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 Architectural Design

Overview: Basic principles and 
approaches
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External design is closely tied to requirements analysis, but may already 
include some elements of architectural design and even module design.  
How much to include is a tricky question, since we have to balance the 
danger of premature design commitments against the danger of incomplete 
specification – the correct balance will depend on analysis of risks.

The architectural style is an overall pattern to guide breakdown into 
modules, and is typically based on experience and familiarity, as well as 
available tools and components.  Examples of architectural styles include

Transaction processing systems:  One (or at most a few) shared 
information bases, with application functionality being organized as 
“transactions” that are independent and stateless.

Client-server systems: Division into replicated client-side processing 
and shared server-side processing.  Physical architecture 
(distribution) motivates a transaction-like processing architecture 
with a minimum of per-client state in the server.

Discrete event simulation: typical division into a core event queue 
mechanism (model-independent) and a set of event handlers that 
respond to events, modify shared state, and generate scheduled 
events.

Knowledge-based systems:  Division into knowledge base and 
inference engine.

Subsystem breakdown governs (or is governed by) possible build order

Preliminary module design is interface definition, detailed is implementation 
sketch
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Design tasks

• External design
– as seen by end-user

• Architectural design
– Overall architecture

• selection of architectural style
• may not be repeated in each project

– Subsystem/module breakdown
• closely related to schedule and team structure

• Module design
– may be divided into preliminary and detailed design

1
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The end-product of architectural design should be a division of the system 
into modules and subsystems with precisely defined interfaces. 

A module is:

A unit of understanding.  That is, a designer, developer, or 
maintainer should be able to understand a module in its entirety, all 
at once.  If I sit down to read parts of a program (for example, to 
decide how to make some change), I should be able to read a whole 
module and understand how it fits together.  This also implies that a 
module must be cohesive, not a random collection of details, and it 
must be reasonably independent of other modules. 

A work unit.  A module is typically the smallest unit of development 
that we place on a schedule and assign to a developer. Typically a 
module should be no more than 1 week of work for 1 programmer, 
so it makes a good unit for scheduling. This also makes it the unit for 
configuration control, unit testing, etc.

When we make changes, we generally prefer to replace a module 
rather than make small changes to many modules (although there are 
occasionally exceptions to this rule). If we make a design error, we 
hope that the error can be fixed by modifying a single module. 

Subsystems may be modules or collections of modules.  An example of a 
collection of modules is a math library.  A math library is not a module, 
because the whole thing doesn’t fit in one head, but in the architectural 
design of a system we would probably give only a single interface skeleton 
and then just list all the functions that must be implemented. 
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Modular design

• Division into modules and subsystems with 
precisely defined interfaces

• A module is
– Unit of understanding (fits entirely in one head)
– Work unit (programmer/designer assignment)
– Unit of replacement (and firewall for mistakes)

• Subsystems may be modules or collections 
of modules

2
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Goals —these are really just the consequences and elaboration of the 
characteristics on the previous slide.

Intellectual manageability — follows from the “unit of 
understanding” characterization of a module.  It requires that a 
modular design have

High cohesion:  Each module “hangs together” and makes 
sense.

Low coupling: Modules do not depend on each other in 
complex ways.

Parallel development — the units of work should permit us to 
schedule several developers to work at the same time without too 
much interaction. 

Evolution and maintenance — If we do a good job in the 
architectural design, we will localize change both for this project and 
for others

For maintenance, we will make it easier to locate what must 
be changed, and to gain confidence that only these parts need 
to be changed.

For longer term evolution, across several projects, we will 
isolate the changing parts from the parts that can be reused 
without change, thus facilitating reuse. 

