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Since the ultimate purpose of testing and analysis is to produce higher quality 
software, we must begin by considering the quality itself.  

For the purposes of this presentation, we will limit ourselves to dependability 
properties such as correctness, reliability, and safety, and largely ignore other 
qualities such as usability, maintainability, and efficiency.  That is not because 
other properties are unimportant, but because the techniques needed for 
ensuring them are quite different from techniques needed for improving 
dependability. 
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Software Product Qualities

Key definitions & distinctions 
regarding dependable software
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We will treat “dependability” as a general (and necessarily informal) term, 
encompassing the whole variety of things we might mean when we say that a 
piece of software is dependable.  We will try to be more precise about four 
particular kinds of dependability properties:  Correctness, reliability, 
robustness, and safety. 

A program is “correct” if it is consistent with its specification, i.e., if it does 
exactly what the specification says it must do.  It is therefore a consistency 
relation between two things, the specification and the program.  It is 
impossible to say whether a program is correct in the absence of a 
specification, although the specification may be informal or implicit. 

Whereas correctness is an absolute property (a program is either correct with 
respect to a particular specification, or it is not), reliability is probabilistic 
measure:  What is the likelihood that the program will obey the specification? 
Reliability is familiar from hardware.  We don’t ask whether a 1997 Toyota 
Camry is correct, we ask whether it is dependable (e.g., what is the likelihood 
that it will get me to the grocery store and back?)  

Robustness is concerned with acceptable behavior in unusual circumstances. 
Unlike correctness, robustness is partly a property of a specification; if the 
specification is not good, the product may be correct but not robust.  Safety is 
an important sub-category of robustness properties, namely, properties that 
prescribe what the software must not  do rather than what it must do. 
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Dependability Properties

• Correctness
– Consistency of implementation with 

specification

• Reliability
– Likelihood of correct functioning

• Robustness
– Acceptable behavior in unusual circumstances

• Safety
– Absence of unacceptable behaviors
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This diagram illustrates the relations among the four kinds of dependability 
property we are considering. 

A program that is “correct” is, by definition, 100% reliable.  Thus the correct 
programs (or more precisely, the correct (spec,program) pairs) are a subset of 
the reliable programs (those that exceed some statistical criterion of reliability). 
However, a correct or reliable program need not be robust or safe.

Safety properties are a kind of robustness property, so we draw the safe region 
within the robust region.  Correctness implies safety only when all the needed 
safety properties have been included in the specification. 

A program need not be correct or reliable to be safe.  In fact, a perfectly 
useless piece of software can be safe, as long as it doesn’t cause any harm.  As 
we will see, reliability properties are sometimes in conflict with safety and 
robustness. 
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Aspects of Dependability

Reliable

Correct

Robust

Safe
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A program is correct if it obeys its specification.  (There are many alternative 
ways of formalizing this, e.g., we can consider a specification to denote a set of 
acceptable implementations and say that a program is correct if it belongs to 
that set, called the “specificand set.”)  

It is meaningless to talk about correctness of a program without reference to a 
specification.  And yet we seem to do this all the time ... If a program  crashes, 
or corrupts a file, or just creates garbage, I say that it is unreliable (and 
therefore incorrect), although we have never seen a specification for the 
program in question.  How can we reconcile this common usage with the 
definition of correctness as a consistency relation?  When we talk of bugs and 
reliability in this manner, we are appealing to implicit and usually informal 
specifications.  Later we’ll make a distinction between verification of explicit, 
formally specified properties and validation of other properties.

Establishing correctness — i.e., “proving” that a program is correct — is 
almost never a practical, cost-effective goal.   Algorithms can be proved 
correct, as can protocols, and sometimes small but crucial bits of code can be 
proved correct; all these are useful, but they are not the same as proving 
correctness of a whole system.  So, can we get an “engineering approximation” 
of correctness, e.g., “this program has fewer than 1 bug per 1000 lines of 
code?”  Such approximations are sometimes used, but they are difficult to 
define unambiguously or measure precisely. 
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Correctness

• Correctness is a consistency relation 
– Meaningless without a specification

• Absolute correctness is nearly impossible to 
establish
– seldom a cost-effective goal for a non-trivial software 

product

• Approximations are difficult to define and 
measure
– e.g., faults per 1000 lines of code
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Demonstrating correctness depends as much on our ability to specify intended 
behavior as on our ability to verify consistency with actual behavior.  Our 
ability to specify, in turn, depends a great deal on how well we have built up a 
“domain theory.”  

