
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 1

Requirements Elicitation

(c) 1998 M Young CIS 422/522 5/4/98 2

Proactive vs. Reactive Elicitation

• Users seldom provide complete, reasonable
requirements without coaxing.
– The user doesn't know what is practical or

possible.

• Requirements elicitation is an active
process
– gathering information
– negotiating

• We could do X, but it would take Y months longer.

– suggesting alternatives

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 3

Problems vs. Solutions

• Users typically have a solution in mind, and
it is typically a small variation on current
activities.

• Back up. Understand the problem.
• Separate the what from the how

– The how is already on your mind, but it must
be carefully partitioned from the what.

(c) 1998 M Young CIS 422/522 5/4/98 4

Who do you talk to?

If the client is an organization, analysts should
consult with

• Someone with authority
– ensure an organizational commitment (“buy-

in”) to the project objectives and direction
• Each user group

– at all levels: the boss may not know how it's really
done

• Each enabling group
– unhappy people can ensure failure

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 5

Organizational Context

• Elicitation problems depend partly on the
organizational context of system
development

• Example contexts and variations:
– Central development organization vs.

decentralized development
– Client/Buyer vs. Market

• Sometimes we can adjust the context;
more often we must adapt to it

(c) 1998 M Young CIS 422/522 5/4/98 6

External Clients & Contract Projects

• Advantages
– Variable resource levels and kinds
– Less fixed budget commitment
– “Flatter” organizations

• Problems
– Premature specification freezing
– Institutional memory and relationships
– Products vs. product lines

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 7

Specifications as Contracts

• Problem: Premature specification freeze
– May narrow solution space and stifle creative

approaches
– Changes may become very expensive
– Works best when developers produce a product line

with limited variatons (“precedented” products)

• Problem: Product lines
– Contracting rules can discourage reuse and

infrastructure development
• But some contract developers do well by amortizing

development across several clients

(c) 1998 M Young CIS 422/522 5/4/98 8

Developing for a Market
e.g., shrink-wrap software

• The “client” is potential buyers in a software
market, but we still need requirements analysis

• Approaches:
– Study the competition and market

• and talk to users of the competing or related
products

– Recruit potential users
• surveys, interviews, mock-ups
• the “client” may need to be paid!

– Prototypes and incremental deliveries

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 9

Internal Development:
Centralized or Decentralized?

Organizational context affects requirements analysis

• In a large enterprise, developers can be organized
in a single centralized “service” organization, or
small development organizations can be
distributed throughout the enterprise

(c) 1998 M Young CIS 422/522 5/4/98 10

Internal Development:
Centralized vs. Decentralized

Software system development for clients within the
same enterprise (e.g., company or agency)

• Centralized resource
– Serves clients in many sub-areas of the enterprise
– Clients are in competition for the resource

• Decentralized resource
– Developers are distributed throughout the enterprise
– Clients have dedicated resource

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 11

Requirements Elicitation in
Centralized Development

• Advantages:
– Larger development organization with more

specialized work roles. Experienced analysts
work with a variety of clients and apply “tried
and true” approaches

• Problems
– Developers lack domain expertise

– “Gold plating”: Competition for development
resource encourages clients to hold resource
as long as possible

(c) 1998 M Young CIS 422/522 5/4/98 12

Developing Domain Expertise
Techniques for Centralized Development

• Explicitly schedule and budget for domain
analysis and training

• Develop specializations within the
development organization
– but also cross-train to spread the knowledge

7

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 13

Avoiding Gold-Plating
Techniques for Centralized Development

• Remove the incentive
– Fixed-schedule projects

• Bound the schedule before commiting to a project,
and make schedule feasibility a condition of
continuing beyond requirements

– Prioritize by size
• Special “small projects” development queue

– Rationalize budgeting (difficult!)
• Larger projects should “cost more” (but this is

difficult ...)
• Avoid perverse incentives (also difficult)

(c) 1998 M Young CIS 422/522 5/4/98 14

Requirements Elicitation in
Decentralized Development

• Advantages:
– Developers work closely with users and acquire domain and

organizational expertise
– Incremental development and evolution of requirements occur

naturally

• Problems:
– Balkanization of information resources

• redundant and inconsistent information; difficult to build applications
that span sub-organizations

– Isolated developers
• do not develop as much “intellectual capital” of reusable design,

quality standards, components, etc.
• do not have as wide a range of specialized skills
• higher risk in losing an individual

8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 15

Coordinating Decentralized
Development

In Large Enterprises
• “Matrixed” organizations

– Developers belong to a centralized
organization but are semi-permanently
assigned to a client organization

• but there is a “two bosses” management problem

– Project teams may be part matrixed, part
centralized

• Developers may be rotated
– but this trades away some advantages of

decentralization

(c) 1998 M Young CIS 422/522 5/4/98 16

Everyone must win

• An automated system typically depends on
several groups of users
– Not only the users for who the system is designed;

consider every input and every administrative or other
task needed to keep the system running

• It is surprisingly easy for unhappy users to
torpedoe a system.
– If the introduction of a new or modified system makes

work even a little harder for someone, with no
compensation, they can help it fail.

