
11

Michal Young, SERC 05/19/99 1

Software Reuse

From informal reuse (scavenging)

 to systematic reuse

Management and technical issues

Michal Young, SERC 05/19/99 2

Merry-Go-Round of Sequential
Development

Software
Design

System Integration
and Testing

Coding

Deployment and
Maintenance

Requirements
Analysis

Conventional view of development:
Common theme - process looks at only
one product.

Product

22

Michal Young, SERC 05/19/99 3

Sequential Development Over
Time

Requirements
Design

Code
Test

Deploy/Maintain

Product

Requirements
Design

Code
Test

Deploy/Maintain

Product

Requirements
Design

Code
Test

Deploy/Maintain

Product

Time

Michal Young, SERC 05/19/99 4

Inefficiencies of Sequential
Development

• Observation: much of software “development” is really
re-development.
– Software inevitably exists in many versions

– Seldom develop truly new applications

• Implication: typically much in common among systems we build
…But very little is reused
– Difficult to identify commonalties and differences

– Difficult to reuse code components

– Difficult to add desired feature to existing design

– Difficult to adapt other work products (if they exist)

– Generally easier to re-do than re-use

• Result: enduring “software crisis”
– Software remains a fundamentally hand-crafted (as opposed to

manufactured) product

– Only small improvements to schedule, cost, quality are possible

33

Michal Young, SERC 05/19/99 5

Motivations

• Development cost
– it is (or should be) cheaper to use existing software

components than to develop them “from scratch”

– cost advantage is not only for code: also for
specifications, design, test, documentation

• Cycle time
– adapting existing software should be faster than writing

new software

• Predictability
– reuse and adaptation should not only be faster, but

should also be easier to predict

Michal Young, SERC 05/19/99 6

Stage 0: Scavenging

• Code scavenging: Use existing component as
“template” for new component
– New code (or document, or ...) is constructed by editing

an existing file which is “close” or has at least some
common parts

• Almost universal for code. Very few components
begin as empty files

• Often completely ad hoc and personal

44

Michal Young, SERC 05/19/99 7

Limitations of ad hoc scavenging

• Time savings are limited to initial coding
– Only code (not documents, not test cases, ...) are reused

– Changes (editing) is arbitrary, so there is no savings in
test effort

• Maintenance problems
– Fixes and enhances must be applied to each copy of

reused code

Michal Young, SERC 05/19/99 8

Stages of Reuse

• Stage 0: Scavenging

• Stage 0.5: Template Libraries

• Stage 1: Component Reuse

• Stage 1.5: Component Frameworks

• Stage 2: Higher Level Programming

• Stage 3: Systematic Reuse

55

Michal Young, SERC 05/19/99 9

Stage 0.5: Template libraries

• Organizational support for reuse
– Maintain a library of “template” modules

• Shared and classified for efficient location

– May include quality control (approved templates)

– Should include record keeping and traceability
• How many times was this template reused last year?

• Which modules are based on it?

• Still limited
– Maintaining several variants is still expensive

– Inspections, testing, user documentation etc. may be
accelerated but not fully reused

Michal Young, SERC 05/19/99 10

Stage 1: Component reuse

• Better to re-use a component without change
– Reuse testing, inspection, documentation, etc., not only

coding effort

– Component dependability improves with reuse

– Maintain and enhance one version

• Component library is an organizational asset
– Maintaining and enhancing it is an investment

66

Michal Young, SERC 05/19/99 11

Barriers to Component Reuse

• Organizational and contractual
– Customers (e.g., U.S. D.o.D.) who want to pay only for

“new development”

– Organizations that measure productivity by amount of
new code written

– Budgeting extra effort to produce general, reusable
components (typically 2x or 3x cost of single-use
component)

• Technical
– Finding, understanding, assessing, and “fitting”

components

Michal Young, SERC 05/19/99 12

Finding Reusable Components

• Partial match problem
– There is seldom a component that does exactly what is

needed; we look for components that do most of or
almost what is needed

• Example: Search the web for a “best bus route” component, or
parts. What do you look for?

• Sipping from the firehose (information overload)
– There are often too many components that do most of or

almost what we need.

– Many are not really suitable; it is easy to lose the few
that are.

77

Michal Young, SERC 05/19/99 13

Understanding Reusable
Components

• Large libraries are complex
– Example: Leda graph structures/algorithms library

• Possibly no savings in the first use

– Example: Motif user interface toolkit (or Mac toolbox,
or Windows API, or ...)

• Documentation is essential
– Orientation to the library as a whole

– Indexing and organization to find what is needed

– Clear, complete descriptions of components and
(especially) component dependencies

– Complete examples (templates again?) are helpful

Michal Young, SERC 05/19/99 14

Assessing Reusable Components

• Does this component do what I need?

• Is it dependable?

• Is it (small | fast) enough?

• Does it fit?