Language interpreters are a good example of the relation between verification 
and the existence of a mature domain theory.  There is a mature theory of 
syntactic structure, and formal notations (regular expressions and BNF) for 
specifying exactly the texts that a language interpreter should accept.  
Moreover, this specification method is associated with a well-developed theory 
of parsing, which makes it easy to verify that a parser accepts the language 
specified by a grammar.   The same theory allows us to (mostly) use “proof by 
construction,” automatically deriving a parser from the grammar.  

The theory of programming language semantics, in contrast to syntax, is not 
nearly adequate for specifying the intended meaning of programming 
languages.  A formal semantic specification for a typical programming 
language (say, Java) would be much larger than the corresponding syntactic 
specification.  In practice, it is a book — semi-formal, and despite a lot of 
work, almost certainly ambiguous and incomplete. Since the only available 
specification is informal, there is no way to obtain a formal demonstration of 
correctness.  

Mature domain theories exist for several domains, but far more application 
domains lack the kind of  formalization that would be required to produce 
concise formal specifications. 
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Correctness and Specification

• Example: for a “correct” language 
interpreter, we require
– Precise grammar (e.g., BNF)

– Precise semantics
• Hoare-style proof rules, or denotational semantics, 

or ...
• or operational semantics from model 

implementation (bugs and all)

• Few application domains are well enough 
understood for full specifications
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So we can’t (usually) achieve correctness ... who cares?  Our cars, televisions, and 
even our airplanes don’t work correctly 100% of the time.  What we really care about 
is reliability, right? (Well, not quite ... more on that later.)  

Reliability is a way of statistically approximating correctness.  Reliability can be 
stated in different ways.  Classical reliability is often stated in terms of time, e.g.,  
mean time between failures (MTBF) or availability (likelihood of correct functioning 
at any given time).  Time-based reliability measures are often used for continuously 
functioning software (e.g., an operating system or network interface), but for other 
software “time” is often replaced by a usage-based measure (e.g., number of 
executions). 

For example, mean time between failures (MTBF) is a statement about the likelihood 
of failing before a given point in time (but “time” may be measured in number of uses 
or some other way).  Availability is the likelihood of correct functioning at any 
particular point in time.  

Reliability describes the behavior of a program, which may not be correlated to 
structural measures of quality.  For example, a program with 1 fault (bug) per 1000 
lines of code may be less reliable than another program with 5 faults per 1000 lines of 
code, depending on how often those faults result in program failures.  How often a 
fault causes a failure depends, in turn, on how a program is used.  Therefore, 
reliability is relative to a usage profile; in fact, a program may be highly reliable when 
used by one group of users in one way, and very unreliable when used by another 
group of users in another way.  Accurate usage profiles can be obtained for some 
kinds of embedded software, or when one program replaces another in an existing 
domain  (e.g., we have good usage profiles for telephone switching systems).  For 
novel applications, it is difficult to obtain accurate usage profiles in advance. In some 
cases, reliability may not even be well-defined.  Consider:  What is the reliability of a 
payroll program that runs correctly 100% of the time until Jan 1, 2000, and then 
crashes on every use? 
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Reliability

• Quantifiable: Mean time between failures, 
availability, etc.
– describes behavior, not the product itself, e.g., 

fewer bugs ≠ higher reliability

• Still relative to a specification
– but perhaps a simple one

• Relative to a usage profile
– often difficult to obtain in advance

– may not be static, or even well-defined
• how reliable are programs with the 1999 bug?
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A program is reliable but not correct when failures occur rarely.  (A “failure” is 
any behavior that is not permitted by the specification.)  As discussed on the 
previous page, “rarely” may depend on factors other than the program, 
including the way a program is used and even its environment.  These factors 
are often not described explicitly, in which case they implicitly mean “under 
normal conditions” or “in typical usage” (whether or not such a thing makes 
sense). 

A program may be correct without being safe or robust if the specification is 
inadequate, in the sense that the specification does not rule out some 
undesirable behaviors.   The phrase “that’s not a bug” is sometimes associated 
with inadequate specifications (the behavior in question is not a bug because 
the specification doesn’t prohibit it, but it ought to be a bug.) 

