
11

Outline:

 * Floyd- and Hoare-style reasoning

 A basic technique underlying all program verification, and much program
analysis, is symbolic execution. The basic technique is explained in the
Hantler and King paper (which you’ve read by now, right?). Although
program verification systems of the kind envisioned by Hantler and King have
not been very successful, it is still important to understand the fundamental
techniques.

 * Algebraic specification

 Formal verification is possible only if we have formal specs. Pre- and
postcondition assertions, which form the basis for Floyd- or Hoare-style
reasoning, arenot very natural for object-oriented or ADT-based components.
Algebraic specifications were designed for that purpose.

 * Two-tier specifications

 To write clean, clear specifications, we need a notation with simple
semantics. To write specifications that adequately capture the intended
behavior of real program components, we need complex semantics. Two-tier
specifications are just what they sound like: specifications written in two
different notations, one designed for clarity and the other designed to
adequately describe concrete module interfaces. They tie together algebraic
specifications with Floyd- or Hoare-style reasoning about component behavior.

CIS 610, W98 / M Young 1/26/98 1

Formal Verification

Floyd- and Hoare-style reasoning
Algebraic specification and

verification
Two-tier specifications

22

In the style of reasoning developed by Floyd, a program or component (e.g.,
procedure or method) is specified by a (precondition, postcondition) pair.
Each program statement can be interpreted as a modification to a symbolic
predicate. (Although this predicate is often split into a path condition and path
expression, this is just a matter of convenience.) Verification consists of
showing that, beginning from the precondition and assuming it to be true,
every execution path to the postcondition will make the postcondition
predicate true.

You can think of the path expression as a table in which symbolic expressions
are associated with variables. Imperative statements (e.g., assignment
statements) change the path expression, like this:

{ x = x0 & x0 > 3 }

y := x + 5;

{ x = x0 & y = x0 + 5 & x0 > 3 }

The path condition records branches:

{ x = x0 & y = x0 + 5 & x0 > 3 }

if (y < 2) then

 { x = x0 & y = x0 + 5 & x0 > 3 & x0+5 < 2 }

 ...

else

 { x = x0 & y = x0 + 5 & x0 > 3 & x0+5 >= 2 }

 ...

Since there is a potentially infinite number of control flow paths in any
procedure with a loop, it is necessary to break the paths into a finite number of
segments, in particular “cutting” each loop with an invariant assertion.

CIS 610, W98 / M Young 1/26/98 2

Floyd-style Verification

• Symbolic execution
– Propagation of logical

statements through code
– Typically “path expression”

and “path condition”

• Assertions
– Placed on control flow

paths
– Serve as assumptions and

proof obligations
– Invariant assertions must

break each loop

Invariant

Computation updates
path expression

x := a;

Test updates
path condition

if x > 0

Precondition
(assume)

Postcondition
(to prove)

33

Here is the simplest example I could think of to illustrate Floyd-style verification with
loop-cutting assertions. I left the following header comment off the slide to save space:

/* expand: from a 2-character code to a full state name,
 * or return "UNKNOWN" if the code does not correspond to a state.
 * Precondition: TRUE (i.e., we don't assume anything about the input)
 * Postcondition: if exists i s.t.
 * 0<i<=table.length and table[i].code = statecode
 * then expand(statecode) = table[i].name
 * else expand(statecode) = "UNKNOWN”
 */
 public String expand(String statecode) { ...

This is slightly bogus, in that the “postcondition” is really a statement that combines pre-
and postcondition, but I wanted to use natural C and Java style rather than twisting the
code so that assertions could be placed in the “right” places.

There is other code defining an array of two-digit state codes and full state names, of
course; I’ve left that off to save space.

The Floyd-style verification is performed by symbolically executing each control path
from assertion to assertion (including paths from an assertion to itself). If we didn’t
place an “invariant” assertion in the loop, the number of paths would be infinite.

Look easy but tedious? It is, and most of the symbolic execution part can (and has) been
automated. The hardest part is devising the assertions, which can be only partially
automated (see the discussion of undecidability below). Simplifying expressions and
proving the assertions can also be partly automated.

CIS 610, W98 / M Young 1/26/98 3

 public String expand(String statecode) {

 for (int i=0; i<table.length; ++i) {

 /* assert: for all 0<=j<i, table[i].code != statecode */

 if (table[i].code.equals(statecode)) {

 return table[i].name;

 }

 }

 /* assert: not exists i s.t.

