
Reprinted from Proceedings of the 21st ACM Symposium on the Principles of Programming Languages, January 1994.

Correctness of Trap-Based Breakpoint Implementations

Norman Ramsey

Bell Communications Research

445 South Street, Morristown, NJ 07960

norman@bellcore.com

Abstract

It is common for debuggers to implement breakpoints
by a combination of planting traps and single stepping.
When the target program contains multiple threads of
execution, a debugger that is not carefully implemented
maymiss breakpoints. This paper gives a formalmodel
of a breakpoint in a two-threaded program. The model
describes correct and incorrect breakpoint implemen-
tations. Automatic search of the model's state space
shows that the correct implementation never misses a
breakpoint. A similar search �nds an execution for
which the incorrect implementation does miss a break-
point. The results apply even to debuggers like dbx

and gdb, which are apparently for single-threaded pro-
grams; when the user evaluates an expression contain-
ing function calls, the debugger executes the call in the
target address space, in e�ect creating a new thread.

1 Introduction

A debugger runs as a coroutine with its target pro-
gram. A breakpoint at target instruction I transfers
control from the target to the debugger whenever con-
trol reaches I. When the debugger gets control, it may
take such actions as evaluating a condition, increment-
ing a counter, or simply asking the user for instructions.
Eventually the debugger returns control to the target,
which resumes execution at I. At that time, I must be
executed once, but subsequent attempts to execute I

must return control to the debugger.

Implementors can choose how to manage the trans-
fers of control. To get control at an instruction I, a
debugger can overwrite I with a trap instruction, then

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed

for direct commercial advantage, the ACM copyright notice

and the title of the publication and its date appear, and notice

is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish,

requires a fee and/or speci�c permission.

POPL 94- 1/94, Portland Oregon, USA

c1994 ACM 0-89791-636-0/94/001..$3.50

handle the resulting trap (Caswell and Black 1990), or
it can overwrite I with an instruction that branches
to debugging code (Digital 1975). To resume execu-
tion, there are more choices. A debugger can return
the overwritten instruction to memory, execute it by
single stepping the target machine, and re-plant the
breakpoint (Caswell and Black 1990). Single stepping
can be avoided by transforming the overwritten in-
struction so that it can be correctly executed out of
line (Digital 1975; Kessler 1990). Finally, some ma-
chines have special hardware that supports resumption
after a break instruction (Bruegge 1985).

This paper exposes a potential pitfall in the imple-
mentation of breakpoints based on trapping and single-
stepping. Single stepping means arranging that the
target machine will trap again immediately after ex-
ecuting I. On some machines it can be implemented
only by planting traps at instructions that might be ex-
ecuted immediately after I; these instructions are I's
follow set. If these traps are planted at the wrong time,
and if the target has more than one thread of control,
the debugger could miss a breakpoint.

Even a traditional single-threaded debugger must
avoid this pitfall if it evaluates expressions at the source
level. Expression evaluation includes calls to user-
de�ned procedures, and these procedures run in the
target address space. To run such procedures, the de-
bugger must in e�ect create a second thread. If such a
procedure hits a breakpoint and the expression evalua-
tion is abandoned, the debugger maymiss a subsequent
arrival at that breakpoint.

This paper makes several contributions. It provides
an abstraction and formalization of a breakpoint tech-
nique commonly used with compiled forms of impera-
tive programming languages. Using the formalism, the
paper shows that unrestricted context switching can
make a debugger miss a breakpoint. It gives restric-
tions on context switching that prevent the error; these
restrictions are shown su�cient by machine checking of
all possible executions. Finally, the paper gives an un-

15

Debugger Target

trap at I

catch trap at I

detect breakpoint
restore I

single-step I

I refers to
a bad address

catch fault
user corrects bad

address value
resume execution

I executes
single-step completes

and traps
catch trap at completion
re-write trap at I

resume execution
target continues

Figure 1: Address fault in the middle of a breakpoint
(time ows downward)

usual application of protocol-validation techniques to a
programming-language problem.

