
1

1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

(c) 1998 M Young CIS 422/522 5/11/98 1

 Architectural Design

Overview: Basic principles and
approaches

2

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

External design is closely tied to requirements analysis, but may already
include some elements of architectural design and even module design.
How much to include is a tricky question, since we have to balance the
danger of premature design commitments against the danger of incomplete
specification – the correct balance will depend on analysis of risks.

The architectural style is an overall pattern to guide breakdown into
modules, and is typically based on experience and familiarity, as well as
available tools and components. Examples of architectural styles include

Transaction processing systems: One (or at most a few) shared
information bases, with application functionality being organized as
“transactions” that are independent and stateless.

Client-server systems: Division into replicated client-side processing
and shared server-side processing. Physical architecture
(distribution) motivates a transaction-like processing architecture
with a minimum of per-client state in the server.

Discrete event simulation: typical division into a core event queue
mechanism (model-independent) and a set of event handlers that
respond to events, modify shared state, and generate scheduled
events.

Knowledge-based systems: Division into knowledge base and
inference engine.

Subsystem breakdown governs (or is governed by) possible build order

Preliminary module design is interface definition, detailed is implementation
sketch

(c) 1998 M Young CIS 422/522 5/11/98 2

Design tasks

• External design
– as seen by end-user

• Architectural design
– Overall architecture

• selection of architectural style
• may not be repeated in each project

– Subsystem/module breakdown
• closely related to schedule and team structure

• Module design
– may be divided into preliminary and detailed design

1

3

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

The end-product of architectural design should be a division of the system
into modules and subsystems with precisely defined interfaces.

A module is:

A unit of understanding. That is, a designer, developer, or
maintainer should be able to understand a module in its entirety, all
at once. If I sit down to read parts of a program (for example, to
decide how to make some change), I should be able to read a whole
module and understand how it fits together. This also implies that a
module must be cohesive, not a random collection of details, and it
must be reasonably independent of other modules.

A work unit. A module is typically the smallest unit of development
that we place on a schedule and assign to a developer. Typically a
module should be no more than 1 week of work for 1 programmer,
so it makes a good unit for scheduling. This also makes it the unit for
configuration control, unit testing, etc.

When we make changes, we generally prefer to replace a module
rather than make small changes to many modules (although there are
occasionally exceptions to this rule). If we make a design error, we
hope that the error can be fixed by modifying a single module.

Subsystems may be modules or collections of modules. An example of a
collection of modules is a math library. A math library is not a module,
because the whole thing doesn’t fit in one head, but in the architectural
design of a system we would probably give only a single interface skeleton
and then just list all the functions that must be implemented.

(c) 1998 M Young CIS 422/522 5/11/98 3

Modular design

• Division into modules and subsystems with
precisely defined interfaces

• A module is
– Unit of understanding (fits entirely in one head)
– Work unit (programmer/designer assignment)
– Unit of replacement (and firewall for mistakes)

• Subsystems may be modules or collections
of modules

2

4

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Goals —these are really just the consequences and elaboration of the
characteristics on the previous slide.

Intellectual manageability — follows from the “unit of
understanding” characterization of a module. It requires that a
modular design have

High cohesion: Each module “hangs together” and makes
sense.

Low coupling: Modules do not depend on each other in
complex ways.

Parallel development — the units of work should permit us to
schedule several developers to work at the same time without too
much interaction.

Evolution and maintenance — If we do a good job in the
architectural design, we will localize change both for this project and
for others

For maintenance, we will make it easier to locate what must
be changed, and to gain confidence that only these parts need
to be changed.

For longer term evolution, across several projects, we will
isolate the changing parts from the parts that can be reused
without change, thus facilitating reuse.

The properties we look for in a good modular design are intended to achieve
these goals. When trying to judge a design or a design decision, it is often
useful to “look behind” properties like coupling and cohesion, or module
size, and think explicitly about these goals.

