Motivation: Compositionality

- Compositionality \equiv Modularity
 - Ability to “compose” verifications of modules to verify a larger system
 - Logic example: Verify a program using pre- and post-conditions of verified procedures
 - Practical requirement: Verification or analysis results must be summarizations
- Compositionality in finite-state verification
 - Hierarchical analysis, summarizing results at each level
 - Potentially control state-space explosion
Non-Compositional Analysis

- We cannot find all behaviors of \(P|Q|R \) by finding behaviors of \(P|Q \) then composing with \(R \).

Adding Compositionality ...

- We want algebraic structure
 - Commutativity, associativity, and a congruence
 - e.g., \(A + B = C \Rightarrow A + D + B = A + B + D = (A + B) + D = C + D \)
 - Needed:
 - Account for “potential” behaviors of a subsystem
 - in \(P|Q|R \), the partial result \(P|Q \) should include action \(b \)
 - ... but limit to interface actions
 - record “potential” behaviors only if they are visible outside a module (e.g., actions \(a \) and \(b \) don’t matter to process \(R \))
 - ... and simplify subsystem analyses
 - the difference between \([a]\) and \([b]\) should not matter outside the subsystem \(P|Q\)
Processes as Terms

- Description of cooperating processes
 - Terms: similar to regular expressions
 - Context free processes are describable but too hairy
 - Process graphs: state machines denoted by terms
 - Regular processes denote finite-state process graphs
- Algebraic laws
 - Associative, commutative laws and substitution of equals for equals (and “less for equals”) for incremental reasoning:
 \[X = A || B \text{ implies } X || C = A || B || C \] (equivalence)
 \[X \leq A || B \text{ implies } X || C \leq A || B || C \] (preorder)

Process Expressions

- Constants
 - \(\delta \) (deadlock, or no action)
 - \(\tau \) (internal, unobservable action, similar to \(\varepsilon \))
 - \(a, b, c, \ldots \) Observable actions
- Expressions formed from
 - ; (sequence, with \(a;b \) abbreviated as \(ab \))
 - + (choice)
 - | (synchronization of 2 events)
 \[aP || bQ = (a||b)(P || Q) + a(P || bQ) + b(aP || Q) \]
Why $\tau \neq \varepsilon$

The other axioms of regular expressions come across without change, but note $ab + ac = a(\tau b + \tau c)$.

Synchronization

- $aP||bQ = (a|b)(P||Q) + a(P||bQ) + b(aP||Q)$
 - i.e., one moves first or else they move together
- In general, $a|b$ is some action c
- In CCS, $a|-a$ is τ, other pairs are δ
 - synchronization is rendezvous between action and co-action, and rendezvous is unobservable by other processes
- In CSP, $a|a$ is a, other pairs are δ
 - synchronization is agreement to do the same thing
Product of Processes

This is progress?
(not unless we can simplify the intermediate product)

Equivalence and Congruence

- Language equivalence is too coarse:
 - $ab + ac = a(b+c)$, which we have seen is wrong
 - We want something nearly as coarse, but preserving deadlock, cheap to check and compute quotients

- Bisimulation:
 - $P=Q$ iff $P \xrightarrow{-a} P'$ implies $Q \xrightarrow{-a} Q'$ and $P'=Q'$
 - $Q \xrightarrow{-a} Q'$ implies $P \xrightarrow{-a} P'$ and $P'=Q'$
 - Strong bisim equivalent if we consider t an action
 - Weak bisim equivalent if an action is at^*
 - Cheap to compute: similar to DFA minimization
Abstraction and Restriction

- Abstraction: Substitute τ for a
 - Meaning: I don’t care about a in this context
 - Especially: I don’t interact with that action
- Restriction: Substitute δ for a
 - Meaning: That can’t happen in this context
 - Especially: That interface isn’t visible here
- At module boundaries,
 - Abstract actions that can happen “in the box”
 - Restrict actions in internal interfaces

Simplifying $P \parallel Q$

- Restrict a, b and abstract $[a], [b]$

\[
P \parallel Q : \quad \begin{array}{c}
P \parallel Q \\\\{a, b\} : \quad \end{array}
\]

\[
(P \parallel Q) \backslash \{a, b\} : \quad \begin{array}{c}
\tau \\
\end{array}
\]

\[
\begin{array}{c}
\tau \\
\end{array}
\]

\[
\begin{array}{c}
c \\
\end{array}
\]
Preorder and Precongruence

- We don't always want equivalence
 - We want to permit looser specs, like a super/sub-type relation among processes
 - Example: Bounded queue of unspecified length
 - A “preorder” relates specification ≤ implementation
- The “testing” preorders
 - may: language inclusion
 - if p may pass a test, q may pass that test
 - must: failures inclusion
 - if p must pass a test, q must pass that test

Why should I care?

- Congruence (or preferably pre-congruence) is a useful definition of conformance of an implementation to an interface specification
- Process product permits one to say “these processes together meet that spec”
- Abstraction and restriction are the semantic building blocks for modularity
- Algebraic structure is essential (but not sufficient) for reasoning hierarchically about complex systems
State-space exploration example:
Alternating Bit Protocol

Alternating Bit Protocol:
After reduction

- After restriction and abstraction, process graphs can be reduced to equivalent form with respect to a congruence relation

... but radical reductions in process graph size occur only when the system to be analyzed is “well-structured”
Scalable analysis

- When compositional analysis “works”, reductions at intermediate steps keep state-space to manageable proportions.
- The question is, when does (or can) it work?

An example (redesigned)
Compositional analysis of revised design

Experience with Compositional Analysis using Process Algebra

- Has worked well for well-structured designs, poorly for code and “as built” designs
- (Re-)structuring for analysis is often necessary
 - Analyzable designs are more understandable and modifiable
 - BUT ... real designs are seldom structured as we want
 - AND WORSE ... there are good reasons for “bad” structure in source code
 - We must accept that the relation between a verified design and the “as built” structure of a system will not be simple