 * 0<=i<table.length and table[i] = statecode

 */

 return "UNKNOWN";

 }

(Trivial) Example: Linear Search

First time

Maintaining
invariant

On loop exit

44

/* expand: from a 2-character code to a full state name,
 * or return "UNKNOWN" if the code does not correspond to a state.
 * Pre: for all 0<=i<j<table.length . table[i].code <= table[j].code
 * Post: if exists i s.t. 0<i<=table.length and table[i].code = statecode
 * then expand(statecode) = table[i].name
 * else expand(statecode) = "UNKNOWN"
 */
 public String expand(String statecode) {
 int low = 0;
 int high = table.length - 1;

 while (low <= high) {
 int i = (low + high) / 2;
 /* assert: for all 0<=j<low . table[i].code < statecode
 * for all high<=j<table.length, table[i].code > statecode
 */
 int comparison = table[i].code.compareTo(statecode);

 if (comparison < 0) {
 low = i+1;
 } else if (comparison > 0) {
 high = i - 1;
 } else {
 return table[i].name;
 }
 }
 /* assert: not exists i s.t.
 * 0<=i<table.length and table[i] = statecode
 */
 return "UNKNOWN";
 }

CIS 610, W98 / M Young 1/26/98 4

Exercise: Binary Search

(Do on whiteboard)

55

C.A.R. Hoare introduced a style of reasoning based on block structure, rather
than following each control flow path. This style is often called “axiomatic.”
The basic symbolic execution rules for individual statements are the axioms,
and the rules for combining chunks into larger and larger pieces are inference
rules of the form

if these are true

then this must be true

Hoare-style reasoning is more “structured” than Floyd-style reasoning, but for
our current purposes it doesn’t much matter.

CIS 610, W98 / M Young 1/26/98 5

Hoare-style Reasoning

• Block-structured rules
– Floyd-style symbolic execution step is “add

one more step”
– Hoare-style step is “combine two blocks”

P & Q { S } Q

 P { while (c) S } Q & not c

 P { S } Q, Q { T } R

 P { S; T } R

66

Several automated program verification systems were built from the mid 70’s
onward. Typically, such a system is divided into two main parts. A
verification condition generator, or vcg, performs symbolic execution to
compute path expression (PE) and path conditions (PC) for each path from an
assertion to the next assertion, which is the postcondition. Then it forms the
“proof obligation” PC&PE => postcondition. This statement is (usually) in
first-order predicate calculus (FOPC), and can be passed on to a general-
purpose theorem prover.

The point of this architecture is to separate parts dependent on a particular
programming language from the theorem prover. The VCG is highly
dependent on a particular programming language, which determines how
symbolic execution is carried forward. In principle a VCG for a particular
programming language is fairly simple to build, provided one has a good
programming language semantics to work from. In practice, formal semantic
definitions of full programming languages are rarely available, so most
symbolic executors and VCGs have processed only restricted language subsets.

Theorem provers are much more complex than symbolic executors, but over
the past 20 years they have become progressively more powerful. The best
theorem provers available today, such as PVS and Nqthm (formerly the Boyer-
Moore prover) have produced fully checked proofs of subtle algorithms.
Several published proofs of algorithms have been re-verified mechanically,
typically uncovering errors in the original published proofs.

Despite the remarkable progress in theorem provers, you won’t see many
program verification systems built this way today. In fact, you won’t see
many program verification systems today at all. You are much more likely
today to see the theorem prover applied for other purposes, like checking a
specification for consistency, rather than verifying a program.

CIS 610, W98 / M Young 1/26/98 6

Verification System Architecture

• Typical architecture (circa 1980):
– Symbolic execution (VCG) creates logical statements

to be proved (one for each assertion/assertion path)
– General FOPC theorem prover attempts to prove

each statement

public String expand (

 int low = 0;
 int high = table.length - 1;

 while (low < high)
 {

 /* Assert:: */
 mid = (high + low) / 2;

Verification
condition
generator

Theorem
prover

FOPC

77

Almost every program property of interest is, in theory at least, undecidable.
Consider the simple question: “Can execution reach this point in the code?”
That question is equivalent to the halting problem, even if we drastically
restrict the programming language. So, in general, there will be propositions
that a VCG can generate, but which a theorem prover cannot prove.

The more typical case is propositions that may not be formally undecidable,
but which are certainly outside the capabilities of automatic theorem proving.
Consider the verification condition that will be produced at the assertion in the
snippet of code on this slide. Do you recognize it? It’s called “Fermat’s last
theorem,” and while it apparently has recently been proved, it took many
mathematicians a long time to do it. The example is contrived, but it illustrates
that fairly innocent looking assertions can be very hard to prove.

While today’s theorem provers are remarkably good and still improving, there
isn’t much prospect that they will reach a point where they can routinely prove
all the verification conditions arising from program verification without human
assistance. A verification system today is rather like a chisel: In
Michelangelo’s hands, it produces awesome result, but it requires human
expertise and a great deal of effort to produce more than a pile of gravel.