(c) 1998 M Young CIS 422/522 5/11/98 4

Goals of Modular Design

• Intellectual manageability
• Parallel development

– Module interface specifications must be self-contained,
small enough to be understood, and a sufficient basis
for refinement, testing, etc. on a unit-by-unit basis

• Evolution & Maintenance
– Modules tend to localize change; interfaces change less

than implementations

• ... each goal implies desirable properties

5

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

The uses (usa) relation: A uses B def correct functioning of A depends on
correction functioning of B

Or think of it in a pragmatic sense: I can’t build and test A until I’ve
built and tested B. (That’s not quite the same, but close.) A cycle
would mean that nothing can be finished until everything is.

Most of the “uses” relations, in most systems, correspond to either
procedure (or method) calls or data structure references. But...

Subtlety in definition

We can change the “uses” relation without changing what modules
do, by changing the specification. For example, we could break a
“uses” dependency between a program and a print driver by making
it “correct” if it calls the print routines in the right way.

In large and complex systems, it is common to break “uses”
dependencies in just this way (although often implicitly). One sign
of this is “stubbed” interfaces, where a schedule dependency is
broken.

Examples where “uses” is not “calls”

An “upcall” is a procedure call “up” the abstraction hierarchy, rather
than down. A common example is a mouse event handler — the
window system calls a procedure in the user’s code, but it is the
user’s code the depends on the window system.

Plug-in interfaces, device drivers, etc. are also places where a use/
call relation has been purposely reversed.

(c) 1998 M Young CIS 422/522 5/11/98 5

Module hierarchies

• Modules should form a hierarchy (DAG) based
on the “uses” relation

• Defn: A uses B if correct functioning of A
depends on correct functioning of B.
– Note subtlety: “correct” functioning defined by nature

of the spec

• “Uses” may not be the same as “calls”
– “Up-calls” are reversed from “uses” relation (example:

mouse event handlers)
– “Plug-in” interfaces (Netscape, Photoshop, etc.) are

also reversed

6

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Just a note on hierarchical structure — sometimes it is obvious in the
notation, and sometimes it is not. For example, a data flow diagram or an
SADT chart may have many levels of detail, and those form a hierarchy
even though there is no single diagram that shows the hierarchy.

It sometimes happens that a single design has multiple hierarchies, possibly
sharing leaves or subtrees at a certain level. This is particularly the case in
very large systems, in which we might have, for example:

A directory structure to organize the code.

A tree of configurations, or a forest of system variants

The architectural design structure itself

These different hierarchies should be related, but the overlap may not be
simply that one is a summarization of the other. For example, we could
have two partially overlapping configurations of a single product, or two
products sharing a subsystem.

(c) 1998 M Young CIS 422/522 5/11/98 6

Alternate views of hierarchy

• Sometimes hierarchy is explicit, sometimes
implicit
– e.g., levels of detail in a data flow diagram vs. a tree

• A single design may have multiple hiearchies
– e.g., “uses” vs. “calls”

7

7

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

For any one system, there are many different ways it could be divided into
modules and subsystems.

Everyone learns, from their very first computer science class, that they
should break their programs down into modules. However, an arbitrary
breakdown would not meet the goals of intellectual manageability, parallel
development, and evolvability.

Choosing a good breakdown into modules is a challenging and creative
design activity. There are no simple recipes to follow. A great architectural
design looks simple, even obvious, when you see it, but it is not easy to
achieve. The best we can do is study some good approaches, study
examples, and practice practice practice.

(c) 1998 M Young CIS 422/522 5/11/98 7

What are the issues?

• The need for modularity is universally
agreed, from far back

• The approaches and techniques for
modularity are the challenge

8

8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

There should be some overall organizing principle to an architectural design.
Sometimes that comes from adopting a well-known architecture for an
application domain (e.g., the standard division of a compiler into a front-end
and back-end), but sometimes we have to use more basic approaches.

We could divide by

Steps in processing, i.e., “first do this, then do that”. Unix pipelines
made up of a set of filters (transformations) are a good example of
breaking a task into steps.