2 Breakpoints and events

In a trap-based implementation, breakpoint handling
begins when a target thread hits the trap written over
instruction I. The description above says that I is re-
turned to memory and the machine is single-stepped,
after which I can be replaced with a trap. This de-
scription is oversimple, because I need not execute
successfully. For example, it may refer to an invalid
address, as shown in Figure 1 (time ows from top to
bottom). A practical breakpoint implementation can-
not rely on executing a simple sequence of (a) remove
trap, (b) single step, (c) replace trap; it must be pre-
pared for other events to be inserted into the sequence,
and it must create handlers that respond appropriately
to those events.

Two handlers are relevant to the breakpoint im-
plementation. One handles the trap that indicates
a thread's attempt to execute instruction I, and the
other handles the noti�cation that the execution of I

(the single step) has completed successfully. These
handlers appear in Figure 1 as the �rst and third ac-
tions of the debugger. The second action is that of a
handler responding to the invalid-address event; it is
not part of the breakpoint implementation.

Before letting the target execute I, the �rst handler
must arrange for an event to occur when I's execution
completes. The usual choice is a trap event, which can
be arranged either by setting a trace bit in the target

processor (if available) or by planting traps at I's follow
set. Once the bit is set or the traps are planted, the
execution of the target thread can be resumed. The
second handler, when it sees the trap at the completion
of I, undoes the trace bit or the traps at the follow set
and rewrites a trap over I.
This implementation is incorrect in the presence of

multiple threads of execution. Figure 2 shows an ex-
ecution involving a debugger and two target threads
in which both threads go through the breakpoint, but
only one is detected. As shown in the next section, the
problem arises because both threads are permitted to
execute after I is restored. The solution is to prevent
the execution of other threads while the thread that
trapped executes I.
The problem can arise in practice even in a single-

threaded debugger. When the thread traps at I, the
debugger may evaluate an expression before resuming
execution. If a procedure call is needed to evaluate the
expression, the debugger must, in e�ect, create a sec-
ond target thread to call the procedure. If this second
thread hits the breakpoint at I, it will not be detected.
An early version of the author's debugger ldb demon-
strated this problem (Ramsey 1992b). The problem
cannot be demonstrated with dbx (Linton 1990) or
gdb (Stallman and Pesch 1991) because neither is ca-
pable of recovering if a procedure call hits a breakpoint
while the main target thread is stopped at a break-
point.

3 Model using communicating

sequential processes

The debugger, target, and breakpoint implementation
are modeled as communicating sequential processes.
The breakpoint implementation is to notify the de-
bugger every time a thread successfully executes in-
struction I; to that end it can plant and remove traps,
and it can suppress or permit context switching. The
model is abstract, hiding details. It does not matter
whether the debugger and target reside in the same
address space or in di�erent address spaces, nor does it
matter whether the breakpoint implementation resides
in the target, the operating system, or the debugger.
It does not matter whether the target processor has a
trace mode.
The model is expressed in PROMELA, a formal-

ism whose original purpose was to model network
protocols (Holzmann 1991). The correctness condi-
tion is given by embedded assertions, which state that
the number of executions of I is equal to the num-
ber of noti�cations of the debugger. The advantage
of using PROMELA is that it comes with a checker
that searches a model's state space and checks for
deadlocks, unreachable states, and violated assertions.

16

Debugger thread 0 thread 1

trap at I

catch trap at I

detect breakpoint
restore I

plant trap at I's successor
resume execution

execute I

execute I

trap at I's successor
catch trap at I's successor
note completion of breakpoint
restore I's successor
plant trap at I

resume execution
execute I's successor

execute I's successor
continue executing continue executing

Figure 2: Execution sequence showing missed breakpoint

PROMELA models need not be deterministic. When
a choice is nondeterministic, the checker explores all
alternatives, so it will �nd an execution leading to a
violated assertion if one exists.
Syntactically, PROMELA models resemble C pro-

grams. They use ! and ? operators to send and receive
messages over \channels," �a la CSP (Hoare 1978). Al-
though PROMELA permits models in which messages
are passed asynchronously using bu�ered channels, the
model presented here uses only unbu�ered channels;
every send and receive is a synchronization point, as
in CSP.
This paper does not just describe the model; it con-

tains the model. The noweb system (Ramsey 1992a)
for \literate programming" (Knuth 1984) extracts both
the paper and the model from the same source. The
source contains prose interleaved with de�nitions of
named code \chunks." De�nitions are numbered con-
secutively with bold numerals. Code chunks contain
source code and references to other code chunks. The
code chunks appear in an order suited to explanation,
not necessarily in the order required by the PROMELA
language. Chunk names appear italicized within angle
brackets, e.g., hdeclarations 1i. The \1" is the number
of the chunk's �rst de�nition.

