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Outline: 

  * Floyd- and Hoare-style reasoning

       A basic technique underlying all program verification, and much program 
analysis, is symbolic execution.  The basic technique is explained in the 
Hantler and King paper (which you’ve read by now, right?).   Although 
program verification systems of the kind envisioned by Hantler and King have 
not been very successful, it is still important to understand the fundamental 
techniques. 

  * Algebraic specification

     Formal verification is possible only if we have formal specs.  Pre- and 
postcondition assertions, which form the basis for Floyd-  or Hoare-style 
reasoning, arenot very natural for object-oriented or ADT-based components.  
Algebraic specifications were designed for that purpose.

   * Two-tier specifications

    To write clean, clear specifications, we need a notation with simple 
semantics. To write specifications that adequately capture the intended 
behavior of real program components, we need complex semantics.  Two-tier 
specifications are just what they sound like:  specifications written in two 
different notations, one designed for clarity and the other designed to 
adequately describe concrete module interfaces.  They tie together algebraic 
specifications with Floyd- or Hoare-style reasoning about component behavior. 
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Formal Verification

Floyd- and Hoare-style reasoning
Algebraic specification and 

verification
Two-tier specifications
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In the style of reasoning developed by Floyd, a program or component (e.g., 
procedure or method) is specified by a (precondition, postcondition) pair.  
Each program statement can be interpreted as a modification to a symbolic 
predicate.  (Although this predicate is often split into a path condition and path 
expression, this is just a matter of convenience.)  Verification consists of 
showing that, beginning from the precondition and assuming it to be true, 
every execution path to the postcondition will make the postcondition 
predicate true. 

You can think of the path expression as a table in which symbolic expressions 
are associated with variables. Imperative statements (e.g., assignment 
statements) change the path expression, like this: 

{ x = x0 & x0 > 3 }

y := x + 5; 

{ x = x0 & y = x0 + 5 & x0 > 3 }

The path condition records branches: 

{ x = x0 & y = x0 + 5 & x0 > 3 }

if (y < 2) then 

      { x = x0 & y = x0 + 5 & x0 > 3 & x0+5 < 2 }

      ... 

else 

      { x = x0 & y = x0 + 5 & x0 > 3 & x0+5 >= 2 }

      ... 

Since there is a potentially infinite number of control flow paths in any 
procedure with a loop, it is necessary to break the paths into a finite number of 
segments, in particular “cutting” each loop with an invariant assertion. 
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Floyd-style Verification

• Symbolic execution
– Propagation of logical 

statements through code
– Typically  “path expression” 

and “path condition” 

• Assertions
– Placed on control flow 

paths
– Serve as assumptions and 

proof obligations
– Invariant assertions must 

break each loop

Invariant

Computation updates 
path expression

x := a;

Test updates 
path condition

if x > 0

Precondition
(assume)

Postcondition
(to prove)
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Here is the simplest example I could think of to illustrate Floyd-style verification with 
loop-cutting assertions.  I left the following header comment off the slide to save space: 

/* expand:  from a 2-character code to a full state name, 
 *   or return "UNKNOWN" if the code does not correspond to a state.
 * Precondition:  TRUE  (i.e., we don't assume anything about the input)
 * Postcondition: if exists i s.t. 
 *                     0<i<=table.length and table[i].code = statecode
 *               then       expand(statecode) = table[i].name
 *                else      expand(statecode) = "UNKNOWN” 
 */
 public String expand(String statecode)  {   ... 

This is slightly bogus, in that the “postcondition” is really a statement that combines pre- 
and postcondition, but I wanted to use natural C and Java style rather than twisting the 
code so that assertions could be placed in the “right” places. 

There is other code defining an array of two-digit state codes and full state names, of 
course; I’ve left that off to save space. 

The Floyd-style verification is performed by  symbolically executing  each control path 
from assertion to assertion (including paths from an assertion to itself).  If we didn’t 
place an “invariant” assertion in the loop, the number of paths would be infinite.

Look easy but tedious?  It is, and most of the symbolic execution part can (and has) been 
automated.  The hardest part is devising the assertions, which can be only partially 
automated (see the discussion of undecidability below).  Simplifying expressions and 
proving the assertions can also be partly automated.
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 public String expand(String statecode) {

 for (int i=0; i<table.length; ++i)  {

 /* assert: for all 0<=j<i, table[i].code != statecode */

 if ( table[i].code.equals(statecode) )  {

 return table[i].name;

 }

 }

 /* assert: not exists i s.t. 