Layers, or levels of abstraction (covered in more detail later in the
lecture)

Objects, such as data structures or devices (covered in more detail
later in the lecture)

To determine what approach is best, we need to explicitly consider how well
we can meet the goals of a modular design using a particular approach to
division. How well do we isolate the things that are likely to change? Can
we produce interfaces that are simple (for intellectual manageability) and
general (to survive maintenance and promote reuse)? Will it fit well in the
build-plan, allowing parallel development of parts, and incremental
development and delivery of subsystems?

(c) 1998 M Young CIS 422/522 5/11/98 8

Architectural style selection

Which way to cut?

• The top-level division could be by
– Steps

• pipes & filters, passes

– Layers
• hierarchy of virtual machines

– Objects
• data structures, devices, etc.

• Key considerations are separation of concerns
(information hiding), simple and general
interfaces, and ability to subset

9

9

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

In addition to saying what kind of design we want to end up with, we need a
constructive approach to creating the design.

There are no simple, sure-fire recipes. We will make mistakes, and we will
have to back up and change some of our decisions in the module
breakdown. What we need is some good guidelines for making reasonable
choices, getting started and making progress.

There are many “design methodologies” which prescribe particular
approaches. Some are more detailed (and rigid) than others. None will
guarantee a good design, but they do have the advantage of prescribing
some steps which, if performed with skill and good judgement, can result in
a good design.

I will not cover particular design methodologies in detail — many books
and industrial courses are available for that, and many companies adopt or
develop particular methodologies to be usein their projects. These change
over time. Ten years ago, “structured” design methods prevailed. Now
“object oriented” methods prevail, and in ten years I have no doubt that
some other class of methods will be dominant.

(c) 1998 M Young CIS 422/522 5/11/98 9

Modularity and Process

• We must have an approach to creating a
modular design
– May involve backtracking, but there must be a

way to make progress

• “Structured analysis,” “Object-oriented
design,” etc. are all guidelines for finding a
good modular design

10

10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

The “structured” methods dominant the 70’s and 80’s were based on the
idea of “stepwise refinement.” This is a so-called “top-down” method,
because it begins with an overall description of a system (or a program), and
progressively divides it into smaller and smaller pieces, growing the design
hierarchy “downward” from the root toward the leaves.

Usually stepwise refinement divides a step in computation into two or more
smaller steps. (The term “stepwise” is because each such refinement is a
step in program design, not because the nodes of the design tree are
typically steps in processing.

(c) 1998 M Young CIS 422/522 5/11/98 10

Stepwise Refinement

• A (mostly) top-down approach to
elaborating a modular structure
– Refining “steps” in a computation

• Associated with “structured programming,”
“structured design,” “structured analysis”
(70’s & 80’s popular methods)

11

11

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Not only programs, but also systems can be broken down by a process of
stepwise refinement. The “structured analysis” methods break down
processes into smaller processes, which at some level are whole programs.

A typical example of stepwise refinement structured analysis is “exploding”
a process in a data flow diagram, replacing it with a set of processes and
flows.

(c) 1998 M Young CIS 422/522 5/11/98 11

A Step in “Structured Analysis”

• Design represented as data and transformations
• Refine design by elaborating a transformation

Data store Process Process Data store
flow

Data store Process Data store
flowflow

12

12

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Every module has an interface and an implementation. The interface is how
other modules interact with it.

A module is a “contract” in the sense that it describes how a module
“promises to behave.” If A uses B, then the interface of B describes
what A is permitted to depend on, and what B promises to do for A.

A module is likewise a contract between developers: Here is what I
promise my module will do. Interfaces between modules are
therefore also interfaces between people, and they determine how
independently the developers can work.

The qualities we want in a modular design lead us to want simple interfaces.

Dividing a step in processing into smaller steps tends to create complex
interfaces. That is, the interface between one step and the next may be a
complete description of the condition that must have been established by the
first.