88

Michal Young, SERC 05/19/99 15

Component Mismatch

• Analogy: My printer
• The printer is just fine — with 110v AC current, 50Hz

• In Italy it is useless

• Software component mismatches
– Wrong programming language

– Wrong interface
• file io vs. procedure arguments

• data push vs. data pull, internal vs. external control

– Wrong assumptions
• shared vs. copied structures

• error handling

Michal Young, SERC 05/19/99 16

Fitting Reusable Components

• A mismatch may not be fatal; we may be able
to adapt to a component

• Often there is more than one strategy
• Analogy: Adapt 220v to 110v for my printer, or

replace the transformer?

• Similar in circuit design: “glue logic” fits standard
ICs to their roles in the overall circuit

• Approaches
– Portability layer (for whole library), shims

– Wrappers, servers (for language & interface
mismatch)

99

Michal Young, SERC 05/19/99 17

Stage 1.5: Component
Frameworks

• Organized component libraries with standard
“patterns” of use
– Patterns may be templates

– Clear overall principles of organization

– Inheritance may help organize library of OO framework

• Examples (for user interface)
– MetroWerks PowerPlant; Microsoft Foundation

Classes; SmallTalk MVC

Michal Young, SERC 05/19/99 18

Investing in a Framework

• Wide scope frameworks are usually cheaper to
buy than to build
– Examples: The interface/application frameworks on

previous slide; domain-specific frameworks for
accounting, real-time control, simulation, etc.

– Narrow domain frameworks can be developed
gradually over time

– Accumulate, refine, organize: Not one big investment,
but an ongoing effort to build a foundation for future
development

1010

Michal Young, SERC 05/19/99 19

Stage 2: Higher level programming

• There is no clear line between library and language
– Intermediate stage (1.75?) is partial generation of applications

using a framework (e.g., interface “painters”)

• Eventually a domain becomes “formalized”
– Standard notation and semantics with corresponding component

support for “programming” at the domain level

– Closely related to (domain-specific) software architectures and
virtual machines

– Example: SQL has (mostly) replaced lower-level programming of
database functions

Michal Young, SERC 05/19/99 20

From here to there ...

• It is probably not possible to jump from ad hoc reuse
to a framework in one step

• Premature efforts to build reusable components are usually wasted

• Incremental strategy
– Use ad hoc reuse to trigger reusable component construction:

• Can I retrofit a generalized component to its original context and the
new context?

– Use maintenance history to identify the “right” component
interfaces:

• Can I factor the rapidly changing parts from the stable or slowly
evolving parts (e.g., with a mechanism/policy split)?

1111

Michal Young, SERC 05/19/99 21

Management Support for Reuse

• Remove obstacles
– Reward system and corporate culture must place as high (or

higher) value on reusing and improving, as on producing entirely
new software

– Mistake to avoid: rewarding production of “reusable” components
more than actual reuse

• Organize and make visible
– Make identification, assessment, and adaptation of reusable parts

an explicit part of development

– Include feedback mechanisms

• Provide adequate support
– Budget extra effort to improve the asset

– BUT move incrementally — avoid a disasterous big-bang effort

Michal Young, SERC 05/19/99 22

Summary — Reuse

• More than just faster coding
– Goal is reuse of design, documentation, test and analysis, etc., and

reduction of maintenance effort, in addition to faster production of
software

– The situation is not so bad

– Commercial component frameworks are reuse successes on a
grand scale (but often ignored as such)

– But it could be better ... at the domain & organization level

• Some issues are non-technical
– Management and organization support are essential

• Reuse can be approached incrementally
– Gradually move from ad hoc reuse to component libraries,

frameworks, and domain engines

1212

Michal Young, SERC 05/19/99 23

Product-Line Engineering for
Software

Domain Analysis

Domain Engineering

Michal Young, SERC 05/19/99 24

Approach

• Integrate development process and product
– Design for (re)producibility

– Concurrent engineering for software (process and
product are designed together)

• Reorganize development process
– Evolve a family rather than build single systems

– Production environment as product

• Systematic approach to building flexible
application generators

• Can be done with existing technology

1313

P/L Development Process

Domain Engineering
Define family and develop

Production Capabilities

Application Engineering
Produce Family Members

Application
Engineering
Environment

Feedback
Customer
Needs

Investment

Payback

Product Product

Domain Qualification

Key

Produces

Produces

Uses

Uses

Product Product Product

Idealized P/L Development Process

Domain Analysis

Application Modeling
Interface (AML)

Application Engineering
ToolsReuse Library

Application
Requirements
Refinement

Application
Generation

Application Modeling

APPLICATION ENGINEERING

DOMAIN ENGINEERING

Applications

Validation/
Acceptance

Reuse Architecture

System Composition
Mapping

Conceptual Framework

Domain Implementation

Needs of
Business Line

Sources of
Parts

Feedback Feedback