  *     0<=i<table.length and table[i] = statecode

  */

 return "UNKNOWN"; 

 }

(Trivial) Example: Linear Search

First time

Maintaining 
invariant

On loop exit
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/* expand:  from a 2-character code to a full state name, 
 *   or return "UNKNOWN" if the code does not correspond to a state.
 * Pre:  for all 0<=i<j<table.length . table[i].code <= table[j].code
 * Post: if exists i s.t. 0<i<=table.length and table[i].code = statecode
 *               then    expand(statecode) = table[i].name
 *                else   expand(statecode) = "UNKNOWN"
 */
 public String expand(String statecode)  {
 int low = 0; 
 int high = table.length - 1;
 
 while (low <= high)  { 
       int i = (low + high) / 2;
       /* assert: for all 0<=j<low . table[i].code < statecode 
        *         for all high<=j<table.length, table[i].code > statecode 
                  */
 int comparison = table[i].code.compareTo(statecode);

  if ( comparison < 0 )  {
 low = i+1;
 } else if ( comparison > 0 ) {
 high = i - 1;
 } else {
 return table[i].name;
 }
 }
 /* assert: not exists i s.t. 
  *     0<=i<table.length and table[i] = statecode
  */
 return "UNKNOWN"; 
 }
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Exercise: Binary Search

( Do on whiteboard ) 
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C.A.R. Hoare introduced a style of reasoning based on block structure, rather 
than following each control flow path.  This style is often called “axiomatic.” 
The basic symbolic execution rules for individual statements are the axioms, 
and the rules for combining chunks into larger and larger pieces are inference 
rules of the form 

if these are true 

-------------------

then this must be true

Hoare-style reasoning is more “structured” than Floyd-style reasoning, but for 
our current purposes it doesn’t much matter. 
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Hoare-style Reasoning

• Block-structured rules
– Floyd-style symbolic execution step is “add 

one more step”
– Hoare-style step is “combine two blocks”

P & Q { S } Q 

 P  { while (c)  S } Q & not c 

 P { S } Q, Q { T } R

 P  {  S; T } R
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Several automated program verification systems were built from the mid 70’s 
onward.  Typically, such a system is divided into two main parts.  A 
verification condition generator, or vcg,  performs symbolic execution to 
compute path expression (PE) and path conditions (PC) for each path from an 
assertion to the next assertion, which is the postcondition.  Then it forms the 
“proof obligation”  PC&PE => postcondition.  This statement is (usually) in 
first-order predicate calculus (FOPC), and can be passed on to a general-
purpose theorem prover. 

The point of this architecture is to separate parts dependent on a particular 
programming language from the theorem prover.  The VCG is highly 
dependent on a particular programming language, which determines how 
symbolic execution is carried forward.  In principle a VCG for a particular 
programming language is fairly simple to build, provided one has a good 
programming language semantics to work from.  In practice, formal semantic 
definitions of  full programming languages are rarely available, so most 
symbolic executors and VCGs have processed only restricted language subsets.  

Theorem provers are much more complex than symbolic executors, but over 
the past 20 years they have become progressively more powerful.  The best 
theorem provers available today, such as PVS and Nqthm (formerly the Boyer-
Moore prover) have produced fully checked proofs of subtle algorithms.  
Several published proofs of algorithms have been re-verified mechanically, 
typically uncovering errors in the original published proofs.  

Despite the remarkable progress in theorem provers, you won’t see  many 
program verification systems built this way today.  In fact, you won’t see   
many program verification systems today at all.  You are much more likely 
today to see the theorem prover applied for other purposes, like checking a 
specification for consistency, rather than verifying a program. 
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Verification System Architecture

• Typical architecture (circa 1980):
– Symbolic execution (VCG) creates logical statements 

to be proved (one for each assertion/assertion path)
– General FOPC theorem prover attempts to prove 

each statement

public String expand ( 

  int low = 0; 
  int high = table.length - 1; 

  while (low < high) 
  {

     /* Assert:: .... */
      mid = (high + low) / 2; 
     .... 

Verification 
condition 
generator

Theorem 
prover

FOPC
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Almost every program property of interest is, in theory at least, undecidable.  
Consider the simple question:  “Can execution reach this point in the code?”  
That question is equivalent to the halting problem, even if we drastically 
restrict the programming language.  So, in general, there will be propositions 
that a VCG can generate, but which a theorem prover cannot prove. 

The more typical case is propositions that may not be formally undecidable, 
but which are certainly outside the capabilities of automatic theorem proving.  
Consider the verification condition that will be produced at the assertion in the 
snippet of code on this slide.  Do you recognize it?  It’s called “Fermat’s last 
theorem,” and while it apparently has recently been proved, it took many 
mathematicians a long time to do it.  The example is contrived, but it illustrates 
that fairly innocent looking assertions can be very hard to prove.  