Interfaces may look simple, but in fact be complex. If we divide up a
process in a data flow diagram, the flow is an interface. At one level the
flow could look simple, e.g., “customer records.” However, a complete
description of the dependencies between the records may be much more
complex.

(c) 1998 M Young CIS 422/522 5/11/98 12

The complexity of module interfaces

• Module interface is a contract
– Everything a user of a module is permitted to

assume
– Everything a developer of a module is required

to ensure

• Stepwise refinement problem: Interfaces
are often not as simple as they look
– Interface is complete input/output relation or

pre/post condition, not just the calling
convention

13

13

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

One thing we must be very careful of in architectural design is seeing the
real dependencies between modules. Examples:

Storage allocation: Which modules are responsible for deallocating
the storage? This is not apparent in the interface at the level of a
programming language like C; it is typically expressed in comments,
if at all. But it is part of the contract between modules, and therefore
part of the “real” interface.

Resource use: In real-time systems, tasks interact by using
resources. (Note how the subtlety of the definition of “uses” crops up
again: Using cpu time is not enough to establish a “uses” relation in
non-real-time systems, because response time is not part of the
specification in those systems.)

In some cases we may want to explicitly consider what happens
when part of the system does not work correctly, i.e., how failures or
exceptions are handled. This can be a major design consideration in
the architecture of some systems with stringent dependability
requirements.

Sometimes we can organize a system to reduce the problem of “hidden” or
“implicit” interfaces

Garbage collection (as in Java, Lisp, etc.) drastically reduces the
complexity of interfaces involving dynamically allocated data.

Rate-monotonic scheduling changes the interface rule regarding
resource scheduling for hard-real-time systems.

(c) 1998 M Young CIS 422/522 5/11/98 13

“Hidden” Interfaces

• Our descriptions of interfaces seldom fully
describe interactions among modules

• Examples
– Storage allocation and deallocation is

interaction (through global variables)
– In real-time systems, use of resources is

interaction
– Bugs propogate information in unintended

ways

14

14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

A “ripple” is a change that requires more changes elsewhere in the system.
In other words, “ripple effects” mean that we have failed to localize changes
within modules.

Complex interfaces are prone to ripple effects. It is hard to make a change
to a module that does not cause other changes visible at the interface, and
thereby “ripple” to other modules.

We can produce better designs by considering “design for change”
explicitly, and considering how well a module “hides” design decisions
from other modules.

(c) 1998 M Young CIS 422/522 5/11/98 14

Ripple Effects

• Changes during development
– No design is initially perfect; design changes

may be expensive if they have wide effects

• Changes after deployment
– Not only bug fixes, but evolution of a system

• A module interface is a firewall
– The “goodness” of a modular design is largely

determined the extent to which change is
localized

15

15

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

“Information Hiding” was proposed (by Parnas) as an alternative to stepwise
refinement

Paper: “On the criteria to be used in decomposing programs into
modules,” D.L. Parnas, Communications of the ACM, 1972. This
paper seems quite dated now, and today the example program is not
very convincing.

Principle: Associate a “secret” with a module, i.e., we start with the
expected changes and then design the modules to accomodate and localize
those changes.

Examples

Hardware encapsulation — this is why the A7 design distinguishes
between “essential properties” of data and “arbitrary details” of
devices. The real meaning of “arbitrary” is “likely to change”,
whereas it is considered less likely that essential data characteristics
(visible through the module interface) will change.

Data structure modules — data structures (and algorithms to
manipulate them) can be encapsulated in modules, permitting local
changes. We can, for example, produce a first implementation using
very simple data structures, and later replace a few critical data
structures to improve the performance of a system. (Note the
importance of minimizing “hidden” interfaces to make this possible.)

(c) 1998 M Young CIS 422/522 5/11/98 15

Information Hiding

• Key concept: A module localizes and
encapsulates a design decision

• Method: Identify anticipated changes
• Examples

– Hardware encapsulation modules: Publish
abstract properties of a device, hide details of
hardware interface

– Data structure modules: Publish properties of
abstract data type, hide implementation details

16

16

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

If our goal is separation of concerns, then breaking down the design into
modules means “factoring” the individual concerns (or design secrets) into
different subsystems or modules.

