
11

Software Engineering, M Young 5/15/00 1

Performance

• When to worry, and when not to
• Strategies to boost performance

Source: Jon Bentley, Writing Efficient Programs,
Prentice-Hall 1982

Software Engineering, M Young 5/15/00 2

Three cardinal rules of optimization

• Don't do it
• Don't do it yet
• Don't do it here

22

Software Engineering, M Young 5/15/00 3

Don't do it

How fast is fast enough?
• There is no point in efficiency if

– The program will not take long to run
– The program is run only occasionally
– I/O will dominate computation

• Programmers (including maintenance
programmers) cost more than computer
time.

Software Engineering, M Young 5/15/00 4

Response time

Response is more important than efficiency
for interactive programs.

• 1/20 second is fast enough for echo.
– At around 1/10 second, delay becomes

noticeable.

• 1 second or less is best for execution.
– At around 1 second, users' minds wander,

accuracy and productivity fall off markedly.

33

Software Engineering, M Young 5/15/00 5

Don't do it yet

• If you do need to optimize, don't let it ruin
the design.

• Do consider overall organization for
efficiency

• Don't twiddle bits in high-level design
• Use modular structure to hide the ugly

parts.

Software Engineering, M Young 5/15/00 6

Don't do it here

• 4% of the code takes 50% of the time.
• You probably don't know which 4%.

44

Software Engineering, M Young 5/15/00 7

Steps

• If you expect performance to be a problem
– Fix the specification
– Clean design with hidden decisions
– Isolate bottlenecks

– Revise data structures
– Revise algorithms
– Revise code

• In that order!

Software Engineering, M Young 5/15/00 8

Specification

Specification is the point of greatest leverage.
A specification shouldn't prescribe an implementation,

but it must allow an efficient implementation.
Use back-of-the-envelope calculations to determine

feasibility.

• Examples
– Exact vs. approximate solution
– Incremental vs. batch solution
– Available information

55

Software Engineering, M Young 5/15/00 9

Example --- leverage in the spec

• Spec of spell program: Must reject all
mispelled words, accept all words in
dictionary.

• Revised spec: Must reject nn% of
mispelled words, including 100% of the nn
most commonly mispelled words.

• Revised spec allows bit table
implementation with stop list.

Software Engineering, M Young 5/15/00 10

 Efficiency in modular
decomposition

• Identify critical activities
• Localize critical representation decisions
• Allow flexibility within modules

– Example: Timestamp logging was slower than
locking in the RAID database system. Profiling
revealed a bottleneck in a linked list traversal.
The list was hidden in a C++ class, so changing
a few lines of code replaced the list by an AVL
tree, and timestamp logging became faster
than locking.

66

Software Engineering, M Young 5/15/00 11

Bottlenecks

• According to Knuth: 4% of the code takes
95% of the time.

• According to Bentley: Programmers
almost always guess the wrong 4%

If a program is too slow, it must be monitored.

Software Engineering, M Young 5/15/00 12

 Monitoring

• Code can be instrumented
• Code can be profiled

– Ex. gprof in Unix, profiling tools with
compiler, network monitoring tools, …

• Profile large or typical problems

77

Software Engineering, M Young 5/15/00 13

Aside --- profiling techniques

 Probes: Read clock and/or bump counters
at each procedure call and return.

 Interrupts: Interrupt program at regular
intervals and inspect call-stack.

• Interrupt-driven profiling is generally more
accurate, but probes are easier to
implement in a hurry

• Use “virtual clock” or else keep probe
overhead very small.

Software Engineering, M Young 5/15/00 14

What to do with a bottleneck

• Look not only at the bottleneck, but how it
is used.

• Is it dominated by a few common cases?
• Can the common case be solved another

way?

88

Software Engineering, M Young 5/15/00 15

Example --- memory allocation/free
as bottleneck

• Often dominated by a few small sizes
• Sometimes ``almost LIFO''
• Optimize the common cases, not the

general case:
– van Wyck, Wulf: Free lists for small, common

sizes; general pool for larger requests.
– Hanson: ``Arenas'' with mark/release

semantics.

Software Engineering, M Young 5/15/00 16

Big-oh vs. bit-twiddles

• A Commodore 64 searches a tree faster
than a Cray 2 searches a linear table—if the
table is large enough.
– For large problems, a better data structure or

algorithm is usually the answer.

• Sometimes use mixed strategy: ex.,
Quicksort with insertion sort for small
lists

99

Software Engineering, M Young 5/15/00 17

Storing precomputed results

• Actually an instance of a more general rule:
Move calculations out of a loop.
– In this case the ``loop'' is program execution.

• Build a table once (with another program)
and use it over and over.

Examples:
– Trig interpolation table

(or any other smooth function)
– Keyword hash table for compiler/interpreter

Software Engineering, M Young 5/15/00 18

Data structure augmentation

• It is often worthwhile to have two versions
of an algorithm.
– Version one works fast, usually; but

sometimes it doesn't work.
– Version two works slowly, always.

• Examples:
• Inaccurate file index
• Hash signature augments full values

(quick inequality check, equality is slower)

1010

Software Engineering, M Young 5/15/00 19

Caching

• Most commonly requested data should be
fastest to produce.

• Examples:
– Self-organizing lists (move-to-front)
– Bloom filters
– Function result caching
– ``cat'' pages vs. ``man'' pages in Unix
– Caching proxy servers for WWW

Software Engineering, M Young 5/15/00 20

Example: Font caching

• In systems like PostScript, characters can
be arbitrarily scaled and rotated.
– High-quality, scalable fonts are described by

geometry, not bitmaps.
– Drawing each character would be too slow.
– Solution: Fonts are cached in the printer ---

second page is usually faster than the first!

1111

Software Engineering, M Young 5/15/00 21

Space optimization --- indirection

• Example: Colormaps save space and time.
– Each pixel contains a colormap index.
– Colormap is a table; entries contain RGB

values.
– Savings ~ 24 - 8 = 16 bits per pixel

– Faster to store and read (memory bandwidth
limitation).

– Sometimes used for fast animation effects.

Software Engineering, M Young 5/15/00 22

Suggested reading

Writing Efficient Programs, by Jon Louis Bentley. Prentice-
Hall, 1982.

``The techniques of writing efficient code are in many ways like a
snakebite kit: used in the right context, they can be just the thing
for the job at hand, but their inappropriate application can be
disastrous. Unfortunately, most programmers like to play with
new toys. I have many friends who, immediately upon buying a
snakebite kit, would be tempted to throw the first person they
see to the ground, tie the tourniquet on him, slash him with the
knife, and apply suction to the wound. What that action does to
people, you might be tempted to do to software systems by
haphazardly applying the techniques of this book.''