The properties we look for in a good modular design are intended to achieve 
these goals.  When trying to judge a design or a design decision, it is often 
useful to “look behind” properties like coupling and cohesion, or module 
size, and think explicitly about these goals. 
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Goals of Modular Design

• Intellectual manageability
• Parallel development

– Module interface specifications must be self-contained, 
small enough to be understood, and a sufficient basis 
for refinement, testing, etc. on a unit-by-unit basis

• Evolution & Maintenance
– Modules tend to localize change; interfaces change less 

than implementations

• ... each goal implies desirable properties
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The uses (usa) relation: A uses B def correct functioning of A depends on 
correction functioning of B

Or think of it in a pragmatic sense:  I can’t build and test A until I’ve 
built and tested B.  (That’s not quite the same, but close.)  A cycle 
would mean that nothing can be finished until everything is. 

Most of the “uses” relations, in most systems, correspond to either 
procedure (or method) calls or data structure references.  But...

Subtlety in definition

We can change the “uses” relation without changing what modules 
do, by changing the specification. For example, we could break a 
“uses” dependency between a program and a print driver by making 
it “correct” if it calls the print routines in the right way.

In large and complex systems, it is common to break “uses” 
dependencies in just this way (although often implicitly).  One sign 
of this is “stubbed” interfaces, where a schedule dependency is 
broken.

Examples where “uses” is not “calls”

An “upcall” is a procedure call “up” the abstraction hierarchy, rather 
than down.  A common example is a mouse event handler — the 
window system calls a procedure in the user’s code, but it is the 
user’s code the depends on the window system. 

Plug-in interfaces, device drivers, etc. are also places where a use/
call relation has been purposely reversed. 
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Module hierarchies

• Modules should form a hierarchy (DAG) based 
on the “uses” relation

• Defn: A uses B if correct functioning of A 
depends on correct functioning of B.
– Note subtlety: “correct” functioning defined by nature 

of the spec

• “Uses” may not be the same as “calls”
– “Up-calls” are reversed from “uses” relation (example: 

mouse event handlers)
– “Plug-in” interfaces (Netscape, Photoshop, etc.) are 

also reversed
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Just a note on hierarchical structure — sometimes it is obvious in the 
notation, and sometimes it is not.  For example, a data flow diagram or an 
SADT chart may have many levels of detail, and those form a hierarchy 
even though there is no single diagram that shows the hierarchy. 

It sometimes happens that a single design has multiple hierarchies, possibly 
sharing leaves or subtrees at a certain level. This is particularly the case in 
very large systems, in which we might have, for example:

A directory structure to organize the code. 

A tree of configurations, or a forest of system variants

The architectural design structure itself

These different hierarchies should be related, but the overlap may not be 
simply that one is a summarization of the other.  For example, we could 
have two partially overlapping configurations of a single product, or two 
products sharing a subsystem. 
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Alternate views of hierarchy

• Sometimes hierarchy is explicit, sometimes 
implicit
– e.g., levels of detail in a data flow diagram vs. a tree

• A single design may have multiple hiearchies
– e.g., “uses” vs. “calls”
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For any one system, there are many different ways it could be divided into 
modules and subsystems.  

Everyone learns, from their very first computer science class, that they 
should break their programs down into modules.  However, an arbitrary 
breakdown would not meet the goals of intellectual manageability, parallel 
development, and evolvability.

Choosing a good breakdown into modules is a challenging and creative 
design activity.  There are no simple recipes to follow.  A great architectural 
design looks simple, even obvious, when you see it, but it is not easy to 
achieve.  The best we can do is study some good approaches, study 
examples, and practice practice practice.  
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What are the issues? 

• The need for modularity is universally 
agreed, from far back

• The approaches and techniques for 
modularity are the challenge
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There should be some overall organizing principle to an architectural design.  
Sometimes that comes from adopting a well-known architecture for an 
application domain (e.g., the standard division of a compiler into a front-end 
and back-end), but sometimes we have to use more basic approaches.

We could divide by

Steps in processing, i.e., “first do this, then do that”.  Unix pipelines 
made up of a set of filters (transformations) are a good example of 
breaking a task into steps.  