3.1 Processes of the model

Five processes are used to model the interaction of de-
bugger, target, and breakpoint implementation. Two
processes model threads of control in the target, one
models the debugger, and one the breakpoint imple-
mentation. The �fth process models the CPU, which
advances the program counter, noti�es the breakpoint
implementation when it hits a trap, and noti�es the
active target thread when it successfully executes an
instruction. The processes and communications be-

tween them are shown in Figure 3. Using only two
threads keeps the state space small; a single bit su�ces
to identify a thread. A small state space is necessary
for exhaustive search to be practical.

1. hdeclarations 1i�
#define NTHREADS 2

#define threadid bit

This de�nition is continued in chunks 2{5, 8, 10, 18, 22, and 26.

This code is used in chunk 29.

17

#
"

!

'
&
$
%

#
"

!

#
"

!

#
"

!

-

�
-

H
H
H
HHj
H

H
H

HHY

�
�
�
��*
�
�

�
���

debugger()breakpoint()CPU()

thread(1)

thread(0)

execute[1]

cont[0]

cont[1]

execute[0]

resume

trap!id
notify!id

Figure 3: Processes used in the model

The labels on the arcs in Figure 3 designate the fol-
lowing channels:

2. hdeclarations 1i+�
chan execute[NTHREADS] = [0] of {bit};

chan cont [NTHREADS] = [0] of {bit};

chan trap = [0] of {threadid};

chan resume = [0] of {bit};

chan notify = [0] of {threadid};

De�nes:

cont, used in chunks 6 and 12.

execute, used in chunks 6 and 12.

notify, used in chunks 13, 24, and 25.

resume, used in chunks 6, 24, and 25.

trap, used in chunks 6, 24, and 25.

[0] is the size of the bu�er associated with the channel;
these channels have bu�ers of length zero and are there-
fore synchronous. {bit} or {byte} shows the data in-
cluded in a message.1 The execute channels, one per
thread, are used by the threads to ask the CPU to
attempt to execute the instruction. If the attempt is
successful, the CPU adjusts the PC and replies on the
corresponding cont channel. If the attempt traps, the
CPU sends the unique id of the trapping thread on the
trap channel to the breakpoint implementation. The
breakpoint implementation adjusts traps and tells the
CPU to resume execution by sending on the resume

channel. If the trap indicates a new breakpoint event,
the breakpoint implementation noti�es the debugger
that a breakpoint occurred by sending the id of the
breakpointing thread on the notify channel.

1resume and the cont and execute channels are used only

for synchronization, but PROMELA does not permit a message

without data, so these channels carry the one-bit value x, which

is always ignored.

3. hdeclarations 1i+�
bit x; /* sent/received on synch channels */

3.2 Modeling the program counter and

execution

Also to reduce the size of the state space, the model
has only one breakpoint. Modeling all possible values
of the program counter is too expensive, but the val-
ues partition naturally according to the instruction the
program counter refers to:

Break the breakpoint itself (instruction I),
Follow the instruction(s) that can follow I,
Outside other instructions.

The three sets are modeled by the following constants.

4. hdeclarations 1i+�
#define Break 0 /* pc at I */

#define Follow 1 /* pc in I's follow set */

#define Outside 2 /* all other pc's */

#define NPCS 3 /* no. of distinct pc's */

De�nes:

Break, used in chunks 7, 12, 14, 17{21, 24, and 25.

Follow, used in chunks 7, 17, 20, 21, 24, and 25.

Outside, used in chunks 7, 9, and 12.

The ability to plant traps is modeled by the array
trapped, which records whether a trap instruction has
been stored at a particular location:

5. hdeclarations 1i+�
bool trapped[NPCS];

De�nes:

trapped, used in chunks 6, 17, and 19{21.

18

The CPU repeats the following steps.

