
1

©1998 Stuart Faulk

CIS 422:
Software Requirements

Stuart Faulk

©1998 Stuart Faulk

Overview

• What is a “requirement?”

• Why do we care about requirements?

• What do we need to accomplish in the requirements phase?
– Who is the audience for the SRS?

– What do they use it for?

• What’s difficult about what we’re trying to do?
– Essential difficulties

– Accidental difficulties

• What goes in an SRS?

• What properties do we need in an SRS to do the job well?

• What is the role of formal methods?

2

©1998 Stuart Faulk

What is a “software requirement?”

• A description of something the software must do
or a property it must have

• Anything the customer says it is!

©1998 Stuart Faulk

Requirements in Software Life Cycle

software
requirement
s

preliminary
design

detailed
design

coding

unit test
planning

integration
test
planning

system
testing

integration
testing

unit
testing

software
system test
planning

A Software Life Cycle

3

©1998 Stuart Faulk

Requirements Phase Goals

• What are the goals of the requirements phase?

• Standard definition: “Establish and specify precisely what the software
must do without describing how to do it.”

• Establish what to build be for starting to build it.
– Make the “what decisions” explicitly before starting design

… not implicitly during design.

– Make sure you build the system that’s actually wanted/needed.

– Allow the users a chance to comment before it’s built.

• Specify in terms of an organized reference document - the Software
Requirements Specification (SRS)

– Communicate the results of analysis

– Provide a baseline reference document for developers and QA

©1998 Stuart Faulk

Requirements Goals

• Why the emphasis on “what not how”?

– Seek to describe the problem to be solved not the solution to ensure real
problem is solved

– Avoid over-constraining the design or implementation

– Solutions are typically more complex, harder to understand, harder to
change

4

©1998 Stuart Faulk

Parts of the Requirements Phase

• Problem Analysis
– The (“establish” part) also called “problem understanding,

requirements exploration, etc

– Goal is to understand precisely what problem is to be solved

– Includes: Identify exact system purpose, who will use it, the
constraints on acceptable solutions, and possible tradeoffs among
conflicting constraints.

• Requirements Specification
– Goal is to develop a technical specification - the Software

Requirements Specification (SRS)
– SRS specifies exactly what is to be built, captures results of

problem analysis, and characterizes the set of acceptable solutions
to the problem.

©1998 Stuart Faulk

Do we Really Need Requirements?

• Do we always need a requirements specification?

• Focus large, complex systems
– Multi-person: many developers, many stakeholders

– Multi-version: intentional and unintentional evolution

• Qualitatively distinct from small developments
– Multi-person introduces need for organizational functions (management,

accounting, marketing), policies, oversight, etc.

– More stakeholders and more kinds of stakeholders

• Quantitatively distinct from small developments
– e.g., complexity of communication rises exponentially

– Techniques that work in the small fail utterly (e.g., word of mouth)

• Rule of thumb: project starts to be “large” when group developing a
single work product can’t fit around a table.

5

©1998 Stuart Faulk

Stakeholders
• For “large” developments, who has an interest in the content of the

requirements specification (called stakeholders) and why?

• Customers: the requirements typically document what should be
delivered and my provide the contractual basis for the development

• Managers: provides a basis for scheduling and a yardstick for
measuring progress

• Software Designers: provides the “design-to” specification

• Coders: defines the range of acceptable implementations and is the
final authority on the outputs that must be produced

• Quality Assurance: basis for validation, test planning, and verification

• Also: potentially Marketing, regulatory agencies, etc.

©1998 Stuart Faulk

Terminology
• Avoid “functional/non-functional” classification

• Behavioral Requirements - Any and all information necessary to
determine if the run-time behavior of a given implementation
constitutes an acceptable system.

– All quantitative constraints on the system outputs (value, accuracy, timing)

– Other objective measures (safety, performance, fault-tolerance)

– In theory all can be validated by observing the running system

• Quality Attributes - Any constraints on the system’s static construction
– Testing ease (testability), ease of change (mutability), maintainability,

reusability

– Measures of these qualities are necessarily relativistic (I.e., in comparison
to something else)

6

©1998 Stuart Faulk

Why are Requirements Hard
to do Well?

©1998 Stuart Faulk

 “The hardest single part of building a software system is deciding
precisely what to build. No other part of the conceptual work is as
difficult as establishing the detailed technical requirements...No
other part of the work so cripples the resulting system if done
wrong. No other part is as difficult to rectify later.”