A particularly common way in which a program can be correct (or at least 
reliable) without being safe or robust is when the specification is only partly 
defined.  For example, a specification could describe what the program should 
do when an existing file is opened for reading, but not say what the program 
should do if the file doesn’t exist.  In principle, the program can be correct 
regardless of what it does in this case — even if it opens a completely different 
file — but this would not be a very robust (and possibly not a safe) behavior. 
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Reliability & Correctness

Reliable

Correct

Robust

Safe

Reliable but not correct: error conditions occur rarely

Correct but not safe or robust: the specification 
is inadequate
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Sometimes reliability is an appropriate way to talk about dependability, and 
sometimes not.  A telephone switch is an example for which reliability is an 
appropriate measure of dependability, and for which reliability measurement is 
feasible.  The reliability of a word processor, on the other hand, is difficult to 
characterize. 

 It is natural to characterize the reliability of a telephone switch by availability.  
A typical reliability measure would be “no more than 5 minutes of down-time 
per year.”  Note that the complement of down time, “time in which the switch 
is operating normally,” is a very simple kind of specification.  We might have 
a different reliability measure for the same system using a more demanding 
specification, e.g., probability that any correctly dialed  phone call will be 
connected.  (A phone call may fail to be connected because the switch capacity 
is exceeded, although the switch is “up” because it is maintaining other 
connections.)  Since we have already noted that reliability is relative to both a 
specification and a usage profile, there is no conceptual problem with having 
several different reliability measures for the same system. 

One of the reasons that reliability is an appropriate way of characterizing 
dependability of a phone switch system is that we can obtain reliability 
measures for usage profiles that correspond closely to real use.  Although 
phone use is changing (consider the growth of cellular  traffic), it is sufficiently 
for “reliability” to be meaningful, and there is enough historical data and 
experience to obtain reliability estimates for a new system even before it is 
placed in service, through statistical testing. 

Unfortunately, the situation for a word processor is quite different.  To begin, 
how should we measure?  Not by the hour, probably, but perhaps by the 
keystroke or operation.  More seriously, if the word processor contains any 
new features, it is very unlikely that we have an accurate model of how they 
will be used.  
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Reliability Examples

• Telephone switch availability
– well-defined: minutes of down-time per year
– based on accessible, stable usage profiles

• Word processor reliability
– Crashes per hour?  Per session?  Per 

document? 

– Inaccessible, poorly defined usage profile 
(several classes of users and use); may be 
meaningless
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Sometimes it is useful to have a static measure, like the number of bugs in a 
program.  This is sometimes measured (or estimated) as “fault density,” 
typically as the number of bugs per 1000 lines of code.  (1000 lines of code is 
commonly abbreviated as kLOC, pronounced “kay-loke”).  

We intuitively feel that “good” software should have fewer bugs than “bad” 
software, but there is no necessary relation between fault density and 
reliability.  In principle, if there is a failure (bad behavior), there must be at 
least one fault (bug in the code), but a single fault could cause many failures or 
none at all.   

Fault density has several problems as a statistical approximation to correctness, 
besides the fact that it does not necessarily correlate to reliability.  First, and 
most obvious, we can only count the faults that we have found, not the faults 
remaining in the code.  (Remaining faults are sometimes estimated from faults 
that have been found.)  Second, it isn’t always clear how to count, i.e., what 
constitutes a single fault.  

Given these problems, why bother with fault density at all?  In fact, fault 
density is a completely meaningless statistic for the user; for all its problems, 
reliability is at least observable.  However, fault density can be a useful 
measure internally.  For example, there may be points in the development 
process in which there is not enough running code to obtain reliability 
measures, but fault density measures may be obtained from inspections and 
unit and subsystem testing.  Together with historical data from similar projects, 
this can provide useful feedback for gauging progress and predicting problems 
later in development.  
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Fault density: a static measure

• Reliability is about execution; faults are in 
code (a static measure)

• Faults/ kLOC 
– May be counted, e.g., in acceptance test phase

• Problems
– Count reflects only known faults, not total
– Unclear what is a single fault

– Relation to observable quality is not clear
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A system is robust if it acts reasonably in severe or unusual conditions.  It is 
not possible to give a precise definition of robustness,  but one characteristic of 
robust systems is that their specifications include “desired reactions to 
undesirable situations” [cf. Henninger & Parnas].   