1. Wait for a thread to attempt to execute the instruc-
tion at pc.

2. If the instruction is a trap, notify the breakpoint
implementation. When the CPU is told to resume,
pc is unchanged.

3. If the instruction is not a trap, advance pc.

4. Ask the thread to continue executing.

There is only one debugger, but there are multiple
threads, and each one has its own pc and its own com-
munication with the CPU. When the CPU noti�es the
debugger of a trap, it identi�es the trapping thread.

6. hproctypes 6i�
proctype CPU() {

threadid id = 0;

do

:: execute[id]?x ->

if

:: trapped[pc[id]] -> trap!id ; resume?x

:: !trapped[pc[id]] -> hadvance pc[id] 7i
fi;

cont[id]!x;

hpossible context switch (change of id) 27i
od

}

De�nes:

CPU, used in chunk 29.

Uses cont 2, execute 2, resume 2, trap 2, and trapped 5.

This de�nition is continued in chunks 12, 13, 24, and 25.

This code is used in chunk 29.

A PROMELA proctype de�nes the actions taken by
a PROMELA process. c?x receives the value x on
channel c; c!x sends. do, if, and :: are comparable
to the iteration, alternation, and bar ([]) commands
from Dijkstra's (1976) calculus of guarded commands.
Their semantics di�er when all guards are false; the
PROMELA if and do block waiting for a guard to
become true, but Dijsktra's iteration command termi-
nates, and his alternation command aborts. In this
example, the guards make the if command determin-
istic.
The only signi�cant source of nondeterminism in the

model is represented by the chunk hpossible context

switch (change of id) 27i. If id can change after every
attempt to execute an instruction, instructions from
the two threads can be interleaved arbitrarily. Sec-
tion 3.4 shows the part of the model that handles con-
text switching; id can change only if such change is
permitted by the breakpoint implementation.

Since the program counter is an abstraction, advanc-
ing it does not mean incrementing it. By the de�nition
of follow set, a successful execution at Break is guaran-
teed to be followed by an attempt to execute Follow;
aside from that, any instruction can follow any other.

7. hadvance pc[id] 7i�
if

:: pc[id] == Break -> pc[id] = Follow

:: pc[id] != Break ->

/* any instruction can be next */

if

:: pc[id] = Outside

:: pc[id] = Break

:: pc[id] = Follow

fi

fi

Uses Break 4, Follow 4, and Outside 4.

This code is used in chunk 6.

Because the second if statement has no guards, an
alternative is chosen nondeterministically. This non-
determinism is not essential to the model, and it does
not a�ect the correctness of the breakpoint implemen-
tation; it exists only to abstract away from the ex-
act sequence of instructions executed by a particular
thread.

All threads begin execution outside the breakpoint.

8. hdeclarations 1i+�
byte pc[NTHREADS];

9. hinitialize thread id's data 9i�
pc[id] = Outside;

Uses Outside 4.

This de�nition is continued in chunks 11 and 23.

This code is used in chunk 30.

3.3 Counting events

A correct breakpoint implementation guarantees that
the debugger is noti�ed exactly once for every trip
a target thread takes through the breakpoint. The
counter threadcount[id] counts how many times
thread id has executed the breakpoint. The counter
notifycount[id] counts how many times the debug-
ger has been noti�ed that thread id executed the
breakpoint.

10. hdeclarations 1i+�
byte threadcount[NTHREADS];

byte notifycount[NTHREADS];

De�nes:

notifycount, used in chunks 11, 12, and 16.

threadcount, used in chunks 11, 12, and 15.

11. hinitialize thread id's data 9i+�
threadcount[id] = 0;

notifycount[id] = 0;

Uses notifycount 10 and threadcount 10.

19

The thread model maintains threadcount[]. If the
program counter is Break, execution is attempted, and
the program counter is no longer Break, then instruc-
tion I has been executed and the thread counter must
be incremented. If the program counter remains Break
after the attempt, the attempted execution failed, and
the counter should not be incremented.2 The thread
model also contains an embedded assertion stating
that, unless the thread is in the middle of a breakpoint,
the thread and debugger counts are the same:

12. hproctypes 6i+�
proctype thread(threadid id) {

do

:: if

:: pc[id] == Break ->

execute[id]!x; cont[id]?x;

hif pc 6= Break, increment thread count 14i

:: pc[id] != Break ->

execute[id]!x; cont[id]?x

fi;

assert(pc[id] != Outside ||

threadcount[id] == notifycount[id])

od

}

De�nes:

thread, used in chunk 29.

