
11

Michal Young / Stuart Faulk 05/16/99 1

Software Maintenance

• Overview

• Legacy code
– Reverse-engineering

– Re-engineering

• Preventative Maintenance

Michal Young / Stuart Faulk 05/16/99 2

Post-Deployment Evolution
a.k.a. “maintenance”

• General definition: Any changes after deployment

• Unreliable statistics:
– More than 50% of total software cost

– More than 50% of budget

– Growing proportion as organization and products
mature

22

Michal Young / Stuart Faulk 05/16/99 3

Why does software need maintenance?
(more old, unreliable statistics)

• Corrective (bug-fixes): 15%

• Adaptation: 18%

• Enhancement: 65%

These numbers are not reliable or consistent across
organizations ... but the basic picture is right: Most
maintenance involves evolution of software function,
not fixing bugs.

Michal Young / Stuart Faulk 05/16/99 4

Maintenance is not a “phase”

• In traditional waterfall model (and some textbooks),
maintenance is treated as the final “phase” of a project
– This might be appropriate if all or most of maintenance were bug

fixes

• What activities are part of “maintenance”?
– To fix a bug?

– Add a feature?

– Provide a new version?

• In fact, maintenance involves activities from every other
phase
– AND it may involve adjusting products (documents) from each

phase

33

Michal Young / Stuart Faulk 05/16/99 5

Developing Maintainable Software

• What needs to be done to support maintenance?

• In requirements phase?
– Document assumptions (things expected not to change)

– Document expected changes

• In design phase?
– Design for ease of change

• Apply abstraction, information hiding, generalization

• Architectural structure based on assumptions (stabilities)

• Encapsulate expected changes

– Document design rationale

• Post deployment?
– Keep documentation up-to-date

Michal Young / Stuart Faulk 05/16/99 6

Software Decay

• Observation from OS/360:
– Each new version is more expensive than the previous,

and takes longer

• Belady on software “entropy”
– Software seems to be “decaying”

– Original structure is gradually lost through successive
changes in maintenance

44

Michal Young / Stuart Faulk 05/16/99 7

How Software Rots

• Design is lost or out of date

• Comments are missing or wrong

• Each change makes it a little worse
– Fossil code accumulates

– “Secrets” leak out of modules

• Eventually there is no design, only an ecology of
code
– “What it should do” is replaced by “What it did before”

– Bugs become features

Michal Young / Stuart Faulk 05/16/99 8

Infrastructure Entropy

• Personnel change
– Original developers move on

– New hires have different skills (e.g., methods, languages)

• Computing environment changes
– New hardware platforms

– New computing paradigms
• e.g., move from mainframe to distributed to intra-net

• Implies very different program structures

• Organization evolves
– Processes and procedures change

– Needs change

=> Organizational capabilities and needs diverge from legacy
assumptions and capabilities.

55

Michal Young / Stuart Faulk 05/16/99 9

Dealing with Legacy Systems

• Legacy systems
– Old, installed code bases that must be maintained

– Embed undocumented business knowledge and procedures

– Represent substantial corporate asset and potential liability

• Reverse-engineering: analyzing software to recover design and
requirements information
– Necessary when design and specifications are poorly maintained

– May be preliminary step to re-engineering

• Re-engineering: re-implementing aspects of a legacy system
– Current system defines initial requirements

– Addresses some aspect of system decay
• Update system

• Make more maintainable

Michal Young / Stuart Faulk 05/16/99 10

Software Archeology

• Reverse engineering / visualization
– Extract structural views from existing software, using

static (and occasionally dynamic) analysis

– Typically semi-automatic, analysis + user-controlled
summarization. Main challenge is scale.

– Examples: Rigi system, Murphy’s reflexion models

• Query systems
– Example: ISI natural language query system

How can we make sense of a system
without adequate documentation?

