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Describing Architectural Design

Communicating the “big picture”
Block diagrams & boxologies

Overall styles
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Objectives

• “Orientation” documentation
– What are the organizing principles for this 

system
– What are the major pieces and their interfaces
– Where are the parts making up those major 

pieces
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Example: Classic Compiler

• Very gross level:  many missing details
• Main information is in absent connections

– e.g., the parser does not interact directly with the 
code generator

lexer parser optimizer

code genIR

front end back end
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A more realistic diagram of GCC

lexer parser

front end L1

front end L2
. . . 

build

emit

Machine
description

Tree 
rewriter

(not entirely accurate)

language dependent

machine
dependent

RTL tree
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Orientation to GCC ... 

• Front/back interface is (only) 
– construction of register-transfer-language tree
– invoking code generator after each procedure

• Code generation for each machine is 
controlled by table (machdef.h)

• Should say where to look to answer 
questions: 
– How would I build a native code Java compiler?
– How would I compile C to Java byte codes?

(c) 1998 M Young CIS 422/522  5/26/98 6

UNIX layer architecture

• What does this diagram tell us about the division 
of Unix into Kernel & Commands? 

Hardware

Unix Kernel

System call interface

User
Written

Applications

UNIX 
Commands 
and Libraries

from C. Schimmel, UNIX Systems for 
Modern Architectures (Addison-Wesley 1994)
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Interpreting Block Diagrams

• layers diagram indicates permitted and prohibited 
interfaces or dependencies (the “uses” relation)

• block diagram shows interfaces
– but typically not direction of dependence
– and is often over-simplified (where is symbol table?)

A B

C

layers diagram

lexer parser

block diagram

lexemes
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UML Dependencies (of packages)
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Boxologies

• The “boxologies” usually have
– A set of notations for various stages of design and points of view 

(e.g., class hierarchy vs. dynamic architecture vs. static 
architecture)

– A corresponding methodology for creating design

• Advantage:  Standardization
• Current dominant notation: UML

create

push
pop

empty

stack

linked_list

A design notation 
for object-based design
circa 1985
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UML Class Diagram
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UML Collaboration Diagram
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Describing Interfaces

• Overall style
– Example:  Parser calls lexer to obtain each 

token
– Example:  Each kernel service is invoked by an 

SVC, which triggers a context switch

• Precise interfaces
– int yylex() returns integer code as defined in 

tokens.h.  0 is always the end-of-input code. 
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Documenting Interfaces

• javadoc (when used well) is a good example 
of doing this right
– with liberal use of header comments

• Well-commented code may be enough 
– but think carefully about navigation

– comment “extractors” are easy to write

• Diagrams? Maybe
– but I haven’t yet seen readable detailed 

interface documentation in diagrammatic form
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Navigating from Overview to Code

• “Links” can be hypertext or descriptions
– but in any case, I should be able to answer:  

Where do I find the files that make up that 
module? 

• Subdirectories can help 
– although it may be too late if you aren’t already 

using them
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The Bottom Line

• Purpose of internal documentation: 
Efficiently answer questions
– First: Where do I need to look?
– Then: How do I make this change?

• The particular notation or packaging 
matters less than well-organized content

• It’s a lot easier to document a clean design 
than a brick