F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering”

7

©1998 Stuart Faulk

A Big Problem

• Requirements issues appeared along with large software

 Ballistic Missile Defense system developers note: “In nearly every
software project that failed to meet performance and cost goals,
requirements inadequacies played a major and expensive role in project
failure” [Alford 79]

• Survey of major Aerospace firms turns up requirements as
the top-priority problem.

• Recent GAO report identifies requirements as a major
problem source in two-thirds of systems examined

=> SE improvements haven’t kept pace with growth in
project scale and complexity

©1998 Stuart Faulk

Distribution and Effects of Requirements
Errors

2. The later that software errors are
 detected, the more costly they are
 to correct.

1

2

5

10

20

50

100

design unit test,
integration operation

requirements code
debug

acceptance initial
 test

Phase in which error detected

0

10

20

30

40

50

requirements
and

functional
analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

1. The majority of software errors
 are introduced early in software
 development.

8

©1998 Stuart Faulk

Requirements Goal

• Standard definition:
“Identify and specify precisely what the software must do
without describing how to do it.”

– Idiomatically: Specify “what” without specifying “how.”

What’s so hard about that?

©1998 Stuart Faulk

What vs. How Dilemma

User Needs

Product Space (set
of legal behaviors)

Actual product’s
behavior

Architecture

Module specs.

Algorithms

Code

what
how

what
how

what
how

what
how

what
how

what
how

From Davis, Software Requirements

9

©1998 Stuart Faulk

What vs. How (2)
• One man’s “what” is another’s “how”

• Typically mixed together
– “If the system cannot complete the transaction within 1 second, the data

base must be rolled back to it’s initial state and the customer notified”

– “Update data associated with each aircraft being tracked by the low
aperture radar must be contained in distinct packets on the primary data
bus.”

• Most systems contain more than one problem space (e.g., user
interface requirements vs. accounting transaction requirements).

• Upshot: Must agree on what constitutes the problem space and what
constitutes the solution space (before the discussion even makes sense)

– Requirements analysis and specification then belong in the problem space

– Future issues: Does your approach help obtain and maintain this
distinction?

©1998 Stuart Faulk

Overall Goals Affecting Requirements

• Only three goals (given the large development
context)
1) Understand precisely what is required of the software.

2) Communicate that understanding to all of the parties
involved in the development (stakeholders)

3) Control production to ensure the final system satisfies
the requirements

• Problems in requirements result from the failure to
adequately accomplish one of these goals

• What makes these goals difficult to accomplish?

10

©1998 Stuart Faulk

Essential vs. Accidental
• Thesis:

Meeting the requirements phase goals is
essentially difficult

- but not as difficult as we make it!

• Essential difficulties - part of the essence of the
problem

• Accidental difficulties - difficulties introduced or
added by the way we do things

*(not “essential” as in “needed” nor “accidental” as in “unintended”)

©1998 Stuart Faulk

Essential Difficulties

• Comprehension (understanding)
– People don’t (really) know what they want (… until they see it)

– Superficial grasp is insufficient for expressing requirements

11

©1998 Stuart Faulk

Essential Difficulties

• Communication
– People work (think) best with regular structures, conceptual

coherence, and visualization

– Software’s conceptual structures are complex, arbitrary, and
difficult to visualize

– Requirements specification must do more than one job well
• Specification serves many purposes (test-to, design-to, contractual,

validation, etc.)

• Specification has many audiences with different viewpoints,
languages, knowledge (customer, designer, tester, regulator, etc.)

©1998 Stuart Faulk

Essential Difficulties
• Control (decideability, predictability, manageability)

– Control => ability to plan the work, work to the plan
– Without experience, can’t predict which requirements will cause problems
– Requirements change all the time
– Together make planning unreliable, cost and schedule unpredictable

12

©1998 Stuart Faulk

Essential Difficulties

• Inseparable Concerns
– Separation of concerns - ability to divide a problem into distinct and

relatively independent parts
– Many issues in requirements cannot be cleanly separated (I.e., decisions

about one necessarily impact another)
• Need for stability (control) vs. comprehension (need to see it)
• Formality vs. understanding

– Implications
• Difficult to apply “divide and conquer”

– Cannot achieve effective solutions considering problems in isolation
– Issue with many “academic” techniques

• Must make tradeoffs
– Requires compromises where constraints conflict
– Differing effects on different stakeholders imply negotiation

©1998 Stuart Faulk

Accidental Difficulties

• Written as an afterthought: common practice to write
requirements after the code is done (if at all)
– Inevitably a specification of the code as written

– Not planned, not managed, not reviewed or used

– Designers and coders end up defining requirements

• Confused in purpose
– Authors fail to decide precisely what purposes the SRS will serve and in

what way it will serve them

– Requirements end up mixed with other things (overview material,
marketing hype, implementation details, etc.)

