
1SW Testing and Analysis

Analysis where testing fails ...

We can’t prove program correctness, but we can prove
(simple) properties of (simplified) models

Perfect
verification

Optimistic inaccuracy
(testing)

Pessimistic inaccuracy
(analysis, proofs)

“Easier” properties

Some program
properties are too hard
to test for, e.g., race
conditions

2SW Testing and Analysis

Analysis of Models

proc foo ()
 x: integer;
 y: char;
begin
 xxlskd ;

xxl;

Derive
models of
software for
analysis

Direct check of source code
(impractical or impossible)

? P

Property
of interest

Algorithmic check of
derived model for
related property P’

? P´

Property
of model

Implication

3SW Testing and Analysis

Classic data flow analyses to find
program errors

• Uninitialized variable
– “May” result from classic “avail” analysis

• but conservative analysis can be annoying
• “Must” version is also possible (how?)

• Dead assignment (no possible use)
– Classic “live variables” analysis
– In FORTRAN, Awk, BASIC, PERL, etc., usually

indicates a misspelled variable
– less useful in languages requiring declarations

4SW Testing and Analysis

The Classic Analyses

Forward Backward

Any
path

All
paths

Reaching definitions Live variables

Available expressions Very busy expressions

The assignments that
produced current
variable values

Variables whose current
values may be used later

Computed expressions
whose values have not
changed

Expressions that are
always evaluated (in a
loop)

5SW Testing and Analysis

Precision & Safety

• An analysis is conservative (safe) if it doesn’t
miss errors

• An analysis is precise to the extent that it
doesn’t report spurious errors
– An overly conservative, imprecise analysis may be

useless.
– A well-defined but overly strict property may be

preferable to spurious error reports

6SW Testing and Analysis

Why is analysis imprecise?

• Not all program paths are executable
– The same infeasible path problem as test

coverage; perfectly precise analysis is impossible

• Precision is costly
– Static analyses “summarize” results to obtain

results in practical time (often O(n3) in theory, O(n)
in practice). Precise results often require
exponential time and space.

7SW Testing and Analysis

Conservative Analysis

• Flow analysis considers all program paths
– both directions at every branch
– includes some unexecutable paths

• Flow analysis propogates estimates of actual
values

• Correctness condition: Estimates are always
conservative

8SW Testing and Analysis

Aspect analysis
[Jackson 93]

• Classical data dependence analysis
– with three differences

• User-specified dependence properties
• Compositional: Specs can be used in lieu of code
• Dependence between abstract components (finer than

dependence between concrete objects)

• Reports missing dependencies
• Reports only must results

9SW Testing and Analysis

Non-standard analyses

• Flow analysis doesn’t have to be about data
flow
– the formal requirements don’t say anything about

data flow; they just describe a set of equations
about approximate values

• Sometimes we can abstract in different ways
from program execution

• Sometimes we can use the same methods for
other systems of equations

10SW Testing and Analysis

How to cook an analysis

• Choose a “collecting” interpretation
– execution in which a location “collects” every

value
– usually infinite

• Abstract to a finite-height lattice
– with appropriate transfer functions
– often (but not always) subsets of values

11SW Testing and Analysis

Collection & Abstraction

Collecting
Interpretation

Concrete
Interpretation

Abstract
Interpretation

Collect
all possible
values

Abstract to
sets of values

Formulate flow equations
on abstract values

12SW Testing and Analysis

Generalized flow analysis: Cesar
Olender & Osterweil 88

• Specify sequencing properties as regular
expressions
– symbols represent operations that can be

identified in the program text

• Produce DFA (state-machine) accepter
• Propogate DFA states through program

13SW Testing and Analysis

Regular expressions as specs

• Alphabet is program events (identifiable in
source code)

• Spec describes allowed pattern

((OpenR, Read*, Close)
 | (OpenW, (Read | Write)*, Close)
)*

Is the language of the program control flow graph
contained in the language of the specification?