Layers, or levels of abstraction (covered in more detail later in the 
lecture)

Objects, such as data structures or devices (covered in more detail 
later in the lecture)

To determine what approach is best, we need to explicitly consider how well 
we can meet the goals of a modular design using a particular approach to 
division.  How well do we isolate the things that are likely to change?  Can 
we produce interfaces that are simple (for intellectual manageability) and 
general (to survive maintenance and promote reuse)? Will it fit well in the 
build-plan, allowing parallel development of parts, and incremental 
development and delivery of subsystems?  
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Architectural style selection

Which way to cut?

• The top-level division could be by 
– Steps

• pipes & filters, passes

– Layers
• hierarchy of virtual machines

– Objects
• data structures, devices, etc.

• Key considerations are separation of concerns 
(information hiding), simple and general 
interfaces, and ability to subset
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In addition to saying what kind of design we want to end up with, we need a 
constructive approach to creating the design.

There are no simple, sure-fire recipes.  We will make mistakes, and we will 
have to back up and change some of our decisions in the module 
breakdown.  What we need is some good guidelines for making reasonable 
choices, getting started and making progress.  

There are many “design methodologies” which prescribe particular 
approaches.  Some are more detailed (and rigid) than others. None will 
guarantee a good design, but they do have the advantage of prescribing 
some steps which, if performed with skill and good judgement, can result in 
a good design. 

I will not cover particular design methodologies in detail — many books 
and industrial courses are available for that, and many companies adopt or 
develop particular methodologies to be usein their projects.  These change 
over time.  Ten years ago, “structured” design methods prevailed.  Now 
“object oriented” methods prevail, and in ten years I have no doubt that 
some other class of methods will be dominant. 
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Modularity and Process

• We must have an approach to creating a 
modular design
– May involve backtracking, but there must be a 

way to make progress

• “Structured analysis,” “Object-oriented 
design,” etc. are all guidelines for finding a 
good modular design
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The “structured” methods dominant  the 70’s and 80’s were based on the 
idea of “stepwise refinement.”  This is a so-called “top-down” method, 
because it begins with an overall description of a system (or a program), and 
progressively divides it into smaller and smaller pieces, growing the design 
hierarchy “downward” from the root toward the leaves. 

Usually stepwise refinement divides a step in computation into two or more 
smaller steps. (The term “stepwise” is because each such refinement is a 
step in program design, not because the nodes of the design tree are 
typically steps in processing.
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Stepwise Refinement

• A (mostly) top-down approach to 
elaborating a modular structure
– Refining “steps” in a computation

• Associated with “structured programming,” 
“structured design,” “structured analysis” 
(70’s & 80’s popular methods)
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Not only programs, but also systems can be broken down by a process of 
stepwise refinement.  The “structured analysis” methods break down 
processes into smaller processes, which at some level are whole programs.

A typical example of stepwise refinement structured analysis is “exploding” 
a process in a data flow diagram, replacing it with a set of processes and 
flows.
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A Step in “Structured Analysis”

• Design represented as data and transformations
• Refine design by elaborating a transformation

Data store Process Process Data store
flow

Data store Process Data store
flowflow
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Every module has an interface and an implementation.  The interface is how 
other modules interact with it.  

A module is a “contract” in the sense that it describes how a module 
“promises to behave.”  If A uses B, then the interface of B describes 
what A is permitted to depend on, and what B promises to do for A.

A module is likewise a contract between developers:  Here is what I 
promise my module will do.  Interfaces between modules are 
therefore also interfaces between people, and they determine how 
independently the developers can work.  

The qualities we want in a modular design lead us to want simple interfaces.

Dividing a step in processing into smaller steps tends to create complex 
interfaces.  That is, the interface between one step and the next may be a 
complete description of the condition that must have been established by the 
first. 