– Fails to do anything well
• Cannot distinguish which parts are really requirements

• Unclear what tradeoffs to make regarding issues like precision, formality, etc.

13

©1998 Stuart Faulk

Accidental Difficulties
• Not designed to be useful

– Often little effort is expended on the SRS - and it shows
• SRS is not expected to be useful - a self-fulfilling prophesy

• Little effort expended in organizing, writing, checking, managing, or evolving

• Inherent difficulties doom haphazard approaches to failure

– Resulting document of limited usefulness
• Not organized as a technical reference - difficult to look things up

• No effective procedure for determining consistency or completeness

• Difficult to make changes, keep consistent

• Document is difficult to use, quickly out of date

• Lacking essential properties
– For the SRS to serve its purposes effectively it must have certain

properties: Completeness,Consistency, Ease of change, Precision...

– Accidental difficulties lead to document that is redundant, inconsistent,
unreadable, ambiguous, imprecise, inaccurate.

– Not useful, not used.

©1998 Stuart Faulk

Role of a Disciplined Approach

• Meaning of “disciplined”
– Objectives are known in advance

• What’s the document’s purpose?

• Who are in its audience?

– Product is well defined and designed to purpose

– Process is defined, followed, tracked and managed

• Disciplined approach will address the accidental
difficulties

• Provides a basis for attacking essential difficulties

14

©1998 Stuart Faulk

Address Accidental Difficulties
• Written as an afterthought

– Plan for and budget for the requirements phase and its products

– Specification is carefully written, checked, and maintained

• Confused in purpose
– Document purpose is defined in advance (who will use it and what for)

– Plan is developed around the objectives

• Not designed to be useful
– Specification document itself is designed to facilitate key activities

• document users (e.g., answer specific questions quickly and easily)

• document producers (e.g., ability to check for properties like consistency)

– Designed to best satisfy its purpose given schedule and budget constraints

• Lacking essential properties
– Properties are planned for then built in

– Properties are verified by the best means possible (review, automated
checking, etc.)

©1998 Stuart Faulk

Sommerville’s “Requirements”

• What is the system required to do if an external file ty pe has two or more associated tools?
• Is the user allowed to associate a tool with a file type or does the system do this from some other

source? Change the association?
• Does the system have to associate a specific icon with each file?
• What happens if the user associates the same icon with two different file ty pes?

15

©1998 Stuart Faulk

CIS 422:
Developing a Good SRS

©1998 Stuart Faulk

Contents of an SRS

• What should go in a requirements document?

• Everything you need to know to design and write the code
– No more, no less

– Every statement should be valid for all acceptable products
– If a product satisfies every statement, it should be acceptable

– Areas of incompleteness should be explicit

• Includes non-behavioral attributes like
– Ease of change or maintenance requirements

– Safety constraints

– Reusability constraints

16

©1998 Stuart Faulk

Properties of a Good SRS

• Does an SRS have a “design?” i.e., does it make sense to
talk about designing an SRS as a distinct activity from
designing the system?

• What would it mean to “design” the SRS?

• What properties should we design for?

©1998 Stuart Faulk

Role of Correct Requirements
DEVELOPMENT

PHASE
HIGH-ASSURANCE

GOAL

ANALYSIS

CODING

SYSTEM
INTEGRATION
AND TESTING

DESIGN

REQUIREMENTS
SPECIFICATION

TEST
PLAN

Traceability

1. Get the right requirements

2. Get the requirements right
 a. Application-Independent Properties

• Consistency
• Completeness

 b. Application-Dependent Properties
• Safety properties
• Mission-critical properties

3. Verify the system against the
requirements

a. Test coverage
b. Traceability
c. Statistically based testing

17

©1998 Stuart Faulk

Desirable SRS Properties

Semantic Properties*

• Complete

• Consistent

• Unambiguous

• Verifiable
• Implementation independent

* Properties of the specification’s
semantics (what it says)
independently of how it’s said

Packaging Properties+

• Modifiable

• Readable

• Organized for reference and
review

• Reusable

+ Properties arising from the way
the specification is written
(organization, formats,
notations)

©1998 Stuart Faulk

Complete
• Formal vs. informal notions of completeness

– Completeness of a model: everything mentioned is specified
– Completeness of an SRS: captures all of the customer’s requriements

• Complete means:
– The SRS defines the set of acceptable implementations
– The SRS contains all the information needed to write the software that is acceptable

to the customer (and nothing more)
– Any implementation that satisf ies every statement in the requirements is an

acceptable product.