Again, we need some constructive guidelines on how to accomplish the
factoring. Here are a few that are widely useful.

Data abstraction (abstract data types, objects, etc.) is the most widely
known and practiced method. You are probably already at least
somewhat familiar with it. (Next slide ...)

Layered systems, where each “layer” is a so-called “virtual
machine,” is a general structuring method useful particularly for
subsystems larger than individual abstract data types. (More later ...)

Mechanism/Policy splits are a particular kind of layering decision.
They are difficult to choose initially (often the correct split is only
apparent after we’ve seen several changes to a system, or variations
in a family of systems), but they are extremely effective ways to deal
with very “volatile” or rapidly changing aspects of a system.

(c) 1998 M Young CIS 422/522 5/11/98 16

Some ways of factoring

• Data abstraction
• Layering virtual machines
• Mechanism vs. Policy

– Mechanism: simple, application-independent
layer of
functionality

– Policy: an application-specific use of mechanism

4

18

18

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Design based on “objects” or “abstract data types” is now widely applied,
thanks partly to the popularity of object-oriented languages which make a
mapping from ADT-based designs to implementation classes fairly
straightforward.

An advantage of ADT modules is that we have well-developed ways of
describing their interfaces.

Signatures of methods or procedures are NOT full descriptions of the
interfaces; if that’s all we have, then we have a serious problem of
hidden interfaces. Algebraic specifications provide a concise and
precise way of specifying interface semantics.

Note that if we considered individual operations like “push” as
modules, they would have very complex interfaces. Grouping all the
accesses to an abstract data type permits much simpler interfaces.

(c) 1998 M Young CIS 422/522 5/11/98 18

Data Abstraction

• Design method: Modularize based on key
data structures

• Algebraic specifications: Concise statement
of properties of a set of operations
– “push” is not a module, but “stack” is

• Realization in programming languages
– Clu, Modula-2, Ada83, ... module constructs

with opaque user-defined types
– Modula-3, C++, Ada95, Java ... objects

19

19

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

A “virtual machine” encapsulates design decisions, much like an abstract
data type, but may not encapsulate a single abstract data type

It is typically larger than an ADT, often a subsystem rather than an
individual module. It may be composed of many related abstract
data types or object classes.

Sometimes a virtual machine encapsulates some state; in this way it
can be more like an individual object than a class. For example,
PostScript defines a single virtual machine abstraction of a printer.

The interface of a virtual machine may be relatively complex,
compared to an ADT. However, it should be a coherent whole,
simpler than the collection of its parts.

Virtual machines sometimes provide procedural abstractions rather
than (or in addition to) data abstractions. For example, “curses”
provides a virtual machine interface to terminals, and “quickdraw”
provides a virtual machine interface to the Macintosh screen, and X
provides a virtual machine interface to graphical terminals.

(c) 1998 M Young CIS 422/522 5/11/98 19

Virtual Machine Abstraction

• Virtual machine presents an abstract interface to
state, which can be modified (only) through
operations

20

20

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Virtual machines are often “layered”

The meaning of a layers diagram is:

Vertical adjency implies that the higher module can use services of
the lower module. No other uses are possible.

The meaning of a layers diagram is very close to a “uses” hierarchy, but
may not be quite the same. A virtual machine in a layer may have a
“downward” interface as well as an “upward” interface. The “downward”
interface describes dependence on a service, but not necessarily on an
implementation of that service.

For example, we would draw the device-dependent part of X below
the device-independent part. X depends on a device-dependent part,
but not on a particular implementation of that part.

(c) 1998 M Young CIS 422/522 5/11/98 20

Layered Systems

• A modular organization principle
– developed primarily in OS & networking
– “virtual machine” abstractions

21

21

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Because virtual machines may have (relatively) complex interfaces, we may
need a better way of presenting those interfaces than a large library of
procedure calls.