Interfaces may look simple, but in fact be complex.  If we divide up a 
process in a data flow diagram, the flow is an interface.  At one level the 
flow could look simple, e.g., “customer records.”  However, a complete 
description of the dependencies between the records may be much more 
complex. 
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The complexity of module interfaces

• Module interface is a contract
– Everything a user of a module is permitted to 

assume
– Everything a developer of a module is required 

to ensure

• Stepwise refinement problem:  Interfaces 
are often not as simple as they look
– Interface is complete input/output relation or 

pre/post condition, not just the calling 
convention
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One thing we must be very careful of in architectural design is seeing the 
real dependencies between modules.  Examples:

Storage allocation:  Which modules are responsible for deallocating 
the storage?  This is not apparent in the interface at the level of a 
programming language like C; it is typically expressed in comments, 
if at all.  But it is part of the contract between modules, and therefore 
part of the “real” interface. 

Resource use:  In real-time systems, tasks interact by using 
resources. (Note how the subtlety of the definition of “uses” crops up 
again:  Using cpu time is not enough to establish a “uses” relation in 
non-real-time systems, because response time is not part of the 
specification in those systems.) 

In some cases we may want to explicitly consider what happens 
when part of the system does not work correctly, i.e., how failures or 
exceptions are handled.  This can be a major design consideration in 
the architecture of some systems with stringent dependability 
requirements. 

Sometimes we can organize a system to reduce the problem of “hidden” or 
“implicit” interfaces

Garbage collection (as in Java, Lisp, etc.) drastically reduces the 
complexity of interfaces involving dynamically allocated data.

Rate-monotonic scheduling changes the interface rule regarding 
resource scheduling for hard-real-time systems.
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“Hidden” Interfaces

• Our descriptions of interfaces seldom fully 
describe interactions among modules

• Examples
– Storage allocation and deallocation is 

interaction (through global variables)
– In real-time systems, use of resources is 

interaction
– Bugs propogate information in unintended 

ways 
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A “ripple” is a change that requires more changes elsewhere in the system.  
In other words, “ripple effects” mean that we have failed to localize changes 
within modules.

Complex interfaces are prone to ripple effects.  It is hard to make a change 
to a module that does not cause other changes visible at the interface, and 
thereby “ripple” to other modules.

We can produce better designs by considering “design for change” 
explicitly, and considering how well a module “hides” design decisions 
from other modules. 
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Ripple Effects

• Changes during development
– No design is initially perfect; design changes 

may be expensive if they have wide effects

• Changes after deployment
– Not only bug fixes, but evolution of a system

• A module interface is a firewall
– The “goodness” of a modular design is largely 

determined the extent to which change is 
localized



15

15

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

“Information Hiding” was proposed (by Parnas) as an alternative to stepwise 
refinement

Paper:  “On the criteria to be used in decomposing programs into 
modules,” D.L. Parnas, Communications of the ACM, 1972.  This 
paper seems quite dated now, and today the example program  is not 
very convincing.

Principle: Associate a “secret” with a module, i.e., we start with the 
expected changes and then design the modules to accomodate and localize 
those changes. 

Examples

Hardware encapsulation — this is why the A7 design distinguishes 
between “essential properties” of data and “arbitrary details” of 
devices.  The real meaning of “arbitrary” is “likely to change”, 
whereas it is considered less likely that essential data characteristics 
(visible through the module interface) will change. 

Data structure modules — data structures (and algorithms to 
manipulate them) can be encapsulated in modules, permitting local 
changes.  We can, for example, produce a first implementation using 
very simple data structures, and later replace a few critical data 
structures to improve the performance of a system.  (Note the 
importance of minimizing “hidden” interfaces to make this possible.)
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Information Hiding

• Key concept:  A module localizes and 
encapsulates a design decision

• Method:  Identify anticipated changes
• Examples

– Hardware encapsulation modules:  Publish 
abstract properties of a device, hide details of 
hardware interface

– Data structure modules:  Publish properties of 
abstract data type, hide implementation details
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If our goal is separation of concerns, then breaking down the design into 
modules means “factoring” the individual concerns (or design secrets) into 
different subsystems or modules.  

