CIS422/522 W nter 1999

Design (Yet Again)

With comments on the textbook chapters

(¢) 1999 M Young CIS422/522 5/2/99 1

Design Models

* How do you decide what models to build?

— Sommerville’s list: data flow models, entity-relation
models, structural models, aggregation, inheritance,
interaction models

» Of what use are they!

(¢) 1999 M Young CIS422/522 5/2/99 2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522

W nter 1999

The Which and Why of Models

» A model exposes some properties and
suppresses others
— Ex.: 2 wind-tunnel model of an aircraft exposes
aerodynamics and suppresses paint color and seating
» A model focuses attention on particular design
decisions

— For making and evaluating design decisions

* which implies that we must be able to compare alternatives
and evaluate their impacts

— For understanding the system later

(¢) 1999 M Young CIS422/522 5/2/99 3

When Should You Use ...

* Class hierarchy?
» E-R or aggregation hierarchy?
» State machine!?

» Message sequence chart!?
« BNF?

(¢) 1999 M Young CIS422/522 5/2/99 4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS422/522 W nter 1999

Functional & OO Design

* Can information hiding be applied in a data-flow oriented
design?

— Consider the standard compiler example:

Symbol Table

Lexical
Analysis

Syntactic Semantic Code
Analysis Analysis Generation

(¢) 1999 M Young CIS422/522 5/2/99 5

A Note on Diagrams

* Un-keyed, ambiguous diagrams are fine for brain-storming
* ... but NOT for analyzing and documenting design

* Some of the textbook examples are not acceptable

(¢) 1999 M Young CIS422/522 5/2/99 6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS422/522 W nter 1999

OO compiler diagram (?)

* Sommerville’s OO view, pg 216

Add Table

Source S Token
Program 3> stream
n Get
Check
o 1= Error
ntax Tr '—'—— rammar I—E-»{ I
Syntax Tree 3 Gramma 5 Messages
Generate @
fljstract I o ject
T —| :f I
Code S Code
(U]
(c) 1999 M Young CIS422/522 5/2/99 7

OOQ Design (chap 14)

* “Obijects are abstractions of real-world or system entities”
— Doesn’t rule out much ...
— Grammatical analysis for object identification?
* But discovery is distinct from evaluation
+ “Object-oriented systems are easier to maintain ... “

— Sometime

(¢) 1999 M Young CIS422/522 5/2/99 8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS422/522 W nter 1999

(Optional slides follow)

* | don’t really expect to get to these on Tuesday,
depending on how much we discuss assignment |

(¢) 1999 M Young CIS422/522 5/2/99 9

Object Interface Design

» Page 248: “Shared data areas are eliminated. ... There is
no possibility of unexpected modification of shared data.”

» Page 267: “Functions which should always be provided for
each attribute include functions to store and retrieve
information in that attribute”

* How can these be reconciled?

(¢) 1999 M Young CIS422/522 5/2/99 10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS422/522 W nter 1999

Objects and Abstraction

+ “Attributes” are observable properties of idealized,
abstract objects
— Which may be completely different than internal structures
* A representation function maps concrete states to
abstract states
— Why not the other way? Consider a ring buffer.

(¢) 1999 M Young CIS422/522 5/2/99 1

Abstract Models and Interface Specs

* Abstract model helps simplify an interface specification
and make it precise

— Most useful when a complex state is maintained. May not be
useful for simple transformations

* Model can come from existing domain (sets, integers,
relations, ... ) or can be created (e.g. algebraic specs)

* Model operations may not be map one-to-one with
interface operations
— Consider stack, ring buffer, symbol table, ...

(¢) 1999 M Young CIS422/522 5/2/99 12

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS422/522 W nter 1999

Two-Level Specifications

* Abstract model
— Algebraic spec
— State machine

* Interface spec

— Logical statements involving a representation function
from program state to the model

(¢) 1999 M Young CIS422/522 5/2/99 13

Two-Level ADT Specs

» Abstract model

— Algebraic, functional (clean and easy to reason about)

* Interface spec

— Map program state to objects in the model

(¢) 1999 M Young CIS422/522 5/2/99 14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS422/522 W nter 1999

Stack: Algebraic Spec

Signature Axioms

Create: -> Stack; for all S: Stack, I Item
Push: Stack, [tem -> Stack Top(Push(S))) =1;
Pop: Stack -> Stack Pop(Push(S)) = S;
Top: Stack -> Item

* The abstract model is completely functional, simple and easy to
reason about

— But it doesn’t correspond directly to a reasonable interface
* |t says nothing about errors and other messy stuff
— What is Pop(Create())! This spec just doesn’t say.

— Implementations are messy anyway; stick all the crud there.

(¢) 1999 M Young CIS422/522 5/2/99 15

Stack: Interface Spec

Class Stack{ ...
Stack(); // ensures rep(self) = Create();
push(inti); // ensures rep(self) = Push(rep('self), i)
int pop(); // assumes rep(self) = Push(i,S);
/I ensures rep(self) = S and returnval =i

Assertions describe program effects through a
representation function

— rep maps from program states to objects in the abstract model

A single method call need not correspond to an abstract
function

— S.pop() does not correspond to any single function

(¢) 1999 M Young CIS422/522 5/2/99 16

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