9

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 17

A Failure to Provide Win Conditions

City of Eugene, Oregon, information system to
schedule public works projects (repairing signs,
patching roads, trimming trees), early 1980s

• Inputs: Inspectors fill out forms describing needed
repairs.

• Outputs: Planning reports for managers
DISASTER: No win condition for inspectors. The

system was technically sound, but failed miserably.

(c) 1998 M Young CIS 422/522 5/4/98 18

Lollipops

• After the doctor gives the child a shot, she
also gives him a candy

➠Try to ensure a natural benefit for every class of
user on which a software system depends

➠ If there is no natural benefit, invent a lollipop
· a software function that is not naturally part of

the system functionality, but which provides
enough benefit to encourage use

10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 19

Systematizing the Domain

• We want to go from a Ptolmeic universe to a
Copernican universe
– A clean specification with general rules and few special

cases

• The user sees epicycles, and at first so does the
analyst
– Usually there is an (almost) orderly system, but it is

not easy to find
– Strange but true: Humans can use rules without being

aware of them. Example: Language.

(c) 1998 M Young CIS 422/522 5/4/98 20

Rule Discovery and Test

• Similar to scientific method
– Observe cases (procedures, special case rules)
– Hypothesize general rule
– Test hypothesis

• Probably can’t just ask

• Checking rule validity
– It is difficult for ananalysts or users to understand the

consequences of a rule
• quantification (“all”, “some”, “never”) is particularly hard

– Examples (“experiments”) can help

11

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 21

Examples as “Experiments”

• If a rule is valid, then all of its consequences
should be valid
– It is easier for the user to judge the validity of

particular examples than of the general rule
• Try to “cover” the rule

– Consider the “typical” case
– Consider “boundary” cases
– Especially consider “vacuous” cases of

quantifiers
• e.g., if rule says “if all foo are pink”, consider no foo

(c) 1998 M Young CIS 422/522 5/4/98 22

Using Redundancy
A general technique for identifying
 and repairing faulty information

• Redundant examples
– Vary factors that shouldn’t matter (check for

hidden variables)

• Multiple reports
– Different users, with different viewpoints

should confirm rules
• a good confirmation must be capable of invalidating

the hypothesized rule; avoid bias toward the
original interpretation

– User should re-confirm (using a few different
examples) on another occasion

12

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 23

Scenarios

• Hypothetical situations and activities

– a “storyboard” is a presentation of a scenario
• Help the user describe requirements through

examples
• Help the user and analyst test rule consequences

– Like experimental design in the sciences, look
for consequences that could disconfirm a
hypothesis

– Confirmation through strange consequences is
more convincing than obvious consequences

(c) 1998 M Young CIS 422/522 5/4/98 24

Asking questions through scenarios

• “Suppose the furnace is in normal
operation, and then a wild value is recieved
from the sensor. How should the furnace
system react?”

• Look for general rules in the examples
• Look for exceptions to the general rules

13

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 25

Scenarios and Prototypes

• If a prototype is produced in the
requirements phase (or in an earlier turn of
the spiral), it can be used to present
scenarios
– But mockups and “cardboard prototypes” can

often be good enough for requirements
clarification

(c) 1998 M Young CIS 422/522 5/4/98 26

Exceptional Conditions

• Be careful of “always”

– Explicitly ask for exceptions; explore extreme
cases

– Users sometimes say “Always X, (except when
Y)”

• Some “exceptions” are really consequences of a
general rule

• Some exceptions are not universally known
– especially: The manager may not know how

the rules are really applied

14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 27

Exploring Undesired Events

• Explore desired responses to unusual and
undesired events
– Especially when replacing a manual system.

People are flexible and creative in coping with
problems; software systems aren’t

• Work forward from undesired events
• Work backward from undesired outcomes

– example: Never remove an old copy of data
until a new version is in place and verified

(c) 1998 M Young CIS 422/522 5/4/98 28

Likelihood of Change

• For each requirement and aspect of the system,
determine
– How likely is it to change over time?
– In what ways is it likely to change?

• Likelihood of change will guide modular
organization, where we “hide” design decisions
that may need to be changed

• Unfortunately, you can’t always believe what
you’re told
– Reporting of past changes is often more accurate than

prediction of future changes

15

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 5/4/98 29

Stratifying Requirements

• Developers need a hierarchy of subsets
– for “design to schedule” or incremental delivery

• Users may be reluctant to prioritize features
– especially if they fear losing the resource
– common in large organizations with centralized

development, and in organizations with perverse
budget incentives (encouragement to spend more)

• Incremental delivery may be easier to negotiate
than final feature set