Again, we need some constructive guidelines on how to accomplish the 
factoring.  Here are a few that are widely useful.

Data abstraction (abstract data types, objects, etc.) is the most widely 
known and practiced method.   You are probably already at least 
somewhat familiar with it. (Next slide ...)

Layered systems, where each “layer” is a so-called “virtual 
machine,” is a general structuring method useful particularly for 
subsystems larger than individual abstract data types.  (More later ...)

Mechanism/Policy splits are a particular kind of layering decision.  
They are difficult to choose initially (often the correct split is only 
apparent after we’ve seen several changes to a system, or variations 
in a family of systems), but they are extremely effective ways to deal 
with very “volatile” or rapidly changing aspects of a system. 
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Some ways of factoring

• Data abstraction
• Layering virtual machines
• Mechanism vs. Policy

– Mechanism: simple, application-independent 
layer of 
functionality

– Policy: an application-specific use of mechanism

4
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Design based on “objects” or “abstract data types” is now widely applied, 
thanks partly to the popularity of object-oriented languages which make a 
mapping from  ADT-based designs to implementation classes fairly 
straightforward. 

An advantage of ADT modules is that we have well-developed ways of 
describing their interfaces.

Signatures of methods or procedures are NOT full descriptions of the 
interfaces; if that’s all we have, then we have a serious problem of 
hidden interfaces.  Algebraic specifications provide a concise and 
precise way of specifying interface semantics. 

Note that if we considered individual operations like “push” as 
modules, they would have very complex interfaces.  Grouping all the 
accesses to an abstract data type permits much simpler interfaces.
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Data Abstraction

• Design method:  Modularize based on key 
data structures

• Algebraic specifications:  Concise statement 
of properties of a set of operations
– “push” is not a module, but “stack” is

• Realization in programming languages
– Clu, Modula-2, Ada83, ...  module constructs 

with opaque user-defined  types
– Modula-3, C++, Ada95, Java ... objects 
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A “virtual machine” encapsulates design decisions, much like an abstract 
data type, but may not encapsulate a single abstract data type

It is typically larger than an ADT, often a subsystem rather than an 
individual module.  It may be composed of many related abstract 
data types or object classes. 

Sometimes a virtual machine encapsulates some state; in this way it 
can be more like an individual object than a class.  For example, 
PostScript defines a single virtual machine abstraction of a printer.

The interface of a virtual machine may be relatively complex, 
compared to an ADT.  However, it should be a coherent whole,  
simpler than the collection of its parts. 

Virtual machines sometimes provide procedural abstractions rather 
than (or in addition to) data abstractions.  For example,  “curses” 
provides a virtual machine interface to terminals, and “quickdraw” 
provides a virtual machine interface to the Macintosh screen, and X 
provides a virtual machine interface to graphical terminals. 
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Virtual Machine Abstraction

• Virtual machine presents an abstract interface to 
state, which can be modified (only) through 
operations
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Virtual machines are often “layered”

The meaning of a layers diagram is:

Vertical adjency implies that the higher module can use services of 
the lower module.  No other uses are possible.

The meaning of a layers diagram is very close to a “uses” hierarchy, but 
may not be quite the same.  A virtual machine in a layer may have a 
“downward” interface as well as an “upward” interface.  The “downward” 
interface describes dependence on a service, but not necessarily on an 
implementation of that service. 

For example, we would draw the device-dependent part of X below 
the device-independent part.  X depends on a device-dependent part, 
but not on a particular implementation of that part. 
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Layered Systems

• A modular organization principle
– developed primarily in OS & networking
– “virtual machine” abstractions
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Because virtual machines may have (relatively) complex interfaces, we may 
need a better way of presenting those interfaces than a large library of 
procedure calls. 