14SW Testing and Analysis

Path expression check

• Lattice: Sets of DFA nodes, top is all nodes

• Confluence is union
• Flow equations: extended transition relation

– dfa nodes × symbol → nodes
– monotonic: more dfa nodes in domain

makes more dfa nodes in range

• Accept if ONLY accepting states at end

15SW Testing and Analysis

Semaphore Order Check

• In operating systems and other concurrent
systems, a common discipline is to impose an
order on semaphores
– If A is ever locked when a lock is requested for B,

then A ≤ B ; the relation ≤ must not contain cycles

• A partial order over semaphores (no cycles in
≤) is a sufficient condition to prevent
deadlock

16SW Testing and Analysis

Recognizing semaphore order

• Assume we can recognize calls to P (lock)
and V (unlock) for each semaphore

• Easy to formulate flow equations in a single
procedure

• ... but we need a global analysis over the
whole program or system

17SW Testing and Analysis

Semaphore analysis
 in the call graph

• First pass: Build up Gen/Kill sets of
semaphores for each procedure in the call
graph
– Gen: All P operations
– Kill: All V operations

• Second pass: Propogate sets of potentially
locked semaphores

18SW Testing and Analysis

Java stack typing

• Java is compiled to op-codes for a virtual
machine; the op-codes manipulate a stack of
intermediate values

• For safety and efficiency, Java types the
stack:
– At every point in the program, the height of the

stack is known
• No stack overflow/underflow checks needed

– The type of the object at the top of the stack is
known

19SW Testing and Analysis

Measuring the stack

• At procedure entry, stack height is zero
– this could be generalized to relative height

• Each stack operation has a predictable effect
– e.g, ADDI reduces stack height by 1

• But what about control flow (if, while)?
– you should be able to concoct a lattice of values

for this; recall constant propogation

20SW Testing and Analysis

Lattice of stack heights

• Exactly as for constant propogation
• What are the flow equations?

{ }
(no values)

{ 0 }{ -1 } { 1 }

{ . . . -1 0 1 . . . }

(constants)

(non-constant)

21SW Testing and Analysis

Flow equations for stack height

• For a stack operation,
out(b) = f (in (b)), where f is change in height

• For control flow join,
out(b) = Merge(in(b))

where Merge(x,x) = x

 Merge(x,y) = { -infinity .. infinity } if x≠ y

• For other operations, out(b) = in(b)

Treating control flow join
as pseudo-node

22SW Testing and Analysis

Extend stack height analysis to stack
type analysis

• In place of heights, propagate vectors of
types
– not as expensive as it sounds, since height should

always be a constant

• Extend stack operations and Merge(x,y) in
the obvious way
– ADDI takes , i,i to, i

• ?? is a vector of unknown height, unknown
type; Merge(??,x) = ?? for every value x

23SW Testing and Analysis

Analysis of Models (example):
State-Space Exploration

• Concurrency (multi-threading, distributed
programming, ...) makes testing harder
– introduces non-determinism; time- and load-dependent bugs

escape extensive testing

• Finite-state models can be exhaustively verified

accept E do
 ...
 ...

-E

?E

!E

Extract Combine Check

E

24SW Testing and Analysis

Automated Finite-State Verification

• Example tool SPIN (one of many)

– verifies simple program-like design model
• high-level design of process interaction, ignoring other

aspects of computation (e.g., functional behavior)

– used for protocols, OS scheduling, ...
• useful despite limited capacity; best for verifying high-

level design before coding

• Domain-specific analysis
– limited “proof” of simple but critical properties in a

limited domain

G. Holzmann, “The model checker SPIN.”
IEEE TSE 23(5), May 1997

25SW Testing and Analysis

What is static analysis good for?

• Not a replacement for testing
– focused, (mostly) automated analysis for limited

classes of faults

• More thorough than testing (within scope)
– conservative analyses are tantamount to formal

verification

• Also augments testing, e.g., dependence
analysis for data flow testing

26SW Testing and Analysis

Combining Analysis and Test

Property
of interest

Static
Analysis Testing

Testing for conformance to a verified design model can be more
effective than directly testing for a property of interest.

Program

Oracles
derived from
design model

Design model
verified for
difficult-to-test
properties