66

Michal Young / Stuart Faulk 05/16/99 11

Suggested Exercise

• Find the GCC source directory, or download it

• Imagine you are assigned to make a change
– Can you determine which parts are the compiler “front

end”, and which parts are the “back end”

– Could you find where to add a new control construct to
C++?

– Could you find where to add profiling code?

These things are possible, but they are harder than they
should be

• How much does the GCC “porting and
maintaining” document help?

Michal Young / Stuart Faulk 05/16/99 12

Reflexion Models

• Comparing a design model to “as-built” system
– Map implementation components to modules in design

• Many implementation components (e.g., files) may be
associated with a single module

• Begins with a rough approximation (e.g., from file names and
directory structures), and improves iteratively

– Show augmented design model
• Where the design connections (e.g., “uses”) correspond to the

implementation

• Where a design connection is “missing”

• Where implementation has additional connections

G. Murphy & D. Notkin, 1995&

77

Michal Young / Stuart Faulk 05/16/99 13

Re-Engineering

• Why re-engineering rather than re-develop?
– Perceived as lower risk

• Need not fully understand requirements

• Depends on scope of change, quality of documentation and
code

– Can be lower cost
• Re-engineering can target specific issues

– e.g., move to new platform or language

• Can scale to available resources

• But, there’s a practical limit to what can be done
– Cannot change underlying assumptions of architecture

– Poorly maintained system may be easier to re-develop

Michal Young / Stuart Faulk 05/16/99 14

Restructuring

• Ideally, “information hiding” aids maintenance
– If a change was anticipated, it should be confined to the

“secret part” of a module

– In practice, we can’t always anticipate what will change

• If change is not contained, we may need to
restructure
– “move the walls” to keep change impact contained

• Change and restructure, or restructure and change?
– Notkin & Sullivan: restructure first, so regression test

is easier

88

Michal Young / Stuart Faulk 05/16/99 15

Perspective: Maintenance as Reuse

• Maintenance is reuse on a grand scale
– given system X, produce system X’

• Maintainable systems have reusable parts
– a component that survives much maintenance without

change can probably fit in another system as well

• Evolution should create reusable parts
– goal of restructuring is to facilitate current and future

reuse, given evidence of actual change

Michal Young / Stuart Faulk 05/16/99 16

Preventive Maintenance

• To avoid decay, we must actively maintain
systems to enhance structure
– Contrary to the rule: “If it ain't broke, don’t fix it”

• Opportunity-based restructuring
– A required change is an opportunity to make other,

structure-enhancing changes

– Always leave the system better than you found it

Note: This is a personal view of good practice, not
widely accepted in industry. The more common
strategy is occasional “redevelopment” of badly
decayed systems.

99

Michal Young / Stuart Faulk 05/16/99 17

Generalizing Software

• If part of a system requires frequent adaptation or
extension, it is a candidate for generalization
– Mechanism/policy split

– Table-driven processing

– Application generator

– . . .

• Generalized component may be highly reusable

Michal Young / Stuart Faulk 05/16/99 18

Generalization examples

• Query language (vs. hard-coded queries)

• Simulation systems & languages

• Configuration tables (termcap, mailcap, etc.)

• Screen & user interface generators

• Spreadsheets, visual basic, user-programmable
databases

1010

Michal Young / Stuart Faulk 05/16/99 19

Traceability

• Problem: Maintaining integrity of several
documents
– avoiding “shelfware” phenomenon; documents as

living, evolving references

• Hypertext, literate programming, etc.
– none has been really successful

• Problem: Mapping from requirements to design to
code is not simple
– several parts of code may contribute to one design goal,

and one piece of code may be constrained by several
requirements

Michal Young / Stuart Faulk 05/16/99 20

Summary

• Maintenance is inevitable unless the system is
“use once and throw away”
– Plan on it, plan for it, budget and schedule for it

• Build for maintainability
– Identify expected changes

– Build so changes are easy to make (i.e., modularization
and information hiding)

• Be proactive - improve code rather than “fix” it