Robustness is often (but not always) concerned with partial functionality, also 
called “graceful degradation.”  An example of this is the phone system, which 
distinguishes “plain old telephone service” (abbreviated POTS) from advanced 
services like call waiting, call forwarding, etc.  The phone system is designed 
to keep POTS operational even when advanced services cannot be maintained.  
(More ahead ...) 
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Robustness

• Beyond correctness:  A property of 
specifications and implementations both
– A robust system has specified behavior in 

unexpected and severe conditions

• Orthogonal to reliability
– concerned with unusual conditions

• Often concerned with partial functionality:
– graceful degradation 
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Robustness is not closely related to reliability or correctness.   In particular, a 
system may be very reliable without being robust at all.  As a simple example, 
consider a sorting program that works perfectly for data sets with less than 
64,000 items.  If the data set contains more than 64,000 items, it silently 
discards part of the data (i.e., without any warning to the user). This is a very 
non-robust behavior, but the program may still be “correct” if the specification 
states that input data sets must have fewer than 64,000 items.  If the 
specification does not place a limit on the data set size, then the program is 
incorrect, but it may still be quite reliable if users seldom sort large data sets.

Safety is a sub-category of robustness specifically concerned with avoiding 
certain very bad behaviors.  The undesired outcomes are called “hazards,” and 
safety engineering is concerned with identifying and preventing hazards.  
Sometimes this literally means “human safety,” as when for example the 
hazard is a nuclear reactor meltdown or a robot crushing a human worker.  In 
other cases we may identify less catastrophic but still undesirable hazards to 
avoid, such as trashing the file system. 
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Robustness and Safety

Reliable

Correct

Robust

Safe
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Recall that robustness is associated with specifications of “desirable reactions 
to undesirable situations.”  One “undesirable situation” is failure of a software 
system (or of a combined hardware/software system).  Two particular kinds of 
robust reactions to failure are commonly distinguished: fail soft and fail safe. 

“Fail soft” is the same as the aforementioned “graceful degradation,” i.e., 
maintaining some level of useful functionality despite partial system failure.  
We have already mentioned the telephone system in this regard. Another 
example of “fail soft” is an avionics system that maintains enough 
functionality to allow the pilot to land safely, although it can no longer provide 
more advanced flight functions. 

“Fail safe” is avoidance of harmful behavior, perhaps without providing any 
useful functionality at all.  In many cases, this simply means shutting down to 
avoid doing harm.  For example, the “safe state” established by a robot to 
avoid harming human workers would typically be the “off” state.  Sometimes 
the “safe state” involves some positive action, such as releasing steam pressure 
from a boiler. 

When some positive action is required to maintain safety, it may be hard to 
distinguish between “fail soft” and “fail safe.”  For example, when 
FrameMaker (a word processor) recognizes an inconsistent internal state, it 
reports an error and terminates, but before terminating it saves a copy of each 
open file.  It probably doesn’t matter whether we call this “fail safe” (shutting 
down to avoid corrupting files) or “fail soft” (providing the very limited 
functionality of saving one’s work before exiting). 
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Failure and robustness

• Fail soft:  Maintaining partial functionality
– example: “POTS” service when extra phone 

services unavailable

• Fail safe:  Avoiding unsafe behavior
– may not provide any useful functionality
– establish a “safe” state

– example: engine shut-off in case of self-
diagnosed error
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We will illustrate the relation between correctness and reliability on the one 
hand, and robustness and safety on the other, using the example of a traffic 
light at a four-way intersection with  pedestrian crossings.  We’ll imagine a 
sophisticated traffic light system with timing partly controlled by a central 
system, which sets the pattern differently according to traffic patterns at 
different times of day. For purposes of the example, we’ll consider only the 
lights at a single intersection (i.e., we’ll treat the central scheduling facility as 
an external entity). 

A goal of the traffic light system is to let traffic pass as efficiently as possible, 
according to the timing pattern set by the central scheduler.  To be robust, it 
should also provide some minimal function even when full functionality is not 
possible.  Above all, it must avoid the hazard of collisions between cars or 
between cars and pedestrians. 
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Example: Traffic light (USA version)

Control

Correctness, reliability: 
let traffic pass according 
to correct pattern and 
central scheduling

Robustness, safety: 
Provide degraded 
function when possible; 
never signal conflicting 
greens.
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The real safety requirement of the traffic light system is “prevent death,” or 
more specifically, “never signal in such a way that cars collide with each other 
or with pedestrians.”  It is very difficult to formalize this external requirement 
in a way that precisely constrains the software system.  

This is a very common situation; either the property we really wish to specify 
is not inherently informal (e.g., “the output should be attractive”), or it is 
precise (like avoiding collisions) but applies to the system and environment as 
a whole, and cannot be precisely translated into a sufficient and necessary set 
of constraints on the software system. 