Some virtual machines are packaged as procedure libraries, e.g., the
Posix interface to Unix; sometimes the same virtual machine is
packaged both as library and in another form, such as a little
language.

Special purpose programming languages, or “little languages” for some
special task, are a common way of presenting virtual machine interfaces.

PostScript is a hardware encapsulation “virtual machine.” It’s
machine state includes the graphics state, the current path, the
dictionary state, etc. It includes several abstract data types such as
“path”, “dictionary”, “color”, etc. Although fairly complex, it
presents a uniform high-level view of many different printers,
effectively isolating printer characteristics from application
programs.

Sed, ed, and to some extent even awk can be thought of as ways of
presenting an interface to the regular expression libraries of Unix.

Little languages are also a good example of a “mechanism/policy” split

We make a mechanism/policy split to protect against some
particularly volitile aspect of design.

Typically we have a fixed mechanism, and the split is to give us a
very flexible way of handling new policies. A table-driven program,
or a language interpreter, is mechanism while table contents or little
language “program” are policy.

(c) 1998 M Young CIS 422/522 5/11/98 21

"Little languages"

A way of packaging virtual machines

• PostScript
– Uniform interface to different printing mechanisms

• Spreadsheets
• Sed, ed, awk ... package pattern matching and

string processing library
• Embedded interpreters in Emacs, Autocad, ...
• TCL/TK shell languages

9

22

22

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Mechanism/policy splits are often the result of experience in a domain,
recognizing that some core functionality can be implemented once and used
in many different ways. “Expert systems” or “knowledge based systems”
are a typical example. The inference engine (say, backward chaining rule
interpreter) is mechanism, and the rule set (say, Mycin rule base for disease
diagnosis) is policy.

(c) 1998 M Young CIS 422/522 5/11/98 22

Knowledge based systems

• Mechanism
– "Inference engine" is a domain-independent mechanism

for selecting and executing rules

• Policy
– A particular knowledge-based system combines a

highly application-specific "knowledge base" (collection
of rules and facts) with the inference engine.

• In this case, mechanism is a "virtual machine"

6

Mechanism vs. Policy

23

23

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

The “policy/mechanism” split (or at least the name) originated in operating
systems, which are typically structured as hierarchies of virtual machines.

Virtual memory paging is a classic example of policy/mechanism.

Mechanism: Low-level service for moving pages to and from disk

Policy: When to move pages, and which pages to move

In the case of paging, either policy or mechanism can be changed
independently (in some operating systems in which the “downward”
interface from policy to mechanism has been carefully designed.)

Page replacement policy can be changed without changing the
paging mechanism (on almost any operating system).

Paging mechanism can be changed without modifying the policy part
(sometimes).

Micro-kernel operating systems are carefully designed with
“downward” interfaces, and limit dependencies by moving
mechanism part out of the kernel of the operating system and into
service modules. As a result, they can be configured with different
kinds of paging mechanisms, such as slow RAM or network paging
in place of disks.

(c) 1998 M Young CIS 422/522 5/11/98 23

Mechanism vs. Policy: Paging

• Mechanism: Page in, page out
• Policy: Page replacement policy
• Page replacement policy can be changed

without altering paging mechanism
• Paging mechanism can be changed (e.g.,

page caching) without altering replacement
policy

5

24

24

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

(Note: This slide and notes were drafted in 1996 when the course project at
DEI, Universidad Degli Studi di Padova was electronic exchange of
“business card” information (essentially the same domain addressed in the
recent “VCARD” standard.) I thus wanted to explicitly explore the idea of
interfaces and modularity when almost all the core design decisions were in
the design of a textual format for information exchange.)

Interface complexity may be hidden in complex data structures, especially
text.

Textbooks talk about designing program modules; I have yet to see a
chapter on designing textual data for modular systems. Can we apply the
same principles? I think so, but I am only beginning to sort this area out in
these terms.

