate over time.

— In reality, it may never fail until a critical table
overflows, and then always fail thereafter.

CIS 610, W98 / M Young & M Pezze 2/18/98

Glimmers of Hope

for Measuring High Reliability

» Random distribution of faults or failures would
enable statistical reasoning and classic redundancy
techniques

— A whole more reliable than its parts
» Randomization approaches
— Blum: Self-checking programs
— Lipton: Redundant computations
— Podgurski: Kolmogorov complexity
* Grail or illusion?
— Difficult to generalize beyond simple functions

CIS 610, W98 / M Young & M Pezze 2/18/98

Process-Based Reliability Testing

 Rather than relying only on properties of
the program, we may use historical
characteristics of the development process

 Reliability growth models (Musa,
Littlewood, et al) project reliability based
on experience with the current system and
previous similar systems

CIS 610, W98 / M Young & M Pezze 2/18/98

Partition Testing

 Basic idea: Divide program input space into
(quasi-) equivalence classes

— Underlying idea of specification-based,
structural, and fault-based testing

CIS 610, W98 / M Young & M Pezzé 2/18/98

“Adequate” partition testing

* |deally: adequate testing ensures some
property (proof by cases)

— Origins in Goodenough & Gerhart, Weyuker
and Ostrand

— In reality: as impractical as other program
proofs

CIS 610, W98 / M Young & M Pezze 2/18/98

10

Systematic Partition Testing

 Systematic (non-random) testing is aimed at
program improvement, not measurement

— Obtaining valid samples and maximizing fault
detection require different approaches; it is
unlikely that one kind of testing will be
satisfactory for both

 Practical “adequacy” criteria are negative:
indications of important omissions

CIS 610, W98 / M Young & M Pezze 2/18/98

Specification-Based Partition Testing

 Divide the program input space according
to identifiable cases in the specification

— May include boundary cases

— May include combinations of features or values

« If all combinations are considered, the space is
usually too large

 Systematically “cover” the categories

— May be driven by scripting tools or input
generators

CIS 610, W98 / M Young & M Pezze 2/18/98

11

12

Structural Coverage Testing

* (In)adequacy criteria
— If significant parts of program structure are not tested,
testing is surely inadequate

» Control flow coverage criteria
— Statement (node, basic block) coverage
— Branch (edge) coverage
— Condition coverage
— Path coverage
— Data flow (syntactic dependency) coverage
» Attempted compromise between the impossible
and the inadequate

CIS 610, W98 / M Young & M Pezzé 2/18/98

Statement Coverage

int select(int A[], int N, int X) i=0
{ v
int i=0;
while (i<N or A[i] <X) _
{
if (A[i]<0)
} Ali] =-Alil; True
} retrn(l) return(l) All :I- Al

Onetest datum (N=1, A[0]=-7, X=9) is enough to guar antee statement
cover age of function select
Faultsin handling positive values of A[i] would not berevealed

CIS 610, W98 / M Young & M Pezze 2/18/98

13

14

Branch Coverage

int select(int A[], int N, int X) i=0
{ Y
int i=0;
while (i<N or A[i] <X) \
{
if (A[i]<0)
[A=A _
\ return(l); pr— A[i]:-A[i]

Wemust add a test datum (N=1, A[0]=7, X=9) to cover branch
False of theif statement. Faultsin handling positive values of A[i]
would berevealed. Faultsin exiting the loop with condition A[i] <X
would not berevealed

CIS 610, W98 / M Young & M Pezzé 2/18/98

Condition Coverage

int select(int A[], int N, int X) i=0
{ Y
int i=0;
while (i<N or A[i] <X) _
{
if (A[i]<0)
[A=A e
\ return(l); po—— Ali] =I- Ali]

Both conditions (i<N), (A[i]<X) must befalse and truefor different
tests. In thiscase, we must add teststhat cause the while loop to
exit for avalue greater than X.

Faultsthat arise after several iterations of the loop would not be
revealed.

CIS 610, W98 / M Young & M Pezzé 2/18/98

Path Coverage

int select(int A[], int N, int X) i=0
{

int i=0; *\

\{/vhile(i<N or A[i] <X) i<N or A[i] <X -

rue
if (A[i]<0) False .
All] =- A[T; Al |

} False True

\ return(l); pr— Ali] =I- Ali]

Theloop must beiterated given number of times.
PROBLEM: uncontrolled growth of test sets. We need to select a
significant subset of test cases.

