
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 1

Software Engineering

Lecture 1: Overview

(c) 1998 M Young CIS 422/522 4/3/98 2

History: The "Software Crisis"
Term coined circa 1968

• Cheaper, more powerful machines => more
demands on software

• Methods for developing small systems did not
scale up

• Many large systems were failing, or late

• Software costs beginning to dominate
– 1960: 80/20 division of hardware/software costs
– 1970: 50/50 division
– 1983: 20/80 division of cost; software dominates

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 3

Software Engineering is About ...

Fundamentally different from the small, throw-away
projects encountered in typical CS classes.

• Large systems
– "programming in the large" poses different challenges

than "programming in the small"

• Quality systems
– from commercially important to life-critical

• Limited resources
– people, time, money

(c) 1998 M Young CIS 422/522 4/3/98 4

Is it Computer Science?
Is it Engineering? Management?

• Computer science is necessary for software
engineering, but not sufficient.
– Programming is not like assembling cars; generic

management techniques are not enough.
– Software development is fundamentally a design

activity
• Fabrication is essentially free, unlike other manufactured

artifacts

• Success requires good technical as well as good
non-technical decisions

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 5

Programming in the Large
“Multi-person development of multi-version software” (Parnas 78)

• Team development
– The most crucial design decisions involve

communication among people

• Months or years of development
– Plan must consider milestones and not just

endpoint

• Years of operation and evolution
– Programs last longer than programmers!

(c) 1998 M Young CIS 422/522 4/3/98 6

Software Development by Teams
Product Structure

• Software product structure is partly motivated by
problems of cooperating in software development

• Product structure: Modularity
– Divide design, coding, and testing into pieces for

individual programmers and subsystem teams
– Minimize and control communication among team

members (module interfaces are human interfaces)
– Provide small granularity for process visibility

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 7

Software Development by Teams
Process Structure

• Software development methods and processes
are largely motivated by team development

• Process structure:
– Phases and milestones: For schedule, planning, and

management of team development
– Key documents facilitate shared understanding and

agreement, and a record of decisions and rationale
– Coordination with well-defined roles and

responsibilities facilitates effective teamwork

(c) 1998 M Young CIS 422/522 4/3/98 8

Quality systems
Reliable, robust, safe, ...

• Because of flexibility and relative cost, software is
replacing hardware in critical applicatiions
– Clever programming isn’t enough to keep a B777 or

A320 in the air, to keep the phones working, or to
ensure proper X-ray doses

• “Correct” is not enough!
– Design flaws and poor requirements are more

expensive and potentially as dangerous as program
“bugs”

– Quality must be maintained at every stage of
development

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 9

Fast, easy to use, powerful
 Attractive to clients and buyers

• Fast: Selective application of computer science
– The essential tools are algorithms and data structures,

but their skillful application is a matter of engineering
– Complexity is an additional cost, in development time,

reliability, and maintainability, so we must be selective

• Easy to use: Human factors and software design
– The essential background is psychology, but we must

draw also on programming and design

• Powerful: General, simple, orthogonal, beautiful

(c) 1998 M Young CIS 422/522 4/3/98 10

Maintainable and Reusable

• Fast to market, inexpensive
– Most software delivery is revisions of existing systems;

schedule depends on change cycle
– Expense depends on scope of change

• Borrowing existing software is cheaper than
writing new
– Reusable components are an asset
– Advantage is schedule and quality, as well as cost
– Reuse not only of code, but also design, test suites,

user manuals, ...

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 11

Resource constraints

• Time to market, total time expended
– Time-to-market may dominate: the value of fixed

functionality declines over time. We may design-to-
schedule, not schedule to a fixed design.

• People (=$$$, but also limited resources)
– People are almost always the primary expense, and the

supply is not arbitrarily expandable

• Environment constraints
– Equipment, other software, etc.
– Most “new” software is additions to existing systems

