
11

CIS 610, W98 / M Young & M Pezzè 2/18/98 1

Fundamentals of Dynamic Testing

• Three questions:
– How shall we tell if a test has succeeded or 

failed? 
[More next week on this, as well as process issues]

– How shall we select test cases? 
– How do we know when we’re done? 

[Most of today’s lecture]

Historically approached in the opposite order

CIS 610, W98 / M Young & M Pezzè 2/18/98 2

Inaccuracy in Dynamic Testing

• Since exhaustive testing is impossible, we must 
choose a sample of executions

Perfect verification 
= exhaustive testing

Optimistic inaccuracy
(testing)

Pessimistic inaccuracy
(analysis, proofs)

“Easier” properties

Sample of executions



22

CIS 610, W98 / M Young & M Pezzè 2/18/98 3

Possible Goals of Testing

• Find faults 
– Glenford Myers, The Art of Software Testing

• Provide confidence
– of reliability 
– of (probable) correctness
– of detection (therefore absense) of particular  

faults

CIS 610, W98 / M Young & M Pezzè 2/18/98 4

Testing for Reliability

• Reliability is statistical, and requires a 
statistically valid sampling scheme

• Programs are complex human artifacts with 
few useful statistical properties

• In some cases the environment (usage) of 
the program has useful statistical properties
– Usage profiles can be obtained for relatively 

stable, pre-existing systems (telephones), or 
systems with thoroughly modeled 
environments (avionics)



33

CIS 610, W98 / M Young & M Pezzè 2/18/98 5

Certifying Ultra-High reliability

• Problem:  How can I show that system X 
has an expected failure rate of 10-9/hour?

– example: probability that software will ever 
bring down an Airbus A320

• Butler & Finelli estimate 
– for 10-9 per 10 hour mission
– requires: 1010 hours testing with 1 computer

– or: 106 hours (114 years) testing with 10,000 
computers

[ACM Sigsoft 91, Conf. on SW for Critical Systems]

CIS 610, W98 / M Young & M Pezzè 2/18/98 6

Arbitrary ≠ Random

• A common error in attempting to obtain 
statistical confidence measures
– Arbitrary distributions may be modeled by adversary 

functions, not by uniform distributions

• Example:  
– If failures were distributed randomly through the 

execution space of a database program, it would fail at 
a uniform rate over time. 

–  In reality, it may never fail until a critical table 
overflows, and then always fail thereafter.



44

CIS 610, W98 / M Young & M Pezzè 2/18/98 7

Glimmers of Hope 
for Measuring High Reliability

• Random distribution of faults or failures would 
enable statistical reasoning and classic redundancy 
techniques
– A whole more reliable than its parts 

• Randomization approaches
– Blum: Self-checking programs
– Lipton: Redundant computations
– Podgurski: Kolmogorov complexity

• Grail or illusion? 
– Difficult to generalize beyond simple functions

CIS 610, W98 / M Young & M Pezzè 2/18/98 8

Process-Based Reliability Testing

• Rather than relying only on properties of 
the program, we may use historical 
characteristics of the development process 

• Reliability growth models (Musa, 
Littlewood, et al)  project reliability based 
on experience with the current system and 
previous similar systems



55

CIS 610, W98 / M Young & M Pezzè 2/18/98 9

Partition Testing

• Basic idea:  Divide program input space into 
(quasi-) equivalence classes
– Underlying idea of specification-based, 

structural, and fault-based testing

CIS 610, W98 / M Young & M Pezzè 2/18/98 10

“Adequate” partition testing

• Ideally: adequate testing ensures some 
property (proof by cases)
– Origins in Goodenough & Gerhart, Weyuker 

and Ostrand 
– In reality: as impractical as other program 

proofs



66

CIS 610, W98 / M Young & M Pezzè 2/18/98 11

Systematic Partition Testing

• Systematic (non-random) testing is aimed at 
program improvement, not measurement
– Obtaining valid samples and maximizing fault 

detection require different approaches; it is 
unlikely that one kind of testing will be 
satisfactory for both

• Practical “adequacy” criteria are negative:  
indications of important omissions

CIS 610, W98 / M Young & M Pezzè 2/18/98 12

Specification-Based Partition Testing

• Divide the program input space according 
to identifiable cases in the specification
– May include boundary cases
– May include combinations of features or values

• If all combinations are considered, the space is 
usually too large

• Systematically “cover” the categories
– May be driven by scripting tools or input 

generators



77

CIS 610, W98 / M Young & M Pezzè 2/18/98 13

Structural Coverage Testing

• (In)adequacy criteria 
– If significant parts of program structure are not tested, 

testing is surely inadequate

• Control flow coverage criteria
– Statement (node, basic block) coverage
– Branch (edge) coverage
– Condition coverage
– Path coverage
– Data flow (syntactic dependency) coverage

• Attempted compromise between the impossible 
and the inadequate

CIS 610, W98 / M Young & M Pezzè 2/18/98 14

Statement Coverage

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

One test datum (N=1, A[0]=-7, X=9) is enough to guarantee statement 
coverage of function select
Faults in handling positive values of A[i] would not be revealed

int select(int A[], int N, int X) 
{

int i=0;
while (i<N or A[i] <X) 
{

if (A[i]<0) 
A[i] = - A[i];

}
return(1);

}



88

CIS 610, W98 / M Young & M Pezzè 2/18/98 15

Branch Coverage

int select(int A[], int N, int X) 
{

int i=0;
while (i<N or A[i] <X) 
{

if (A[i]<0) 
A[i] = - A[i];

