
11

Software Engineering, M Young 5/27/99 1

Software Test & Analysis
(a.k.a. Verification)

You can’t always get what you want,
but if you try sometime,
you just might find,
you get what you need.

–Rolling Stones

Software Engineering, M Young 5/27/99 2

You can’t always get what you
want

• Correctness properties are undecidable
– the halting problem can be embedded in

almost every property of interest

Decision
Procedure

Property

Program

Pass/Fail

22

Software Engineering, M Young 5/27/99 3

Getting what you need ...

• We must make the problem of verification
“easier” by permitting some kind of inaccuracy

Perfect
verification

Optimistic inaccuracy
(testing)

Pessimistic inaccuracy
(analysis, proofs)

“Easier” properties

Software Engineering, M Young 5/27/99 4

Static Analysis

Software Inspections
Formal Verification

Flow Analysis
. . .

33

Software Engineering, M Young 5/27/99 5

“Static” analysis: without execution

• An over-broad category that encompasses
nearly everything except testing

• General themes:
– Early analysis: design and specs as well as code
– Focused, efficient analysis; not comprehensive
– Thorough (often conservative) analysis
– Information gathering for other test & analysis

Software Engineering, M Young 5/27/99 6

Software Inspection:
Low tech but effective

• Fagan Code Inspections
– One of many “walk-through” and inspection

techniques; among the most successful
• More formal and well-defined than “structured

walk-throughs” etc.

– Has been extended to designs, requirements,
etc. with similar organizing principles

– A completely manual technique for finding and
correcting errors

See also:
www.ics.Hawaii.edu/~johnson/FTR/Bib/bib-
master.html

44

Software Engineering, M Young 5/27/99 7

Software Inspection Roles

• Moderator:
– Typically borrowed from another project.

Chairs meeting, chooses participants, controls
process

• Readers, Testers:
– Read code to group, look for flaws

• Author:
– Passive participant; answer questions when

asked

Software Engineering, M Young 5/27/99 8

Software Inspection Process

• Planning
• Moderator checks entry criteria, choose

participants, schedule meeting

• Overview
• Provide background education, assign roles

• Inspection (see ahead)
• Rework

• author addresses defects found in inspection

• Follow-up
• Possible re-inspection

55

Software Engineering, M Young 5/27/99 9

In the Meeting

• Goal: Find as many faults as possible
– max 2 x 2 hour sessions per day
– approx. 150 source lines/hour

• Approach: Line-by-line paraphrasing
– Reconstruct intent of code from source
– May also “hand test”

• Find and log defects, but don’t fix them
– Moderator responsible for staying on track

Software Engineering, M Young 5/27/99 10

Why does inspection work?

• The evidence says it is cost-effective.
Why?
– Detailed, formal process, with record keeping
– Check-lists; self-improving process
– Social aspects of process, esp. for author
– Consideration of whole input space
– Applies to incomplete programs

• Limitations
– Scale: Inherently a unit-level technique
– Non-incremental; what about evolution?

66

Software Engineering, M Young 5/27/99 11

Analysis of Models

proc foo ()
 x: integer;
 y: char;
begin
 xxlskd ;

xxl;

Derive
models of
software for
analysis

Direct check of source code
(impractical or impossible)

? P

Property
of interest

Algorithmic check of
derived model for
related property P’

? P´

Property
of model

Implication

Software Engineering, M Young 5/27/99 12

Classic data flow analyses to find
program errors

• Uninitialized variable
– “May” result from classic “avail” analysis

• but conservative analysis can be annoying
• “Must” version is also possible (how?)

• Dead assignment (no possible use)
– Classic “live variables” analysis
– In FORTRAN, Awk, BASIC, PERL, etc.,

usually indicates a misspelled variable
– less useful in languages requiring declarations

77

Software Engineering, M Young 5/27/99 13

Example analysis: DAVE

• Data flow analysis tools for error
detection [Fosdick & Osterweil 1976]

• Classical data flow analysis algorithms
• Detected FORTRAN coding anomalies

– Uninitialized variables
– Dead stores (indication of wrong variable)

• “Must” and “May” results
– overly conservative: too many “may” results

Software Engineering, M Young 5/27/99 14

Precision & Safety

• An analysis is conservative (safe) if it
doesn’t miss errors

• An analysis is precise to the extent that it
doesn’t report spurious errors
– An overly conservative, imprecise analysis may

be useless.
– A well-defined but overly strict property may

be preferable to spurious error reports

88

Software Engineering, M Young 5/27/99 15

Why is analysis imprecise?