– Why is completeness hard to achieve?
• Essential:

– Comprehension (don’t know what we want until we see it)
– Mutability (target keeps moving)
– Visibility (difficult to measure)

• Accidental:
– No objective definitions of completeness
– Contents of SRS not well defined
– No guidelines for determining when the specification is done

18

©1998 Stuart Faulk

Consistent

• Consistent means: no two statements of requirements
conflict

• Why difficult to achieve?
– Accidental difficulty resulting from specifications that are hard to

read and review.

– Often there are poorly documented or understood relationships
between requirements.

– Essential: changes inevitably introduce inconsistencies over time

©1998 Stuart Faulk

Unambiguous
• Unambiguous means: there is only one possible interpretation of each

requirement.

• Why needed?
– Everyone agrees on what is to be built and builds what is intended

– All parts of the development a built with common assumptions

• Why difficult to achieve
– Essential Dilemma: all natural languages are ambiguous

• Formal methods are impractical for complex systems

• Formal methods are essential for precision, unambiguousness

– Need for practical formal methods

19

©1998 Stuart Faulk

Verifiable
• Verifiable means: it is possible to determine unambiguously whether a

given implementation satisfies the requirement (also called “testable”).
– “The system shall be easy to use.”

vs.

– “Every menu operation shall be accessible with no more than three mouse
clicks.”

• Why needed?
– Ensures there is an objective measure for each requirement.

– Allows QA to determine whether or not a given implementation satisfies
the requirements (and which ones it satisfies).

©1998 Stuart Faulk

Packaging Properties

20

©1998 Stuart Faulk

Modifiable
• Modifiable means: the specification is relatively easy to

change for the set of expected changes

• Why needed? Change disrupts everything.

• Principles
– Change is inevitable - plan on it, plan for it!

– Process and products must support ease of change

©1998 Stuart Faulk

Readable
• “Readable” means;

– The intended audience can readily understand the information in
the specification

– The intended audience can readily use the information for its
intended purpose

(e.g., the customer can determine if the system will solve his
problem)

• Why needed?
– An SRS typically has several purposes and audiences who must

understand specification
– Specification that’s hard to read won’t be properly reviewed or

ultimately used

• Why difficult to achieve?
– Conflicts with need for precision, unambiguousness, testability
– Difficult to find common languages or points of view.

21

©1998 Stuart Faulk

Organized (for Reference and Review)
• We assume that the SRS is first and foremost a technical specification

– i.e., it is a reference manual for the expected behavior.

– It is not: an introduction, an explanation of intended use, a justification of
the project

• Organized means: One can use the specification answer specific
technical questions quickly and easily.

– It is clear where each piece of information belongs

– It is clear where information is incomplete or missing.

• Why difficult?
– Requires forethought

– Requires up-front effort, time, and money

– Essential problem of many audiences and purposes

• Principles
– One must decide the primary audience and purpose in advance (i.e., what

kinds of questions the document will be designed to answer easily).

©1998 Stuart Faulk

Role of Formal Methods

22

©1998 Stuart Faulk

The Formal Methods Dilemma
• Standard approaches (e.g., prose specs) lack sufficient

rigor to meet high-assurance goals

• Formal requirements methods have desired technical
virtues viewed as impractical for large, complex
systems

– Capability for unambiguous specification, precision, testability, and
analyzability

– Industry concern for practicality

• Concern for difficulty to write/read, required expertise, ability to
scale

• Concern for real-world issues of fuzzy or changing requirements

• Concern for fit with industrial development context

• Adds up to perceived cost/schedule risk

• Implication: Need for Practical Formal Methods

©1998 Stuart Faulk

The Good News
• A little rigor in the right places can help a lot

– Adding formality is not an all-or-none decision

– Use it where it matters most to start (critical parts, potentially
ambiguous parts)

– Often easier, less time consuming than trying to say the same thing
in prose

• E.g. in describing conditions or cases
– Use predicates (i.e., basic Boolean expressions)

– Use tables where possible

• NASA example

23

©1998 Stuart Faulk

A Real Requirement

(2.16.3.f) While acting as the bus controller, the C&C MDM CSCI shall set the
e,c,w indicator identified in Table 3.2.16-II for the corresponding RT to “failed”
and set the failure statue to “failed” for all RT’s on the bus upon detection of
transaction errors of selected messages to RT’s whose 1553 FDIR is not inhibited
in the two consecutive processing frames within 100 millisec of detection of the
second transaction error if; a backup BC is available, the BC has been switched in
the last 20 sec., the SPD card reset capability is inhibited, or the SPD card has been
reset in the last 10 major (10-second) frames, and either:

1. The transaction errors are from multiple RT’s, the current channel has
 been reset within the last major frame, or
2. The transaction errors are form multiple RT’s, the bus channel's reset
 capability is inhibited,and the current channel has not bee reset within
 the last major frame

Example of a NASA requirement for the Command and Control bus for the Space Station
specifying exactly when all remote terminals on the bus should be switched to their backups

Q: Should the remote terminals be switched to their backups if the C&C MDM is acting as bus
Controller, there are transaction errors in two consecutive frames, errors are on selected messages,
the RT’s 1553 FDIR is not inhibited, a backup BC is available, the BC has been switched on in the
Last 20 seconds, transaction errors are from multiple RT’s and the current channel has been reset in
the last major frame?

©1998 Stuart Faulk

A Real Requirement

(2.16.3.f) While acting as the bus controller, the C&C MDM CSCI shall set the
e,c,w indicator identified in Table 3.2.16-II for the corresponding RT to “failed”
and set the failure statue to “failed” for all RT’s on the bus upon detection of
transaction errors of selected messages to RT’s whose 1553 FDIR is not inhibited
in the two consecutive processing frames within 100 millisec of detection of the
second transaction error if; a backup BC is available, the BC has been switched in
the last 20 sec., the SPD card reset capability is inhibited, or the SPD card has been
reset in the last 10 major (10-second) frames, and either:

1. The transaction errors are from multiple RT’s, the current channel has
 been reset within the last major frame, or
2. The transaction errors are form multiple RT’s, the bus channel's reset
 capability is inhibited,and the current channel has not bee reset within
 the last major frame

Example of a NASA requirement for the Command and Control bus for the Space Station
specifying exactly when all remote terminals on the bus should be switched to their backups

24

©1998 Stuart Faulk

Is a “Good” SRS Achievable?
• A qualified “yes”

– Mutual satisfaction of some goals is difficult

– Want completeness but users don’t know what they want and requirements change.

– Many audiences and purposes, only one possible organization and language

– Want formality (precision, verifiability, analyzability) but need readability.

• Tradeoffs and compromises are inevitable
– Usefulness of establishing document purpose in advance.

– Make them by choice not chance!

• It isn’t easy
– effort

– expertise

– technique

….but it is necessary!

©1998 Stuart Faulk

Documentation Principles

25

©1998 Stuart Faulk

• Write specifications for the document
– Easiest way to ensure agreement on:

• Intended audience(s)

• Purpose(s) of the document

• Document organization or design.

– Keep design simple and reusable
• Avoid starting another project in specification design

• …but, do enough to capture consensus and resolve dissention

• Characterize and formulate questions to be answered
before starting to answer them
– Avoids adding extraneous material

– Avoids answering only the easy questions

Documentation Principles

©1998 Stuart Faulk

Documentation Principles (2)

• Design the document applying Separation of Concerns
– Principle of Separation of Concerns: distinct concerns (i.e.,

relatively independent issues) belong in distinct (separate) parts of
the document

– Goal is to divide the document into distinct and relatively
independent parts

• Readability: users can read and understand one section of the
document without having to read or reference many others.

• Modifiability: relative independence of the parts means that a changes
tend to be confined to one part of the document

• Reusability: parts that form a distinct whole (i.e. not dependent on
other parts) are easier to reuse.

26

©1998 Stuart Faulk

Documentation Principles (3)

• Write once - read many times
– Remember that the specification will be used many times but only

written once (more or less)

– Best ROI when effort is spent in writing to make it easy to read!

• Formal vs. informal notation
– Informal (natural language): for introduction, motivation, gaining

an overview, or review

– Formal (mathematics): for binding precise information, ease of
reference, ease of checking correctness.

©1998 Stuart Faulk

Summary
• Requirements are hard to do well but ...

– Any specification is better than none

– Work that goes into requirements is very high leverage (cost ratio)

• Decide in advance
– Audience: who the document is for

– Purpose: what the audience will use it for

• Design the document to be useful over the long haul
– to satisfy the purposes well

– to be easy to keep up-to-date (easy to modify)

• Make it part of the product development cycle
– Document is as important as the code (perhaps more so)

– Plan and budget for it, build to it, maintain it

• Be as formal as possible
– Use simple formalisms where possible

– e.g., use prose to explain, tables and expressions to specify detailed
behavior