CIS 610, W98 / M Young 1/26/98 7

Undecidability Bites

• Theory says: (PE & PC) => Post can be
undecidable
– Even reachability of a statement is equivalent to the

halting problem

• In practice: Theorem provers require expert
human assistance

int fermats_revenge (int a, int b, int c, int k) {

 if (a^k + b^k == c^k) {

/* assert k < 3 */

 } ...

88

Proofs of correctness, like any verification, are checks of correctnes between
two descriptions, a specification and an implementation. To construct the kind
of detailed program proof envisioned by researchers in the 70s and early 80s,
we would need very detailed, formal specifications. These are seldom
available, and for many kinds of systems a complete specification would be at
least as lengthy (and no more understandable) than the source code. A word
processor is an example the kind of system for which a complete formal
specification is almost certainly impractical today.

On the other hand, formal specifications do make sense for some things.
When I am a passenger on a Boeing 777 or Airbus A320 (“fly-by-wire”
aircraft with no mechanical controls), I would like to think that the avionics
control software has been very specified very carefully and thoroughly. In
many cases, formal specifications are worthwhile for some parts of a system
but not for everything. It might cost about the same to specify control of the
video entertainment systems in the 777 as to specify control of the flight
surfaces, but the consequences of failure are quite different.

Research in program verification largely died out in the 1980’s, and was
supplanted by research in the more general field of “formal methods.” While
many in the formal methods community still believe that routine program
verification will someday be practical, they also argue that formal
specifications can be valuable even without program proofs. Formalizing a
specification (or perhaps just critical parts of it) shakes out ambiguity and
contradictions, especially when the specification can be processed by tools
designed for that purpose. Moreover, it is often practical to prove properties
about something; it is just that the something is more often an algorithm or
protocol or design than a program per se.

CIS 610, W98 / M Young 1/26/98 8

Prove what?

• A complete program proof requires a
complete, formal specification
– Preferably shorter and simpler than the

program itself

• Seldom available in most domains
– Cost effective for some critical systems, or

critical parts, or critical properties
– Formalizing (incomplete) specs may be cost

effective even without program proof

99

The “precondition/postcondition” style of specification and verification is, by
itself, not a very good fit with modern modular program design, including
object-oriented programs. What is the post-condition for a method that inserts
an object in a queue? The insert method doesn’t return a meaningful value,
and if we give a postcondition in terms of the encapsulated data structure then
we are “breaking the abstraction.”

Styles of specification have been developed specifically for describing abstract
data types. They are a fairly good match for object-oriented design and
programming, although not everything that can be encapsulated in a class or
object is an ADT module. We will look primarily at the algebraic method of
specifying ADTs, and more specifically at the two-tier approach pioneered by
the Larch project.

Some of this material on ADT specs will surely be already familiar to most of
you, but I want to go over it thoroughly enough to be clear about the two-tier
approach, because I think it is important for analysis and verification.

Larch separates a formal, “clean” level of specifications that is good for
constructing proofs, from a concrete interface level that can handle all the
gory details of real interfaces. It is very hard to do both in one level of
specification. I believe this is a general principal, not limited to algebraic ADT
specifications --- for example, one wants the same kind of separation between
a clean, formally manipulable represention and a description of concrete
interfaces when dealing with concurrency (multi-threading) issues, although
for concurrency different kinds of formalisms are appropriate.

CIS 610, W98 / M Young 1/26/98 9

ADT Module Interface
Specifications

The algebraic approach
Two-level specifications

1010

You already knew this, right?

Actually, object-oriented languages tend to use the “class” construct for all
kinds of modules, whether or not they are abstract data types. For example, a
class that provides a sorting service is probably better specified in the older
procedural style than as an abstract data type. A class that manages socket
communication is something else again.

CIS 610, W98 / M Young 1/26/98 10

ADT modules

• Abstract data types encapsulate data
structures

• ADT modules are supported in
– object-based languages like Ada 83, Modula 2,

and CLU, which provide "packages,"
"modules," or "clusters"

– object-oriented languages like C++, Ada 95, and
Java, which add inheritance and polymorphism
to "class" constructs

1111

There are roughly three major approaches to specifying abstract data types.

In the abstract model approach, we use some familiar kind of structure to
describe intended behavior. For example, we might say that a symbol table
represents a set of items, and we might describe each operation on the symbol
table in terms of set operations.

The algebraic approach is like the abstract model approach, except that instead
of using “well-known” abstract models, we create the models.

There is a third kind of ADT specifications called trace specifications. Today,
almost no one uses trace specifications, and we will ignore them.