Since correctness is a consistency relation between specification and 
implementation, it is important that we devise a precise specification of crucial 
properties even if the specification is an imperfect translation of the actual 
requirements.  Often, moving from an informal statement of a requirement to a 
specification that is formal enough to be verified involves “narrowing,” that is, 
reducing the set of acceptable implementations.  “Narrowing” is also called 
“implementation bias,” which is considered an undesirable characteristic of 
specifications, but it is often the price we must pay for precision. 

In addition to the need for narrowing, we are likely to find that we cannot 
adequately translate a required property into a single specified property.  Often 
we will produce a number of specified properties which (we hope) will 
together establish the desired property, or at least make it much more likely. 

We would like to ensure that the precise specifications of required behavior are 
consistent with our actual (informal) requirements.  Unfortunately, this 
consistency is unverifiable.  At some point in development there is always a 
transition from informal to formal representations.  We can (at least in 
principle) verify consistency between formal representations, but we cannot 
verify consistency between an informal representation and a formal 
representation. 
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Traffic Signal: Correctness

• Actual requirement: Prevent death
• Formalized specification is narrower

– ex: Never signal conflicting directions

• Informal/formal consistency is unverifiable

Actual
Requirements

Formal descriptions

System
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We use the term “verification” to describe a check for consistency between 
two formal representations.  We will use this term in a wide sense: for 
example, testing is verification when it is used to check program behavior 
against a specification.  

While we cannot conclusively show correspondence between an informal 
representation and a formal representation, there are several things we can do 
to check either a specification or an actual system against even the most 
informal requirements.  These activities are called “validation,” as versus 
“verification.”   In the terms introduced by Boehm, verification is “building the 
system right” while validation is “building the right system.”   Both are 
important, but they require quite different measures.  

Validation is largely subjective (although it may also include objective 
measures, such as usability testing with objective performance measures). 
Verification is objective, in the sense that a program behavior is 
unambiguously permitted or not permitted by the specification (this is what we 
mean by the specification being precise.)   Verification of an implementation 
against a specification is valuable only to the extent that we have done a good 
job of validating the specification against intentions.  In practice these are 
usually not sequential steps, but are intertwined. 
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Validation vs. Verification

Actual
Requirements

Formal descriptions

System

Validation Verification
Includes usability 
testing, user 
feedback

Includes testing, 
inspections, static 
analysis
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To make the traffic light system robust, we must enhance the specification in 
ways that are likely to ensure the (informal) requirements, including 
requirements that may not have been stated explicitly (i.e., things that the user 
would care about if s/he had thought of them).  

It is useful to explicitly consider things that can go wrong (undesirable 
situations for which we should define desirable reactions).  We might identify 
the following problems: 

  * Light bulbs wear out and fail. Although traffic light bulbs are very high 
quality and don’t burn out often, we should be prepared for the worst. 

  * The communication line to the central scheduling station could fail. While 
we cannot maintain full functionality without this central coordination, we may 
provide some degraded service. 

  * The software itself, or some other hardware, could fail.  We should perform 
extensive self-checks and try to recover or at least avoid some catastrophic 
mistake. 

Additionally, it is useful to explicitly consider “the worst that could happen,” 
hazards to avoid.  These will be stated as negative properties: 

  * Traffic should never enter from opposing directions (North/South and 

East/West). 

Although less catastrophic, we can also recognize a weakened form of the 
efficiency requirement which is worth stating as a negative property: 

  * No traffic waits forever

That is, even if we fail to move traffic efficiently through the intersection, we 
should at least see to it that no one is stuck at a red light (or a “don’t walk” 
signal) forever. 
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Traffic signal: Robustness

• Specification completeness
– behavior when a light is disabled
– behavior when central schedule unavailable
– self-check and fault recovery

• Negative properties
– never allow conflicting directions
– no traffic waits forever
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Word processor: Robustness

• Specification completeness
– behavior when file system full, memory 

exhausted, etc. (environment problems)
– acceptable response to user error
– crash recovery

• Negative properties
– never enter “vulnerable” state where crash is 

unrecoverable
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There is an established field of system safety engineering concerned with 
preventing unsafe behavior; software safety is an extension and adaptation of 
system safety principles and techniques to software engineering.  System 
safety begins with hazard analysis; hazards are the unsafe situations or 
behaviors that we must avoid. The parts of a specification concerned with 
safety are not concerned at all with maintaining functionality, only with 
avoiding these hazards.