Some virtual machines are packaged as procedure libraries, e.g., the 
Posix interface to Unix;  sometimes the same virtual machine is 
packaged both as library and in another form, such as a little 
language.

Special purpose programming languages, or “little languages” for some 
special task, are a common way of presenting virtual machine interfaces.

PostScript is a hardware encapsulation “virtual machine.”  It’s 
machine state includes the graphics state, the current path, the 
dictionary state, etc.  It includes several abstract data types such as 
“path”, “dictionary”, “color”, etc.  Although fairly complex, it 
presents a uniform high-level view of many different printers, 
effectively isolating printer characteristics from application 
programs. 

Sed, ed, and to some extent even awk can be thought of as ways of 
presenting an interface to the regular expression libraries of Unix.

Little languages are also a good example of a “mechanism/policy” split

We make a mechanism/policy split to protect against some 
particularly volitile aspect of design.

Typically we have a fixed mechanism, and the split is to give us a 
very flexible way of handling new policies.  A table-driven program, 
or a language interpreter, is mechanism while table contents or little 
language “program” are policy. 
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"Little languages"

A way of packaging virtual machines

• PostScript
– Uniform interface to different printing mechanisms

• Spreadsheets
• Sed, ed, awk ...  package pattern matching and 

string processing library
• Embedded interpreters in Emacs, Autocad, ... 
• TCL/TK shell languages

9
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Mechanism/policy splits are often the result of experience in a domain, 
recognizing that some core functionality can be implemented once and used 
in many different ways.  “Expert systems” or “knowledge based systems” 
are a typical example.  The inference engine (say, backward chaining rule 
interpreter) is mechanism, and the rule set (say, Mycin rule base for disease 
diagnosis) is policy. 
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Knowledge based systems

• Mechanism
– "Inference engine" is a domain-independent mechanism 

for selecting and executing rules

• Policy
– A particular knowledge-based system combines a 

highly  application-specific "knowledge base" (collection 
of rules and facts) with the inference engine. 

• In this case, mechanism is a "virtual machine"

6

Mechanism vs. Policy
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The “policy/mechanism” split (or at least the name) originated in operating 
systems, which are typically structured as hierarchies of virtual machines. 

Virtual memory paging is a classic example of policy/mechanism.

Mechanism:  Low-level service for moving pages to and from disk

Policy: When to move pages, and which pages to move

In the case of paging, either policy or mechanism can be changed 
independently (in some operating systems in which the “downward” 
interface from policy to mechanism has been carefully designed.)

Page replacement policy can be changed without changing the 
paging mechanism (on almost any operating system).

Paging mechanism can be changed without modifying the policy part 
(sometimes).

Micro-kernel operating systems are carefully designed with 
“downward” interfaces, and limit dependencies by moving  
mechanism part out of the kernel of the operating system and into  
service modules.  As a result, they can be configured with different 
kinds of paging mechanisms, such as slow RAM or network paging 
in place of disks. 
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Mechanism vs. Policy: Paging

• Mechanism: Page in, page out
• Policy: Page replacement policy
• Page replacement policy can be changed 

without altering paging mechanism
• Paging mechanism can be changed (e.g., 

page caching) without altering replacement 
policy

5
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(Note:  This slide and notes were drafted in 1996 when the course project at 
DEI, Universidad Degli Studi di Padova was electronic exchange of 
“business card” information (essentially the same domain addressed in the 
recent “VCARD” standard.)  I thus wanted to explicitly explore the idea of 
interfaces and modularity when almost all the core design decisions were in 
the design of a textual format for information exchange. )

Interface complexity may be hidden in complex data structures, especially 
text.  

Textbooks talk about designing program modules; I have yet to see a 
chapter on designing textual data for modular systems.  Can we apply the 
same principles?   I think so, but I am only beginning to sort this area out in 
these terms. 

