
11

CIS 422, S99 / M Young & M Pezzè 5/25/99 1

Fundamentals of Dynamic Testing

• Three questions:
– How shall we tell if a test has succeeded or

failed?
– How shall we select test cases?
– How do we know when we’re done?

Historically approached in the opposite order

CIS 422, S99 / M Young & M Pezzè 5/25/99 2

What is “thorough” testing?

• Can we test exhaustively?
– Why or why not?
– And if not, why bother?

22

CIS 422, S99 / M Young & M Pezzè 5/25/99 3

Accuracy / Feasibility Tradeoffs

• Since exhaustive testing is impossible, we must
choose a sample of executions

Perfect verification
= exhaustive testing

Optimistic inaccuracy
(testing)

Pessimistic inaccuracy
(analysis, proofs)

“Easier” properties

Sample of executions

CIS 422, S99 / M Young & M Pezzè 5/25/99 4

Possible Goals of Testing

• Find faults
– Glenford Myers, The Art of Software Testing

• Provide confidence
– of reliability
– of (probable) correctness
– of detection (therefore absense) of particular

faults

33

CIS 422, S99 / M Young & M Pezzè 5/25/99 5

Granularity levels

• Acceptance testing: the software behavior is
compared with end user requirements

• System testing: the software behavior is
compared with the requirements specifications

• Integration testing: checking the behavior of
module cooperation.

• Unit testing: checking the behavior of single
modules

• Regression testing: to check the behavior of new
releases

CIS 422, S99 / M Young & M Pezzè 5/25/99 6

Testing activities before coding

• Planning
– acceptance test planning (requirements elicitation)
– system test planning (requirements specifications)
– Integration & unit test planning (architectural design)

• Generation
– create functional system tests (requirement

specifications)
– generate test oracles (detailed design)
– generate black box unit tests (detailed design)

44

CIS 422, S99 / M Young & M Pezzè 5/25/99 7

Process-Based Reliability Testing

• Rather than relying only on properties of
the program, we may use historical
characteristics of the development process

• Reliability growth models (Musa,
Littlewood, et al) project reliability based
on experience with the current system and
previous similar systems

CIS 422, S99 / M Young & M Pezzè 5/25/99 8

Partition Testing

• Basic idea: Divide program input space
into (quasi-) equivalence classes
– Underlying idea of specification-based,

structural, and fault-based testing

55

CIS 422, S99 / M Young & M Pezzè 5/25/99 9

Systematic Partition Testing

• Systematic (non-random) testing is aimed
at program improvement, not
measurement
– Obtaining valid samples and maximizing fault

detection require different approaches; it is
unlikely that one kind of testing will be
satisfactory for both

• Practical “adequacy” criteria are negative:
indications of important omissions

CIS 422, S99 / M Young & M Pezzè 5/25/99 10

Specification-Based Partition
Testing

• Divide the program input space according
to identifiable cases in the specification
– May include boundary cases
– May include combinations of features or

values
• If all combinations are considered, the space is

usually too large

• Systematically “cover” the categories
– May be driven by scripting tools or input

generators

66

CIS 422, S99 / M Young & M Pezzè 5/25/99 11

Exercise

An event queue in a simulation system is a
priority queue where events are extracted
according to their time-stamps (earliest
time-stamps first, last-in among events
with the same time-stamp)

• Devise a set of functional test cases for an
event queue

CIS 422, S99 / M Young & M Pezzè 5/25/99 12

Structural Coverage Testing

• (In)adequacy criteria
– If significant parts of program structure are not tested,

testing is surely inadequate

• Control flow coverage criteria
– Statement (node, basic block) coverage
– Branch (edge) coverage
– Condition coverage
– Path coverage
– Data flow (syntactic dependency) coverage

• Attempted compromise between the impossible
and the inadequate

77

CIS 422, S99 / M Young & M Pezzè 5/25/99 13

The Infeasibility Problem

• Syntactically indicated behaviors (paths, data
flows, etc.) are often impossible
– Infeasible control flow, data flow, and data states

