Model Checking

Static analysis techniques for finite-state models and design representations

A note on terminology

• “Model checking” often means “temporal logic model checking”
 - And recently, often just “Symbolic model checking with OBDD models”
• Related terms:
 - Finite-state verification (of concurrent programs)
 - Reachability analysis, concurrency analysis
• Closely related to flow analysis of sequential and concurrent programs
Models and Formulae

• An object may be a model of a formula
 - i.e., the models of a specification are objects that satisfy it; an inconsistent specification has no models
• Model checking: Given an object and a formula (specification), determine whether the object is a model of the formula
• Models derived from programs or designs, formulas express desired properties

Models & Formulae: Examples

• Models
 - Control flow graphs, data flow graphs
 - Reachability graphs (of Petri nets, process graphs, etc.)
• Formulae & other specs
 - Logics: Propositional or first-order, ordinary or temporal, real-time, authentication, . . .
 - Languages: Regular expressions, context-free languages
 - Particular properties of interest, e.g., freedom from deadlock
Temporal Logic

- Like a standard (first order or propositional) logic with additional connectives
 - first-order: with quantifiers; propositional: without
 - “eventually” (“future,” “sometime”) Abbrev: F
 - “always” (“henceforth,” “globally”) Abbrev: G
 - “until” Abbrev: U
 - “next” (seldom desirable at spec level) X

Meaning of “Eventually”

- Interpret propositional temporal logic as first-order statements about a sequence of program states S₀, S₁, ...
- Si |- p iff p is true in Si
- Si |- F p iff Sj |- p, for some j ≥ i

![Diagram of time and states](image-url)
Alternate definition of “eventually”

- $S \models p$ iff $S_0 \models p$
- $S \models Fp$ iff $S \models p$ or $XS \models Ep$
 - This latter definition is the basis of model-checking algorithms

Other temporal connectives

- Eventually q: q in this state, or eventually q in the next state
- Always p: p in this state, and always p in the next state
- p Until q: q in this state, or p in this state and p Until q in the next state
- Next p: p in the next state
Why temporal logic?

- To say:
 “Eventually the call gets through”
 “Race conditions never occur”
 “N/S green does not come on until E/W light is red”
 “If scheduler is fair, all processes eventually run”
- Properties of progress, but not of metric time
- Especially for eventuality; safety (never, always) can be specified in other ways

Why use logic at all?

vs. operational spec or model

- Twin dangers of over and under-specification
 - Logic specs often say too little
 - Operational models often say too much
- Combination appears to be attractive
 - Say a few simple things with an appropriate logic
 - If the logic gets messy, move part of it into another kind of spec
- Example: Lamport’s transition axiom method
 - State machine with invariants for safety properties, temporal logic for liveness properties
Temporal logic model checking

• Given a graph model of a program
 – State machine in which the propositional variables can be evaluated
• Given a propositional temporal logic formula
• Determine whether the model satisfies (“is a model of”) the formula

CTL: Restricted branching-time logic

• Branching time: Quantification over paths
 – A graph of possible execution histories, not a single path through the program
 – A: All paths (from here)
 – E: Some path (from here)
• Restriction: Require quantifier with each temporal connective (for efficient checking)
 – AF, EF (inevitably, potentially)
 – AG, EG (always)
 – AU, EU (until)
Checking AFp

- Evaluate p in every state
- Initialize AFp to false in every state
- Apply inductive definition in each state until no values change
 - actual algorithm is a depth-first search, 1 pass over the graph

Model checking algorithm

- Decompose specification formula into a tree
- Each node \Rightarrow one pass over the graph
- Example: a and b:
 - Evaluate a at each node
 - Evaluate b at each node
 - Combine a and b at each node
- For temporal connectives, node values propogate along edges; order of evaluation is important for 1-pass evaluation
Fixed points

- A fixed point of a function f is a value x such that $f(x) = x$
- A set of equations (constraints) may have a set of solutions (fixed points), among them a least fixed point
- Inductive definitions of temporal connectives can be formulated as finding a least fixed point solution

Temporal logic & fixed points

- $\text{AF } p \equiv p \text{ or } \text{AX } \text{AF } p$
- $\text{EF } p \equiv p \text{ or } \text{EX } \text{EF } p$
- $\text{AG } p \equiv p \text{ and } \text{AX } \text{AG } p$
- $p \text{ AU } q \equiv q \text{ or } (p \text{ and } \text{AX } (p \text{ AU } q))$

“AX” and “EX” mean: Look at (all, any) of the edges from this node to its successors. The inductive definitions become a set of constraints, and a fixed point solution gives the value of the temporal formulae at each node.
Expressiveness of CTL

• There is no CTL equivalent for
 $\text{GF } p \Rightarrow \text{GF } q$
 • And this does come up in practice!
 - Example: If at least some packets get through, the
 protocol will eventually deliver a message
 • Solution: Hack the algorithm
 • Hard-wire the fairness property into the model checking
 algorithm
 • See Clarke, Emerson, Sistla 85 (Toplas) for details

Complexity and Expressiveness

• Restricted branching time logics: CTL, LTAC
 - linear time checking procedures: $|f| \times |M|$
• Linear time logic: PTL
 - $2^{|f|} \times |M|$
 • Why? Because formula is evaluated (in the worst case) on all
 paths.
• Cheap extensions:
 - arbitrary state machines as temporal connectives
 - PTL to CTL* (linear time to unrestricted branching
 time)
Symbolic Model Checking

• The model (graph) could be very large.
• Q: Can we do better than explicitly evaluating formulae in every state?
• A: Not always, but sometimes symbolic representations and lazy evaluation help
• Represent graph as next-state function (symbolically), represent formula as evaluation