Separation of concerns:  Does the shared data permit a program that 
“knows about” some design decisions and not others?  We may need 
to look explicitly at the program structures to properly consider this, 
and we may need to consider variant programs.  For example, 
thinking only about browsers is not enough to see where html 
succeeds and fails in supporting separation of concerns. 

Layering: Data, particularly textual data, may be viewed at different 
levels of abstraction.  For example “string of text”, “properly 
parenthesized list”, “Lisp S-expression” may all describe the same 
piece of data.  We should be able to describe the data structure at 
levels corresponding to abstractions in processing. 
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Design Factoring 
with Shared Data Structures

• Key data structures may define system 
interfaces
– In place of the familiar procedure call interface

• Modularity principles are realized through 
data design
– Separation of concerns, layering, etc.
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Examples of the relation between textual structure design and program are 
not too difficult to find.  Since many application-level internet protocols 
exchange textual data, the internet standards documents are rich sources of 
both successful design and mistakes. 

RFC822 defines the standard format of email messages, and is one of the 
older internet standards.  It was a success from the standpoint of establishing 
a single interface among many different e-mail programs, but as one would 
expect in a “first try”, there were a few mistakes. The best known of these is 
the “>from” problem, which results because the functionality of separating 
fields in an email message (the body is just another field) depends on an 
irreversible modification to the contents. 

This suggests a technique (or principle?) we can use in designing 
textual structures: Transparency. 

MIME is essentially an extension to RFC822, providing ways to enclose 
many kinds of content besides text.  It is much more recent, and reflects a lot 
of accumulated experience about defining textual structures (also it is a 
really excellent example of design, and the MIME RFC is worth reading as 
an example of a first-rate specification  document.)   MIME specifically 
identifies concerns that should be separated, and makes sure that they are 
independent. 

MIME also provides for reversing a calls/uses relation, by identifying a 
caller.  Second technique: Use metadata to break dependencies. 
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Data as Interface: Examples

• RFC822  (electronic mail)
– A success: replaced many 1-1 interfaces with an N-N 

interface standard
– A failure: did not separat body-content encoding from 

head/body parsing
• the notorious >from problem

• MIME (electronic mail w/ encapsulation)
– separation of issues: transport encoding,  content type, 

recognition of parts
– reverse a calling relation from uses (parts handlers)
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One kind of textual data we have a lot of experience with is programming 
languages, and we can use our experience in that domain to suggest some 
good abstraction levels for defining textual data.

The standard lexical/syntactic/semantic levels distinction is a good one, and 
we should use it.  Just as in programming languages, these should be kept 
distinct, with dependencies only “downward”.

Syntactic structure can further be divided into “skinny” and “fat” structure, 
depending on how much semantic information we need.  This is actually 
fairly rare in programming languages, but it is very useful where it exists.  
For example, a Lisp program can be viewed as S-expressions (the skinny 
syntax) without any knowledge of Lisp semantics, and this is one reason 
powerful Lisp programming tools predated similar tools for more 
syntactically complex languages.

HTML is  an imperfect example of skinny vs. fat semantics:  There is a 
natural tree form that you can almost derive without knowing the particular 
tags and content model.  Unfortunately, the distinction between container 
and non-container tags (the latter including <hr>, <br>, and <img>) means 
that a tool must know the content model to manipulate the structure, even if 
the content model is not important to it.  Thus separation of concerns is not 
complete.

We may have separation of concerns at semantic levels, as well, and again 
the question to ask is:  Can I perform one kind of semantic processing 
without knowledge of another? 
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Text as Interface: Abstraction levels

• Lexical level (e.g., ascii text or token streams)
– Lowest level; should not depend on syntax or 

semantics

• Syntactic level (e.g., html tag tree)
– May separate abstract syntax from concrete syntax
– May separate “skinny” syntax from “correct” syntax

• ex., html content model

• Semantic level(s)
– May separate multiple issues