While today’s theorem provers are remarkably good and still improving, there 
isn’t much prospect that they will reach a point where they can routinely prove 
all the verification conditions arising from program verification without human 
assistance.  A verification system today is rather like a chisel:  In 
Michelangelo’s hands, it produces awesome result, but it requires human 
expertise and a great deal of effort to produce more than a pile of gravel. 
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Undecidability Bites

• Theory says:   (PE & PC) => Post can be 
undecidable
– Even reachability of a statement is equivalent to the 

halting problem 

• In practice:  Theorem provers require expert 
human assistance

int fermats_revenge (int a, int b, int c, int k) {

    if (  a^k + b^k == c^k  ) {

/*  assert k < 3 */

    } ... 
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Proofs of correctness, like any verification, are checks of correctnes between 
two descriptions, a specification and an implementation.  To construct the kind 
of detailed program proof envisioned by researchers in the 70s and early 80s, 
we would need very detailed, formal specifications.  These are seldom 
available, and for many kinds of systems a complete specification would be at 
least as lengthy (and no more understandable) than the source code.  A word 
processor is an example the kind of system for which a complete  formal 
specification is almost certainly impractical today. 

On the other hand, formal specifications do make sense for some things.  
When I am a passenger on a Boeing 777 or Airbus A320 (“fly-by-wire” 
aircraft with no mechanical controls), I would like to think that the avionics 
control software has been very specified very carefully and thoroughly.  In 
many cases, formal specifications are worthwhile for some parts of a system 
but not for everything. It might cost about the same to specify control of the  
video entertainment systems in the 777 as to specify  control of the flight 
surfaces,  but the consequences of failure are quite different. 

Research in program verification largely died out in the 1980’s, and was 
supplanted by research in  the more general field of “formal methods.”  While 
many in the formal methods community still believe that routine program 
verification will someday be practical, they also argue that formal 
specifications can be valuable even without program proofs.  Formalizing a 
specification (or perhaps just critical parts of it) shakes out ambiguity and 
contradictions, especially when the specification can be processed by tools 
designed for that purpose.   Moreover, it is often practical  to prove properties 
about something; it is just that the something is more often an algorithm or 
protocol or design than a program per se.   
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Prove what?

• A complete program proof requires a 
complete, formal specification
– Preferably shorter and simpler than the 

program itself

• Seldom available in most domains
– Cost effective for some critical systems, or 

critical parts, or critical properties
– Formalizing (incomplete) specs may be cost 

effective even without program proof
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The “precondition/postcondition” style of specification and verification is, by 
itself, not a very good fit with modern modular program design, including 
object-oriented programs.  What is the post-condition for a method that inserts 
an object in a queue?  The insert method doesn’t return a meaningful value, 
and if we give a postcondition in terms of the encapsulated data structure then 
we are “breaking the abstraction.”  

Styles of specification have been developed specifically for describing abstract 
data types.  They are a fairly good match for object-oriented design and 
programming, although not everything that can be encapsulated in a class or 
object is an ADT module.  We will look primarily at the algebraic method of 
specifying ADTs, and more specifically at the two-tier approach pioneered by 
the Larch project.  

Some of this material on ADT specs will surely be already familiar to most of 
you, but I want to go over it thoroughly enough to be clear about the two-tier 
approach, because I think it is important for analysis and verification.   

Larch separates a formal, “clean” level of specifications that is good for 
constructing proofs, from  a concrete interface level that can handle all the 
gory details of  real interfaces.  It is very hard to do both in one level of 
specification.  I believe this is a general principal, not limited to algebraic ADT 
specifications --- for example, one wants the same kind of separation between 
a clean, formally manipulable represention and a description of concrete 
interfaces when dealing with concurrency (multi-threading) issues, although 
for concurrency different kinds of formalisms are appropriate. 
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ADT Module Interface 
Specifications

The algebraic approach
Two-level specifications 
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You already knew this, right? 

Actually, object-oriented languages tend to use the “class” construct for all 
kinds of modules, whether or not they are abstract data types.  For example, a 
class that provides a sorting service is probably better specified in the older 
procedural style than as an abstract data type.  A class that manages socket 
communication is something else again.  
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ADT modules

• Abstract data types encapsulate data 
structures

• ADT modules are supported in
– object-based  languages like Ada 83, Modula 2, 

and  CLU, which provide "packages," 
"modules," or  "clusters"

– object-oriented  languages like C++, Ada 95, and 
Java, which add inheritance and polymorphism 
to "class" constructs
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There are roughly three major approaches to specifying abstract data types. 