}
return(1);

}

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

We must add a test datum (N=1, A[0]=7, X=9) to cover branch 
False of the if statement. Faults in handling positive values  of A[i] 
would be revealed. Faults in exiting the loop with condition A[i] <X 
would not be revealed

CIS 610, W98 / M Young & M Pezzè 2/18/98 16

Condition Coverage

int select(int A[], int N, int X) 
{

int i=0;
while (i<N or A[i] <X) 
{

if (A[i]<0) 
A[i] = - A[i];

}
return(1);

}

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

Both conditions (i<N), (A[i]<X) must be false and true for different 
tests.  In this case, we must add tests that cause the while loop to 
exit  for a value greater than X. 
Faults that arise after several iterations of the loop would not be 
revealed. 



99

CIS 610, W98 / M Young & M Pezzè 2/18/98 17

Path Coverage

int select(int A[], int N, int X) 
{

int i=0;
while (i<N or A[i] <X) 
{

if (A[i]<0) 
A[i] = - A[i];

}
return(1);

}

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

The loop must be iterated given number of times.
PROBLEM: uncontrolled growth of test sets.  We need to select a 
significant subset of test cases.

CIS 610, W98 / M Young & M Pezzè 2/18/98 18

Data flow testing:
an example of partition testing

• Identify def-use pairs (reaching definitions) 
in program source code

• Coverage criterion:  Each def-use pair must 
be executed at least once

• Rationale: Untested def-use pairs hide bad 
computations
– Typical of coverage criteria:  Justified as a 

lower bound on sufficient testing, not an upper 
bound



1010

CIS 610, W98 / M Young & M Pezzè 2/18/98 19

Data flow coverage criteria (ex.)

x := 7

y := x

y := y+1

z := x+y

2 reaching definitions
(one is from self)

2 reaching definitions for x, 
and 2 reaching definitions for y

Rationale:  An untested 
def-use association  
could hide an 
erroneous computation

CIS 610, W98 / M Young & M Pezzè 2/18/98 20

Fault-based testing

• Given a fault model
– hypothesized set of deviations from correct 

program
– typically, simple syntactic mutations; relies on 

coupling of simple faults with complex faults

• Coverage criterion: Test set should be 
adequate to reveal (all, or x%) faults 
generated by the model
– similar to hardware test coverage



1111

CIS 610, W98 / M Young & M Pezzè 2/18/98 21

Structural Coverage in Practice

• Statement and sometimes edge coverage is 
used in practice 
– Simple lower bounds on adequate testing; may 

even be harmful if inappropriately used for test 
selection

• Additional control flow heuristics 
sometimes used
– Loops (never, once, many), combinations of 

conditions

CIS 610, W98 / M Young & M Pezzè 2/18/98 22

The “subsumes” hierarchy

• Intuition: “stronger” criteria for better testing
– Adequacy criterion A subsumes criterion B iff, for 

every program P, a test set that satisfies A for P, 
necessarily satisfies B for P

• Problems: 
– Unclear link to dependability

• Although Hamlet & Taylor [86] has been widely 
misinterpreted

– Does not consider cost
• Partly addressed by Frankl et al (fault detection efficiency), but 

still does not address Ntafos’ arguments for cheaper random 
testing 



1212

CIS 610, W98 / M Young & M Pezzè 2/18/98 23

The Infeasibility Problem

• Syntactically indicated behaviors (paths, data 
flows, etc.) are often impossible
– Infeasible control flow, data flow, and data states

• Adequacy criteria are typically impossible to 
satisfy 

• Unsatisfactory approaches: 
– Manual justification for omitting each impossible test 

case  (esp. for more demanding criteria)
– Adequacy “scores” based on coverage 

• example: 95% statement coverage, 80% def-use coverage

CIS 610, W98 / M Young & M Pezzè 2/18/98 24

Challenges in Structural Coverage

• Interprocedural and gross-level coverage
– e.g., interprocedural data flow, call-graph coverage

• Regression testing
• Late binding (OO programming languages)

– coverage of actual and apparent polymorphism

• Fundamental challenge: Infeasible behaviors
– underlies problems in inter-procedural and 

polymorphic coverage, as well as obstacles to adoption 
of more sophisticated coverage criteria and 
dependence analysis



1313

CIS 610, W98 / M Young & M Pezzè 2/18/98 25

The Budget Coverage Criterion

• Industry’s answer to “when is testing done”
– When the money is used up
– When the deadline is reached

• This is sometimes a rational approach! 
– Implication 1:  Adequacy criteria answer the 

wrong question.  Selection is more important.
– Implication 2: Practical comparision of 

approaches must consider the cost of test case 
selection

CIS 610, W98 / M Young & M Pezzè 2/18/98 26

Selection vs. Adequacy: 
Mutation Testing Example

• Red fish = real program faults (unknown population)
• Blue fish = seeded faults (e.g., mutations) or 

representative behaviors (known population)
• Adequacy: count blue fish caught, estimate red fish
• Misuse for selection: use special bait to catch blue fish



1414

CIS 610, W98 / M Young & M Pezzè 2/18/98 27

Partition Testing: Summary

• Non-random selection for fault detection
– as versus statistical reasoning about reliability

• Specification-based partitioning is the primary systematic 
technique
– at unit, subsystem, and system levels

• Structural criteria indicate “holes” in the tests
– but satisfying a structural criterion guarantees nothing


