
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 1

Describing Architectural Design

Communicating the “big picture”
Block diagrams & boxologies

Overall styles

(c) 1998 M Young CIS 422/522 5/26/98 2

Objectives

• “Orientation” documentation
– What are the organizing principles for this

system
– What are the major pieces and their interfaces
– Where are the parts making up those major

pieces

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 3

Example: Classic Compiler

• Very gross level: many missing details
• Main information is in absent connections

– e.g., the parser does not interact directly with the
code generator

lexer parser optimizer

code genIR

front end back end

(c) 1998 M Young CIS 422/522 5/26/98 4

A more realistic diagram of GCC

lexer parser

front end L1

front end L2
. . .

build

emit

Machine
description

Tree
rewriter

(not entirely accurate)

language dependent

machine
dependent

RTL tree

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 5

Orientation to GCC ...

• Front/back interface is (only)
– construction of register-transfer-language tree
– invoking code generator after each procedure

• Code generation for each machine is
controlled by table (machdef.h)

• Should say where to look to answer
questions:
– How would I build a native code Java compiler?
– How would I compile C to Java byte codes?

(c) 1998 M Young CIS 422/522 5/26/98 6

UNIX layer architecture

• What does this diagram tell us about the division
of Unix into Kernel & Commands?

Hardware

Unix Kernel

System call interface

User
Written

Applications

UNIX
Commands
and Libraries

from C. Schimmel, UNIX Systems for
Modern Architectures (Addison-Wesley 1994)

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 7

Interpreting Block Diagrams

• layers diagram indicates permitted and prohibited
interfaces or dependencies (the “uses” relation)

• block diagram shows interfaces
– but typically not direction of dependence
– and is often over-simplified (where is symbol table?)

A B

C

layers diagram

lexer parser

block diagram

lexemes

(c) 1998 M Young CIS 422/522 5/26/98 8

UML Dependencies (of packages)

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 9

Boxologies

• The “boxologies” usually have
– A set of notations for various stages of design and points of view

(e.g., class hierarchy vs. dynamic architecture vs. static
architecture)

– A corresponding methodology for creating design

• Advantage: Standardization
• Current dominant notation: UML

create

push
pop

empty

stack

linked_list

A design notation
for object-based design
circa 1985

(c) 1998 M Young CIS 422/522 5/26/98 10

UML Class Diagram

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 11

UML Collaboration Diagram

(c) 1998 M Young CIS 422/522 5/26/98 12

Describing Interfaces

• Overall style
– Example: Parser calls lexer to obtain each

token
– Example: Each kernel service is invoked by an

SVC, which triggers a context switch

• Precise interfaces
– int yylex() returns integer code as defined in

tokens.h. 0 is always the end-of-input code.

7

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 13

Documenting Interfaces

• javadoc (when used well) is a good example
of doing this right
– with liberal use of header comments

• Well-commented code may be enough
– but think carefully about navigation

– comment “extractors” are easy to write

• Diagrams? Maybe
– but I haven’t yet seen readable detailed

interface documentation in diagrammatic form

(c) 1998 M Young CIS 422/522 5/26/98 14

Navigating from Overview to Code

• “Links” can be hypertext or descriptions
– but in any case, I should be able to answer:

Where do I find the files that make up that
module?

• Subdirectories can help
– although it may be too late if you aren’t already

using them

8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/26/98 15

The Bottom Line

• Purpose of internal documentation:
Efficiently answer questions
– First: Where do I need to look?
– Then: How do I make this change?

• The particular notation or packaging
matters less than well-organized content

• It’s a lot easier to document a clean design
than a brick