CIS 610, W98 / M Young & M Pezzé 2/18/98 17

Data flow testing:
an example of partition testing

* |dentify def-use pairs (reaching definitions)
In program source code

» Coverage criterion: Each def-use pair must
be executed at least once

 Rationale: Untested def-use pairs hide bad
computations

— Typical of coverage criteria: Justified as a
lower bound on sufficient testing, not an upper
bound

CIS 610, W98 / M Young & M Pezze 2/18/98 18

Data flow coverage criteria (ex.)

X =7
+_l Rationale: An untested
— def-use association
=X could hide an
erroneous computation
< -
y = y+d e 2 reaching definitions
T (one is from self)
AR S0 B — 2 reaching definitions for x,
and 2 reaching definitions for y
CIS 610, W98 / M Young & M Pezzé 2/18/98 19

Fault-based testing

e Given a fault model

— hypothesized set of deviations from correct
program

— typically, simple syntactic mutations; relies on
coupling of simple faults with complex faults

» Coverage criterion: Test set should be
adequate to reveal (all, or x%) faults
generated by the model

— similar to hardware test coverage

CIS 610, W98 / M Young & M Pezze 2/18/98 20

10

Structural Coverage in Practice

 Statement and sometimes edge coverage is
used in practice

— Simple lower bounds on adequate testing; may
even be harmful if inappropriately used for test
selection

o Additional control flow heuristics
sometimes used

— Loops (never, once, many), combinations of
conditions

CIS 610, W98 / M Young & M Pezze 2/18/98 21

The “subsumes” hierarchy

* Intuition: “stronger” criteria for better testing
— Adequacy criterion A subsumes criterion B iff, for

every program P, a test set that satisfies A for P,
necessarily satisfies B for P

e Problems:

— Unclear link to dependability
¢ Although Hamlet & Taylor [86] has been widely
misinterpreted
— Does not consider cost

« Partly addressed by Frankl et al (fault detection efficiency), but
still does not address Ntafos’ arguments for cheaper random
testing

CIS 610, W98 / M Young & M Pezze 2/18/98 22

The Infeasibility Problem

 Syntactically indicated behaviors (paths, data
flows, etc.) are often impossible
— Infeasible control flow, data flow, and data states

» Adequacy criteria are typically impossible to
satisfy

 Unsatisfactory approaches:

— Manual justification for omitting each impossible test
case (esp. for more demanding criteria)

— Adequacy “scores” based on coverage
« example: 95% statement coverage, 80% def-use coverage

CIS 610, W98 / M Young & M Pezze 2/18/98

Challenges in Structural Coverage

Interprocedural and gross-level coverage
— e.g., interprocedural data flow, call-graph coverage

Regression testing
Late binding (OO programming languages)
— coverage of actual and apparent polymorphism

Fundamental challenge: Infeasible behaviors

— underlies problems in inter-procedural and
polymorphic coverage, as well as obstacles to adoption
of more sophisticated coverage criteria and
dependence analysis

CIS 610, W98 / M Young & M Pezze 2/18/98

23

24

The Budget Coverage Criterion

e Industry’s answer to “when is testing done”
— When the money is used up
— When the deadline is reached

 This is sometimes a rational approach!
— Implication 1: Adequacy criteria answer the
wrong question. Selection is more important.

— Implication 2: Practical comparision of
approaches must consider the cost of test case
selection

CIS 610, W98 / M Young & M Pezzé 2/18/98 25

Selection vs. Adequacy:

» Red fish = real program faults (unknown population)

* Blue fish = seeded faults (e.g., mutations) or
representative behaviors (known population)

» Adequacy: count blue fish caught, estimate red fish
» Misuse for selection: use special bait to catch blue fish

CIS 610, W98 / M Young & M Pezze 2/18/98 26

Partition Testing: Summary

» Non-random selection for fault detection
— as versus statistical reasoning about reliability

* Specification-based partitioning is the primary systematic
technique
— at unit, subsystem, and system levels

 Structural criteria indicate “holes” in the tests
— but satisfying a structural criterion guarantees nothing

CIS 610, W98 / M Young & M Pezzé 2/18/98

27

14

