Fundamentals of Dynamic Testing

» Three questions;

— How shall we tell if a test has succeeded or
failed?

— How shall we select test cases?
— How do we know when we're done?

Historically approached in the opposite order

CIS 422,S99/ M Young & M Pezze 5/25/99

What is “thorough” testing?

e Can we test exhaustively?
— Why or why not?
— And if not, why bother?

CIS 422,S99/ M Young & M Pezze 5/25/99

Accuracy / Feasibility Tradeoffs

Optimistic inaccuracy

(testing)
Sample of executions

Pessimistic inaccuracy
> (analysis, proofs)
Perfect verification
= exhaustive testing

“Easier” properties

* Since exhaustive testing is impossible, we must
choose a sample of executions

CIS 422,S99/ M Young & M Pezze 5/25/99

Possible Goals of Testing

 Find faults

— Glenford Myers, The Art of Software Testing
* Provide confidence

— of reliability

— of (probable) correctness

— of detection (therefore absense) of particular
faults

CIS 422,S99/ M Young & M Pezze 5/25/99

Granularity levels

» Acceptance testing: the software behavior is
compared with end user requirements

» System testing: the software behavior is
compared with the requirements specifications

* Integration testing: checking the behavior of
module cooperation.

» Unit testing: checking the behavior of single
modules

* Regression testing: to check the behavior of new
releases

CIS 422,S99/ M Young & M Pezze 5/25/99

Testing activities before coding

* Planning
— acceptance test planning (requirements elicitation)
— system test planning (requirements specifications)
— Integration & unit test planning (architectural design)
» Generation

— create functional system tests (requirement
specifications)

— generate test oracles (detailed design)

— generate black box unit tests (detailed design)

CIS 422,S99/ M Young & M Pezze 5/25/99

Process-Based Reliability Testing

 Rather than relying only on properties of
the program, we may use historical
characteristics of the development process

* Reliability growth models (Musa,
Littlewood, et al) project reliability based
on experience with the current system and
previous similar systems

CIS 422,S99/ M Young & M Pezze 5/25/99

Partition Testing

 Basic idea: Divide program input space
into (quasi-) equivalence classes

— Underlying idea of specification-based,
structural, and fault-based testing

CIS 422,S99/ M Young & M Pezze 5/25/99

Systematic Partition Testing

 Systematic (non-random) testing is aimed
at program improvement, not
measurement
— Obtaining valid samples and maximizing fault
detection require different approaches; it is
unlikely that one kind of testing will be
satisfactory for both
 Practical “adequacy” criteria are negative:
Indications of important omissions

CIS 422,S99/ M Young & M Pezze 5/25/99

Specification-Based Partition
Testing

 Divide the program input space according
to identifiable cases in the specification
— May include boundary cases

— May include combinations of features or
values
* If all combinations are considered, the space is
usually too large
» Systematically “cover” the categories

— May be driven by scripting tools or input
generators

CIS 422,S99/ M Young & M Pezze 5/25/99

10

Exercise

An event queue in a simulation system is a
priority queue where events are extracted
according to their time-stamps (earliest
time-stamps first, last-in among events
with the same time-stamp)

» Devise a set of functional test cases for an
event queue

CIS 422,S99/ M Young & M Pezze 5/25/99 11

Structural Coverage Testing

 (In)adequacy criteria
— If significant parts of program structure are not tested,
testing is surely inadequate
» Control flow coverage criteria
— Statement (node, basic block) coverage
— Branch (edge) coverage
— Condition coverage
— Path coverage
— Data flow (syntactic dependency) coverage
» Attempted compromise between the impossible
and the inadequate

CIS 422,S99/ M Young & M Pezze 5/25/99 12

The Infeasibility Problem

 Syntactically indicated behaviors (paths, data
flows, etc.) are often impossible
— Infeasible control flow, data flow, and data states

» Adequacy criteria are typically impossible to
satisfy

» Unsatisfactory approaches:

— Manual justification for omitting each impossible test
case (esp. for more demanding criteria)

— Adequacy “scores” based on coverage
» example: 95% statement coverage, 80% def-use coverage

CIS 422,S99/ M Young & M Pezze 5/25/99

13

Statement Coverage

int select(int A[], int N, int X) i=0

int i=0;
while(i<N or A[i] <X)

if (A[i]<0)
Ali] =-A[[;

return(l),;
} return(l)

Onetest datum (N=1, A[(]=-7, X=9) isenough to guarantee statement
coverageof function select
Faultsin handling positive values of A[i] would not berevealed

CIS 422,S99/ M Young & M Pezze 5/25/99

14

Branch Coverage

int select(int A[], int N, int X) i=0

{ !
inti=0;
while(i<N or A[i] <X) \
{

if (A[i]<0)
Ali] =-A[il; True
} return(); return() A[i]‘z| -A[l]

Wemust add atest datum (N=1, A[0]=7, X=9) to cove branch False
of theif statement. Faultsin handling positive values of A[i] would
berevesaled. Faultsin exiting the loop with condition A[i] <X would
not berevealed

CIS 422,S99/ M Young & M Pezze 5/25/99

15

Condition Coverage

int select(int A[], int N, int X) i=0
{ !

int i=0;

while(i<N or A[i] <X) \

{

if (A[i]<0)
Alil=- Al True

} return(); return() A[i]‘z| -A[l]

Both conditions (i<N), (A[i]<X) must befalseand truefor different
tests. Inthiscase, we must add teststhat cause the while loop to exit
for avalue greater than X.

Faults that arise after several iterations of the loop would nat be

revealed.

CIS 422,S99/ M Young & M Pezze 5/25/99

16

Path Coverage

int select(int A[], int N, int X) i=0
{ !

int i=0;

while(i<N or A[i] <X) \

{

if (A[i]<0)
Ali] =-Alil; True

} return(); return() A[i]‘z| -All]

Theloop must beiterated gven number of times.
PROBL EM: uncontrdled growth of test sets. We need tosdlect a
significant subset of test cases.

CIS 422,S99/ M Young & M Pezze 5/25/99 17

Data flow testing:
an example of partition testing

* |dentify def-use pairs (reaching definitions)
In program source code

» Coverage criterion: Each def-use pair must
be executed at least once

» Rationale: Untested def-use pairs hide bad
computations

— Typical of coverage criteria: Justified as a
lower bound on sufficient testing, not an
upper bound

CIS 422,S99/ M Young & M Pezze 5/25/99 18

Data flow coverage criteria (ex.)

Rationale: An untested
def-use association
could hide an
erroneous computation

2 reaching definitions
(one is from self)

Z .= X+y .. 2 reachlng deflnltlons for X,
and 2 reaching definitions for y
CIS 422,S99/ M Young & M Pezze 5/25/99 19

Fault-based testing

* Given a fault model

— hypothesized set of deviations from correct
program

— typically, simple syntactic mutations; relies on
coupling of simple faults with complex faults
» Coverage criterion: Test set should be
adequate to reveal (all, or x%) faults
generated by the model
— similar to hardware test coverage

CIS 422,S99/ M Young & M Pezze 5/25/99 20

10

Structural Coverage in Practice

 Statement and sometimes edge coverage is
used in practice
— Simple lower bounds on adequate testing; may
even be harmful if inappropriately used for
test selection
» Additional control flow heuristics
sometimes used

— Loops (never, once, many), combinations of
conditions

CIS 422,S99/ M Young & M Pezze 5/25/99

21

Partition Testing: Summary

* Non-random selection for fault detection
— as versus statistical reasoning about reliability

» Specification-based partitioning is the primary systematic
technique
— at unit, subsystem, and system levels

» Structural criteria indicate “holes” in the tests
— but satisfying a structural criterion guarantees nothing

CIS 422,S99/ M Young & M Pezze 5/25/99

22

11

