
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 1

Design Documentation

Due next week

(c) 1998 M Young CIS 422/522 5/11/99 2

Purposes

• Capture (and demonstrate) the state of an
evolving system
– “Milestone” document

• Freeze decisions
– “Contracts” among developers, and between

developers and clients

• Orient developers to the system
– Including “maintainers” as developers over the

longer term

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 3

Typical Milestone Documents

Requirements
Definition

Specification

Design

External*

Detailed

Preliminary**

Code
Internal

Configuration
/ Operation

*Partly
Requirements

**Or
“architectural”

Comments,
Javadoc, etc.

Makefile,
Howto, etc.

(c) 1998 M Young CIS 422/522 5/11/99 4

Design Doc Requirements

• Essentially an extension of the concept
document, with
– Architectural design, sufficient to

• Trace from visible features to implementing code
– and, by extension, ensure completeness

• Judge feasibility of potential changes

• Determine potential subsets and build order

– Module interface specifications
• Sufficient as “build-to” specifications

• Optionally augmented with implementation notes

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 5

Architectural Design

• Must include
– Clear rules for where functionality goes

• As explicit allocation, AND/OR

• Implicit but evident in module descriptions

– Interface specifications
• Sufficient as “build to” documentation

– Implies: Sufficient for unit or subsystem tests

• Sufficient as “build against” documentation
– Everything I need to build another module

(c) 1998 M Young CIS 422/522 5/11/99 6

Architecture: In what detail?

• How far must the system architecture be
broken down with precise specifications?
– At least to main responsibility interfaces

• Where Mary’s part meets Joe’s part

– At least to 1 person-week chunks
• Sufficient for incremental development

– At least to good information-hiding modules
• Sufficient as maintenance firewalls

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 7

Architecture: What diagrams?

• I (still) won’t impose a single diagram, but I
will suggest
– Dependency diagrams: Layers, uses, etc.

– Information flow diagrams

– Information structure diagrams

– Class hierarchies

• Choose according to appropriateness
– It is very unlikely that all of these will be useful

for any single project

(c) 1998 M Young CIS 422/522 5/11/99 8

UML Dependencies (of
packages)

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 9

What is dependence?

• A uses B: requires the presence of
– Should be acyclic (why?)

– May differ from visibility and calls relations (how?)

– May require a breakdown finer than components
(why?)

(c) 1998 M Young CIS 422/522 5/11/99 10

UNIX layer architecture

• What does this diagram tell us about the division
of Unix into Kernel & Commands?

• How does it differ from “uses”?

Hardware

Unix Kernel

System call interface

User
Written

Applications

UNIX
Commands
and Libraries

from C. Schimmel, UNIX Systems for
Modern Architectures (Addison-Wesley 1994)

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 11

Interpreting Block Diagrams

• layers diagram indicates permitted and prohibited
interfaces or dependencies (the “uses” relation)

• block diagram shows interfaces
– but typically not direction of dependence

– and is often over-simplified (where is symbol table?)

A B

C

layers diagram

lexer parser

block diagram

lexemes

(c) 1998 M Young CIS 422/522 5/11/99 12

Information Flow Diagrams

• Most useful when
– Flow is non-trivial, but not too complex

– Major functionality is associated with stages in
flow

• Examples
– Information systems

– Control systems

– Classic compiler architecture

7

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 13

Information Flow in GCC

lexer parser

front end L1

front end L2
. . .

build

emit

Machine
description

Tree
rewriter

(not entirely accurate)

language dependent

machine
dependent

RTL tree

(c) 1998 M Young CIS 422/522 5/11/99 14

Information Modeling

• For any system with structurally rich data
– Business systems, but also CAD/CAM, C3I, …

• Part requirements, part design
– Understanding existing and required information

– Bringing order and elegance to chaos

• Many alternatives
– Relational, ER, class/inheritance, …

• All models emphasize some aspects and discard others

8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 15

UML Class Diagram

(c) 1998 M Young CIS 422/522 5/11/99 16

Scenario-Oriented Diagrams

• Illustrate particular behaviors
– Scenarios are examples; never complete

• Often used for
– Cataloguing functionality before module

breakdown

– Validating completeness

– Augmenting (but not replacing) module
breakdown

9

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 17

UML Collaboration Diagram

(c) 1998 M Young CIS 422/522 5/11/99 18

Module Interface Specifications

• Suppose you have
– .h files for C

– Public part of Class definitions for C++, Java

• What more is needed?

• Is javadoc enough?

10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 19

Describing Interfaces

• Overall style
– Example: Parser calls lexer to obtain each

token

– Example: Each kernel service is invoked by an
SVC, which triggers a context switch

• Precise interfaces
– int yylex() returns integer code as defined in

tokens.h. 0 is always the end-of-input code.

(c) 1998 M Young CIS 422/522 5/11/99 20

Documenting Interfaces

• javadoc (when used well) is a good example
of doing this right
– with liberal use of header comments

• Well-commented code may be enough
– but think carefully about navigation

– comment “extractors” are easy to write

• Diagrams? Maybe
– but I haven’t yet seen readable detailed

interface documentation in diagrammatic form

11

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/11/99 21

Navigating from Overview to
Code

• “Links” can be hypertext or descriptions
– but in any case, I should be able to answer:

Where do I find the files that make up that
module?

• Subdirectories can help
– although it may be too late if you aren’t already

using them

(c) 1998 M Young CIS 422/522 5/11/99 22

The Bottom Line

• Purpose of internal documentation:
Efficiently answer questions
– First: Where do I need to look?

– Then: What do I need to do?

• The particular notation or packaging matters
less than well-organized content

• It’s a lot easier to document a clean design
than a brick