Separation of concerns: Does the shared data permit a program that
“knows about” some design decisions and not others? We may need
to look explicitly at the program structures to properly consider this,
and we may need to consider variant programs. For example,
thinking only about browsers is not enough to see where html
succeeds and fails in supporting separation of concerns.

Layering: Data, particularly textual data, may be viewed at different
levels of abstraction. For example “string of text”, “properly
parenthesized list”, “Lisp S-expression” may all describe the same
piece of data. We should be able to describe the data structure at
levels corresponding to abstractions in processing.

(c) 1998 M Young CIS 422/522 5/11/98 24

Design Factoring
with Shared Data Structures

• Key data structures may define system
interfaces
– In place of the familiar procedure call interface

• Modularity principles are realized through
data design
– Separation of concerns, layering, etc.

25

25

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

Examples of the relation between textual structure design and program are
not too difficult to find. Since many application-level internet protocols
exchange textual data, the internet standards documents are rich sources of
both successful design and mistakes.

RFC822 defines the standard format of email messages, and is one of the
older internet standards. It was a success from the standpoint of establishing
a single interface among many different e-mail programs, but as one would
expect in a “first try”, there were a few mistakes. The best known of these is
the “>from” problem, which results because the functionality of separating
fields in an email message (the body is just another field) depends on an
irreversible modification to the contents.

This suggests a technique (or principle?) we can use in designing
textual structures: Transparency.

MIME is essentially an extension to RFC822, providing ways to enclose
many kinds of content besides text. It is much more recent, and reflects a lot
of accumulated experience about defining textual structures (also it is a
really excellent example of design, and the MIME RFC is worth reading as
an example of a first-rate specification document.) MIME specifically
identifies concerns that should be separated, and makes sure that they are
independent.

MIME also provides for reversing a calls/uses relation, by identifying a
caller. Second technique: Use metadata to break dependencies.

(c) 1998 M Young CIS 422/522 5/11/98 25

Data as Interface: Examples

• RFC822 (electronic mail)
– A success: replaced many 1-1 interfaces with an N-N

interface standard
– A failure: did not separat body-content encoding from

head/body parsing
• the notorious >from problem

• MIME (electronic mail w/ encapsulation)
– separation of issues: transport encoding, content type,

recognition of parts
– reverse a calling relation from uses (parts handlers)

26

26

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 98

Notes:

One kind of textual data we have a lot of experience with is programming
languages, and we can use our experience in that domain to suggest some
good abstraction levels for defining textual data.

The standard lexical/syntactic/semantic levels distinction is a good one, and
we should use it. Just as in programming languages, these should be kept
distinct, with dependencies only “downward”.

Syntactic structure can further be divided into “skinny” and “fat” structure,
depending on how much semantic information we need. This is actually
fairly rare in programming languages, but it is very useful where it exists.
For example, a Lisp program can be viewed as S-expressions (the skinny
syntax) without any knowledge of Lisp semantics, and this is one reason
powerful Lisp programming tools predated similar tools for more
syntactically complex languages.

HTML is an imperfect example of skinny vs. fat semantics: There is a
natural tree form that you can almost derive without knowing the particular
tags and content model. Unfortunately, the distinction between container
and non-container tags (the latter including <hr>,
, and) means
that a tool must know the content model to manipulate the structure, even if
the content model is not important to it. Thus separation of concerns is not
complete.

We may have separation of concerns at semantic levels, as well, and again
the question to ask is: Can I perform one kind of semantic processing
without knowledge of another?

(c) 1998 M Young CIS 422/522 5/11/98 26

Text as Interface: Abstraction levels

• Lexical level (e.g., ascii text or token streams)
– Lowest level; should not depend on syntax or

semantics

• Syntactic level (e.g., html tag tree)
– May separate abstract syntax from concrete syntax
– May separate “skinny” syntax from “correct” syntax

• ex., html content model

• Semantic level(s)
– May separate multiple issues