Safety specifications are typically 

  - Simple: Even if the system as a whole is very complex, the safety properties 
should be very simple so that they are easy to establish and verify. 

  - Incomplete: They don’t specify all the behavior of a system, which is how 
simplicity can be achieved. 

  - Redundant:  Even if a safety property should follow logically from correct 
functional behavior, safety properties are specified independently (just to be 
sure!). 
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Software Safety

• Not concerned with maintaining function
– Simple, incomplete, often redundant 

specifications of hazard prevention

• Adaptation of system safety 
– An established engineering field

• May depend on reliability, or conflict with it

Preventing bad things from happening
(robustness/ negative specifications)
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In some cases, safety will depend at least partly on reliability.  For example, a 
fly-by-wire aircraft such as the Airbus A320 or the Boeing 777 is safe only if 
the avionics software provides at least some level of functionality.  In many 
cases, though, safety can conflict with reliability, because the “safe state” of a 
system is a non-functional state.  For example, a nuclear plant control system 
is safest (but not very reliable) if it shuts down at the least hint of irregularity. 
An automobile that tests its turn signal lights and refuses to start if any are 
burnt out would be safer, but we would probably not accept the reduction in 
reliability. 

Nancy Leveson, a pioneer in software safety research, often tells a story of her 
experience as a consultant to a company developing a torpedo. The intended 
behavior of a torpedo is to reach an enemy ship and explode; the relevant 
hazard is to return to the firing ship and explode.  After many measures were 
taken to avoid the hazard, the torpedo was tested in a lake.  It consistently 
floated to the bottom and disarmed itself.  It was a very safe torpedo — but 
very unreliable. 
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Safety vs. Reliability

• Interdependent when safety depends on 
continued (perhaps degraded) function
– example:  flight control of fly-by-wire aircraft

• Conflicting when function does not 
contribute to safety
– example:  an automobile that does not start is 

safe, but unreliable
– example: the safest torpedo never explodes
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We want to ensure the safety requirement of the traffic light system in all 
circumstances, including the “undesirable situations” we identified.  

We will split the “bulb is burnt out” situation into two:  A green bulb is burnt 
out, or a red is burnt out.  (We could treat yellow like red). 

If a green light is burnt out, we can achieve a “fail soft” state (degraded 
functionality) by using blinking yellow in its place.  All other lights can act as 
normal.  

If a red light is inoperable, we can use a blinking yellow in this direction and a 
blinking red in the other direction. 
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Traffic Signal: Fail-soft and Fail-safe

• Elaborate negative requirement: never 
signal green to conflicting lanes

• If North/South green inoperable, use 
blinking yellow in its place
(USA:  blinking yellow => “proceed with caution”)

• If North/South red inoperable, blink red 
East/West, yellow North/South
(USA: blinking red => “stop before proceeding”)
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Why do we explicitly state negative properties (what the software should not 
do), rather than depending on a statement of the positive properties (what the 
software should do) and showing that they imply the safety conditions?  In a 
word, fallibility.   We make mistakes.  Formal descriptions of the intended 
behavior of software systems are complex, and we make mistakes.  We may 
think they positive properties rule out the hazardous behavior, but we may be 
wrong.  A simple, redundant statement of behavior to be avoided reduces the 
likelihood that we fail to adequately specify it. 

Implementations, too, are complex and imperfect.  Where there is complexity, 
there will be errors.  We want to have much higher assurance of critical safety 
properties than of overall correct functioning, and the only way we can achieve 
this is to keep safety properties extremely simple. There should be equally 
simple measures in the system (software and/or hardware) to ensure these 
properties. 
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Why negative properties?

• Formal descriptions are incomplete
– positive specifications may not rule out 

dangerous behaviors

• Implementations are imperfect
– and more complexity => more errors
– a redundant, simple specification may facilitate 

stronger assurance of critical properties
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Safety property examples
from non-life critical applications

• Language interpreter (ex. Java, safe TCL)
– Prohibit “unsafe” I/O

• e.g., cannot sneak through a firewall

– Require predictable type-state (Java)
• to support the file & network safety assurances
• includes predictable behavior for all errors

• Unix ftp ignores world-readable .netrc
• Operating system: Memory protection 

prevents system crash
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Discussion: Spam Filter

• Hypothetical product:  Email filter discards 
spam (unsolicited bulk email)

• How would you formalize “spam”?
– Does this suggest something about the relation 

between validation and verification?

• Identify “hazards” and safety requirements
• How do the safety requirements interact 

with reliability of the spam filter? 