Uses Break 4, cont 2, execute 2, notifycount 10, Outside 4,

and threadcount 10.

The debugger, when noti�ed that thread id has hit
the breakpoint, increments notifycount[id].

13. hproctypes 6i+�
proctype debugger() {

threadid id;

do

:: atomic {

notify?id -> hincrement notifycount[id] 16i

}

od

}

De�nes:

debugger, used in chunk 29.

Uses notify 2.

2I discount the possibility that instruction I branches to itself.

This possibilitybreaks themodel's assumption that Follow is dis-

tinct from Break. It also breaks real breakpoint implementations

that rely on adjustment of traps by software; only implementa-

tions that use a hardware trace bit can handle such instructions.

This possibility is unimportant in practice because the machines

that have no trace bit are RISC machines, on which it is not

useful to write programs containing instructions that branch to

themselves.

The PROMELA atomic keyword groups actions into
a single atomic action. When the debugger is noti�ed,
it atomically increments notifycount[id]. Without
atomic, it might delay incrementing the counter until
the thread left the breakpoint, which would lead to a
spurious violation of the assertion above.
A thread has successfully executed Break if the pc

has changed:

14. hif pc 6= Break, increment thread count 14i�
if

:: pc[id] != Break ->

hincrement threadcount[id] 15i

:: pc[id] == Break -> skip

fi

Uses Break 4.

This code is used in chunk 12.

Restricting the values of the counters to be in the
range 0..3 keeps the state space small.

15. hincrement threadcount[id] 15i�
threadcount[id] = (threadcount[id] + 1) % 4

Uses threadcount 10.

This code is used in chunk 14.

16. hincrement notifycount[id] 16i�
notifycount[id] = (notifycount[id] + 1) % 4

Uses notifycount 10.

This code is used in chunk 13.

3.4 Implementing the breakpoint

The standard description of trap-based breakpoint im-
plementations refers to single stepping. To set a break-
point at I, plant a trap at I. When the target program
hits the trap, notify the debugger of a breakpoint event.
To resume execution after the breakpoint, restore the
original instruction to I, single step the machine to ex-
ecute just the instruction at I, and once again plant a
trap at I and continue execution.
This model eliminates single stepping entirely, work-

ing directly with trap instructions and a follow set
(modeled by Follow). It does not, however, preclude
the use of hardware single stepping. One of the opera-
tions in the model is planting traps at the locations in
the follow set of an instruction. This operation can be
implemented either by computing the follow set and
planting actual traps, or by setting a trace bit on a
machine with hardware single stepping.
An active breakpoint is trapped either on the in-

struction of the breakpoint itself or the instructions in
its follow set. The variable breakstate keeps track of
which state it is in, with the following invariant.

17. hinvariant 17i�
breakstate == Break &&

trapped[Break] == 1 && trapped[Follow] == 0

|| breakstate == Follow &&

trapped[Break] == 0 && trapped[Follow] == 1

Uses Break 4, breakstate 18, Follow 4, and trapped 5.

This code is used in chunks 20 and 21.

20

18. hdeclarations 1i+�
byte breakstate = Break;

De�nes:

breakstate, used in chunks 17, 20, 21, 24, and 25.

Uses Break 4.

19. hinitialization 19i�
trapped[Break] = 1;

Uses Break 4 and trapped 5.

This code is used in chunk 29.

Changing the state preserves the invariant.

20. hmove traps to Break 20i�
atomic {

trapped[Break] = 1; trapped[Follow] = 0;

breakstate = Break; assert hinvariant 17i
}

Uses Break 4, breakstate 18, Follow 4, and trapped 5.

This code is used in chunks 24 and 25.

21. hmove traps to Follow 21i�
atomic {

trapped[Break] = 0; trapped[Follow] = 1;

breakstate = Follow; assert hinvariant 17i
}

Uses Break 4, breakstate 18, Follow 4, and trapped 5.