In the abstract model approach, we use some familiar kind of structure to 
describe intended behavior.  For example, we might say that a symbol table 
represents a set of items, and we might describe each operation on the symbol 
table in terms of set operations.  

The algebraic approach is like the abstract model approach, except that instead 
of using “well-known” abstract models, we create the models. 

There is a third kind of ADT specifications called trace specifications.  Today,  
almost no one uses trace specifications, and we will ignore them. 
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Flavors of ADT specifications

• Abstract models
– ex., stack as sequence, dictionary as set 

• Algebraic specification
– construction of special-purpose models

• Trace specifications
– (no longer in common use; of historical 

interest only)
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This is covered in the paper on Larch, which is the most well-known algebraic 
specification language for abstract data types. 
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The algebraic approach

Separates specification into 

Syntax — also called the "signature"
a set of functions

Semantics — axioms relating terms

Essentially like abstract model approach, but we 
start by defining the models
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Again, this is all covered in the Larch paper. 
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An algebraic ADT spec contains

• One or more sorts (≈ types), one of which 
is usually the "type of interest"

• Constructor operations (also called 
generators)

• Mutator operations (also called extenders)
• Inspection operations (also called 

observers)
– including an iterator for a collection type

• Axioms
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... and again
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What does an algebraic spec mean?

• The meaning of a specification is a theory
• A theory is a set of terms. It includes

– A set of built-in logical axioms

– Axioms from the specification
– all the formulas derivable from those axioms 

by the rules of logic

– and nothing else

• The theory of queues includes 
Front(Insert(Insert(Insert(Create,i),j),k) =i
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This slide really has two very different points.  

The reason Front(Delete(Q,i)) is not given a meaning is that “Delete(Q,i)” can 
be re-written to a simpler expression; there is a canonical form in which the 
only operations that need to be written are Create and Insert.

The second point is more important for our purposes --- dealing with errors 
(undefined terms) in an algebraic specification is possible, but nasty.  Two-
tiered specifications (next slide) allow us to leave this undefined in the abstract 
model, and handle it instead at the concrete specification level. 
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Absent from Queue Specification

• Meaning of Front(Delete(Q,i))
– because Create and Insert are enough to 

describe all  legal queues; we say the sort is 
generated by these two  operations.  All other 
operations, like Delete, can be  removed from 
legal Queue terms by applying axioms as  
rewrite rules.

• Meaning of Front(Create())
– we could introduce an error term, but our 

specifications would be more complex
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... more from the Larch paper
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• Sort is an abstract class of objects and operations 
with properties.  Corresponds to ...
– Type in a programming language

• type in Pascal or C; private type in Ada
• class in C++, Modula3, Java; 

• Representation is a concrete data structure, 
distinguished both from type and from sort.

• The abstract specification describes sorts, the 
interface specification describes coresponding 
types

Two-Level Specifications: 
Sorts and Types
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This says essentially the same thing as the diagram on page 25 of the Larch 
paper.  In terms of analysis & testing, the essential point is that it tells us where 
to get pre- and post-conditions for operations (methods).   A precondition 
associates concrete variables with abstract objects.  A postcondition associates 
the output results with abstract objects again, and describes the relation 
between the “before” objects and the “after” objects. 
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Abstract specification
Syntax: Sorts and operations
Semantics: axioms

Concrete (interface) specification

Syntax: declarations of types, 
procedures, and functions

Semantics: pre- and 
post-conditions

Data structures and access 
procedures

Implementation

Two-Level Specification
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• Abstraction function:
– abs: concrete —> abstract
– Must be a function, but need not have an 

inverse
– Example: Ring buffer (data structure) to 

queue (ADT)

• Structural invariant: Properties of data 
structure that are preserved by all 
operations

Relation of sorts to representations
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abs(Q1) = abs(Q2) = 
Insert(Insert(Insert(Insert(Create( ),d),c),b),a)

Representation function: Ring Buffer
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• Pre- and post-conditions specify interface 
behavior by reference to operations in 
algebraic specification.

• Abstraction function is the glue between 
algebraic specification and interface.

procedure Remove(R: in out RingBuffer;
     e: out      elem_type);

  --* Requires: Abs(R) /= Create( )
  --* Ensures:  Abs(R) = Delete(Abs(R'))
  --*                 and e = Front(Abs(R'))

Pre- and Post-conditions
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The Two-Level Approach

• Top level is (relatively) easy to reason 
about
– e.g., the Larch prover can verify many 

properties about an LSL trait

• Interface specs are concise
– pre- and postconditions are simplified because 

they refer to abstract spec

Is there a general principle here? 