CIS 610, W98 / M Young 1/26/98 11

Flavors of ADT specifications

• Abstract models
– ex., stack as sequence, dictionary as set

• Algebraic specification
– construction of special-purpose models

• Trace specifications
– (no longer in common use; of historical

interest only)

1212

This is covered in the paper on Larch, which is the most well-known algebraic
specification language for abstract data types.

CIS 610, W98 / M Young 1/26/98 12

The algebraic approach

Separates specification into

Syntax — also called the "signature"
a set of functions

Semantics — axioms relating terms

Essentially like abstract model approach, but we
start by defining the models

1313

Again, this is all covered in the Larch paper.

CIS 610, W98 / M Young 1/26/98 13

An algebraic ADT spec contains

• One or more sorts (≈ types), one of which
is usually the "type of interest"

• Constructor operations (also called
generators)

• Mutator operations (also called extenders)
• Inspection operations (also called

observers)
– including an iterator for a collection type

• Axioms

1414

... and again

CIS 610, W98 / M Young 1/26/98 14

What does an algebraic spec mean?

• The meaning of a specification is a theory
• A theory is a set of terms. It includes

– A set of built-in logical axioms

– Axioms from the specification
– all the formulas derivable from those axioms

by the rules of logic

– and nothing else

• The theory of queues includes
Front(Insert(Insert(Insert(Create,i),j),k) =i

1515

This slide really has two very different points.

The reason Front(Delete(Q,i)) is not given a meaning is that “Delete(Q,i)” can
be re-written to a simpler expression; there is a canonical form in which the
only operations that need to be written are Create and Insert.

The second point is more important for our purposes --- dealing with errors
(undefined terms) in an algebraic specification is possible, but nasty. Two-
tiered specifications (next slide) allow us to leave this undefined in the abstract
model, and handle it instead at the concrete specification level.

CIS 610, W98 / M Young 1/26/98 15

Absent from Queue Specification

• Meaning of Front(Delete(Q,i))
– because Create and Insert are enough to

describe all legal queues; we say the sort is
generated by these two operations. All other
operations, like Delete, can be removed from
legal Queue terms by applying axioms as
rewrite rules.

• Meaning of Front(Create())
– we could introduce an error term, but our

specifications would be more complex

1616

... more from the Larch paper

CIS 610, W98 / M Young 1/26/98 16

• Sort is an abstract class of objects and operations
with properties. Corresponds to ...
– Type in a programming language

• type in Pascal or C; private type in Ada
• class in C++, Modula3, Java;

• Representation is a concrete data structure,
distinguished both from type and from sort.

• The abstract specification describes sorts, the
interface specification describes coresponding
types

Two-Level Specifications:
Sorts and Types

1717

This says essentially the same thing as the diagram on page 25 of the Larch
paper. In terms of analysis & testing, the essential point is that it tells us where
to get pre- and post-conditions for operations (methods). A precondition
associates concrete variables with abstract objects. A postcondition associates
the output results with abstract objects again, and describes the relation
between the “before” objects and the “after” objects.

CIS 610, W98 / M Young 1/26/98 17

Abstract specification
Syntax: Sorts and operations
Semantics: axioms

Concrete (interface) specification

Syntax: declarations of types,
procedures, and functions

Semantics: pre- and
post-conditions

Data structures and access
procedures

Implementation

Two-Level Specification

1818

CIS 610, W98 / M Young 1/26/98 18

• Abstraction function:
– abs: concrete —> abstract
– Must be a function, but need not have an

inverse
– Example: Ring buffer (data structure) to

queue (ADT)

• Structural invariant: Properties of data
structure that are preserved by all
operations

Relation of sorts to representations

1919

CIS 610, W98 / M Young 1/26/98 19

a

b c

d

h

gx

w

back front

a

b

c

d x

y

z

3

back

front

abs(Q1) = abs(Q2) =
Insert(Insert(Insert(Insert(Create(),d),c),b),a)

Representation function: Ring Buffer

2020

CIS 610, W98 / M Young 1/26/98 20

• Pre- and post-conditions specify interface
behavior by reference to operations in
algebraic specification.

• Abstraction function is the glue between
algebraic specification and interface.

procedure Remove(R: in out RingBuffer;
 e: out elem_type);

 --* Requires: Abs(R) /= Create()
 --* Ensures: Abs(R) = Delete(Abs(R'))
 --* and e = Front(Abs(R'))

Pre- and Post-conditions

2121

CIS 610, W98 / M Young 1/26/98 21

The Two-Level Approach

• Top level is (relatively) easy to reason
about
– e.g., the Larch prover can verify many

properties about an LSL trait

• Interface specs are concise
– pre- and postconditions are simplified because

they refer to abstract spec

Is there a general principle here?