• Adequacy criteria are typically impossible to
satisfy

• Unsatisfactory approaches:
– Manual justification for omitting each impossible test

case (esp. for more demanding criteria)
– Adequacy “scores” based on coverage

• example: 95% statement coverage, 80% def-use coverage

CIS 422, S99 / M Young & M Pezzè 5/25/99 14

Statement Coverage

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

One test datum (N=1, A[0]=-7, X=9) is enough to guarantee statement
coverage of function select
Faults in handling positive values of A[i] would not be revealed

int select(int A[], int N, int X)
{

int i=0;
while (i<N or A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

}
return(1);

}

88

CIS 422, S99 / M Young & M Pezzè 5/25/99 15

Branch Coverage

int select(int A[], int N, int X)
{

int i=0;
while (i<N or A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

}
return(1);

}

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

We must add a test datum (N=1, A[0]=7, X=9) to cover branch False
of the if statement. Faults in handling positive values of A[i] would
be revealed. Faults in exiting the loop with condition A[i] <X would
not be revealed

CIS 422, S99 / M Young & M Pezzè 5/25/99 16

Condition Coverage

int select(int A[], int N, int X)
{

int i=0;
while (i<N or A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

}
return(1);

}

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

Both conditions (i<N), (A[i]<X) must be false and true for different
tests. In this case, we must add tests that cause the while loop to exit
for a value greater than X.
Faults that arise after several iterations of the loop would not be
revealed.

99

CIS 422, S99 / M Young & M Pezzè 5/25/99 17

Path Coverage

int select(int A[], int N, int X)
{

int i=0;
while (i<N or A[i] <X)
{

if (A[i]<0)
A[i] = - A[i];

}
return(1);

}

i=0

i<N or A[i] <X

A[i]<0

A[i] = - A[i]
return(1)

True
False

True
False

The loop must be iterated given number of times.
PROBLEM: uncontrolled growth of test sets. We need to select a
significant subset of test cases.

CIS 422, S99 / M Young & M Pezzè 5/25/99 18

Data flow testing:
an example of partition testing

• Identify def-use pairs (reaching definitions)
in program source code

• Coverage criterion: Each def-use pair must
be executed at least once

• Rationale: Untested def-use pairs hide bad
computations
– Typical of coverage criteria: Justified as a

lower bound on sufficient testing, not an
upper bound

1010

CIS 422, S99 / M Young & M Pezzè 5/25/99 19

Data flow coverage criteria (ex.)

x := 7

y := x

y := y+1

z := x+y

2 reaching definitions
(one is from self)

2 reaching definitions for x,
and 2 reaching definitions for y

Rationale: An untested
def-use association
could hide an
erroneous computation

CIS 422, S99 / M Young & M Pezzè 5/25/99 20

Fault-based testing

• Given a fault model
– hypothesized set of deviations from correct

program
– typically, simple syntactic mutations; relies on

coupling of simple faults with complex faults

• Coverage criterion: Test set should be
adequate to reveal (all, or x%) faults
generated by the model
– similar to hardware test coverage

1111

CIS 422, S99 / M Young & M Pezzè 5/25/99 21

Structural Coverage in Practice

• Statement and sometimes edge coverage is
used in practice
– Simple lower bounds on adequate testing; may

even be harmful if inappropriately used for
test selection

• Additional control flow heuristics
sometimes used
– Loops (never, once, many), combinations of

conditions

CIS 422, S99 / M Young & M Pezzè 5/25/99 22

Partition Testing: Summary

• Non-random selection for fault detection
– as versus statistical reasoning about reliability

• Specification-based partitioning is the primary systematic
technique
– at unit, subsystem, and system levels

• Structural criteria indicate “holes” in the tests
– but satisfying a structural criterion guarantees nothing