• Not all program paths are executable
– The same infeasible path problem as test

coverage; perfectly precise analysis is
impossible

• Precision is costly
– Static analyses “summarize” results to obtain

results in practical time (often O(n3) in theory,
O(n) in practice). Precise results often
require exponential time and space.

Software Engineering, M Young 5/27/99 16

Aspect analysis
[Jackson 93]

• Classical data dependence analysis
– with three differences

• User-specified dependence properties
• Compositional: Specs can be used in lieu of code
• Dependence between abstract components (finer

than dependence between concrete objects)

• Reports missing dependencies
• Reports only must results

99

Software Engineering, M Young 5/27/99 17

Non-standard analyses

• Flow analysis doesn’t have to be about data
flow
– the formal requirements don’t say anything

about data flow; they just describe a set of
equations about approximate values

• Sometimes we can abstract in different
ways from program execution

• Sometimes we can use the same methods
for other systems of equations

Software Engineering, M Young 5/27/99 18

Collection & Abstraction

Collecting
Interpretation

Concrete
Interpretation

Abstract
Interpretation

Collect
all possible
values

Abstract to
sets of values

Formulate flow equations
on abstract values

1010

Software Engineering, M Young 5/27/99 19

How to cook an analysis

• Choose a “collecting” interpretation
– execution in which a location “collects” every

value
– usually infinite

• Abstract to a finite-height lattice
– with appropriate transfer functions
– often (but not always) subsets of values

Software Engineering, M Young 5/27/99 20

Java stack typing

• Java is compiled to op-codes for a virtual
machine; the op-codes manipulate a stack
of intermediate values

• For safety and efficiency, Java types the
stack:
– At every point in the program, the height of

the stack is known
• No stack overflow/underflow checks needed

– The type of the object at the top of the stack
is known

1111

Software Engineering, M Young 5/27/99 21

Measuring the stack

• At procedure entry, stack height is zero
– this could be generalized to relative height

• Each stack operation has a predictable
effect
– e.g, ADDI reduces stack height by 1

• But what about control flow (if, while)?
– you should be able to concoct a lattice of

values for this; recall constant propogation

Software Engineering, M Young 5/27/99 22

Lattice of stack heights

• Exactly as for constant propogation
• What are the flow equations?

{ }
(no values)

{ 0 }{ -1 } { 1 }

{ . . . -1 0 1 . . . }

(constants)

(non-constant)

1212

Software Engineering, M Young 5/27/99 23

Flow equations for stack height

• For a stack operation,
out(b) = f (in (b)), where f is change in height

• For control flow join,
out(b) = Merge(in(b))

where Merge(x,x) = x

 Merge(x,y) = { -infinity .. infinity } if x≠ y

• For other operations, out(b) = in(b)

Treating control flow join
as pseudo-node

Software Engineering, M Young 5/27/99 24

Extend stack height analysis to
stack type analysis

• In place of heights, propagate vectors of
types
– not as expensive as it sounds, since height

should always be a constant

• Extend stack operations and Merge(x,y) in
the obvious way
– ADDI takes , i,i to, i

• ?? is a vector of unknown height, unknown
type; Merge(??,x) = ?? for every value x

1313

Software Engineering, M Young 5/27/99 25

What is static analysis good for?

• Not a replacement for testing
– focused, (mostly) automated analysis for

limited classes of faults

• More thorough than testing (within scope)
– conservative analyses are tantamount to

formal verification

• Also augments testing, e.g., dependence
analysis for data flow testing

Software Engineering, M Young 5/27/99 26

Summary: Analysis & Test

• No panaceas:
You can’t always get what you want

• Multiple approaches
– Complementary: Different strengths and

weaknesses
– Automate what you can
– Analyze what is hard to test
– Use testing to complete the analysis, and add a

“reality check” for analysis of models