This code is used in chunks 24 and 25.

It is necessary to keep track of the state of each
thread with respect to the breakpoint. A thread is \in
the breakpoint" if it has trapped at Break, and it does
not \leave the breakpoint" until it traps at Follow.
Threads are initially outside the breakpoint.

22. hdeclarations 1i+�
bit inbreak[NTHREADS];

De�nes:

inbreak, used in chunks 23{25.

23. hinitialize thread id's data 9i+�
inbreak[id] = 0;

Uses inbreak 22.

The incorrect implementation described in the intro-
duction keeps track of the various states and delivers a
breakpoint event at the right time:

24. hproctypes 6i+�
proctype badbreakpoint() {

threadid id;

do

:: trap?id ->

if

:: breakstate == Break ->

if

:: !inbreak[id] -> notify!id;

inbreak[id] = 1

:: inbreak[id] -> skip

/* no event */

fi;

hmove traps to Follow 21i
:: breakstate == Follow ->

if

:: inbreak[id] -> inbreak[id] = 0

:: !inbreak[id] -> skip

fi;

hmove traps to Break 20i

fi;

resume!x

od

}

Uses Break 4, breakstate 18, Follow 4, inbreak 22, notify 2,

resume 2, and trap 2.

The two cases
breakstate == Break

and
breakstate == Follow

represent the two handlers described in the introduc-
tion. This implementation works correctly with one
thread, but with two threads it permits the erroneous
execution sequence shown in Figure 2.

21

To prevent such an occurrence, the processor must
not be permitted to change contexts when a thread is
in the middle of a breakpoint. If the processor can
change contexts only when noswitch == 0, then the
following breakpoint implementation works correctly.

25. hproctypes 6i+�
proctype breakpoint() {

threadid id;

do

:: trap?id ->

if

:: breakstate == Break ->

if

:: !inbreak[id] -> notify!id;

inbreak[id] = 1

:: inbreak[id] -> assert(0)

fi;

noswitch = noswitch + 1;

hmove traps to Follow 21i

:: breakstate == Follow ->

if

:: inbreak[id] -> inbreak[id] = 0

:: !inbreak[id] -> assert(0)

fi;

hmove traps to Break 20i;

noswitch = noswitch - 1

fi;

resume!x

od

}

De�nes:

breakpoint, used in chunk 29.

Uses Break 4, breakstate 18, Follow 4, inbreak 22,

noswitch 26, notify 2, resume 2, and trap 2.

When context switching is forbidden, breakstate al-
ways reects the information in inbreak, and it is pos-
sible to take each skip from the bad breakpoint imple-
mentation and strengthen it to assert(0) in the good
implementation.
Because there is only one breakpoint, noswitch

could be a bit, not a counter, but a counter generalizes
to multiple breakpoints.

26. hdeclarations 1i+�
byte noswitch = 0;

De�nes:

noswitch, used in chunks 25 and 27.

The model's CPU may change threads only when
noswitch is zero:

27. hpossible context switch (change of id) 27i�
if

:: noswitch == 0 -> hset id nondeterministically 28i

:: noswitch > 0 -> skip

fi

Uses noswitch 26.

This code is used in chunk 6.

28. hset id nondeterministically 28i�
atomic {

if

:: id = 0

:: id = 1

fi

}

This code is used in chunk 27.

When noswitch is nonzero, the nondeterministic choice
of id models the arbitrary interleaving of instructions
that takes place in a multiprocessor, or the arbitrary
interleaving that takes place when threads are sched-
uled pre-emptively on a uniprocessor.

4 Results

For the code shown above to be a proper PROMELA
model, the proctype declarations must follow the other
declarations, and there must be initialization actions
that create the �ve processes and their associated chan-
nels.

29. hPROMELA model 29i�
hdeclarations 1i

hproctypes 6i

init {

threadid id;

atomic {

hinitialization 19i
hfor 0 � id < NTHREADS, initialize thread id's data 30i;

run thread(0);

run thread(1);

run debugger();

run breakpoint();

run CPU(2)

}

}

Uses breakpoint 25, CPU 6, debugger 13, and thread 12.

This chunk expands to the complete PROMELA model.

30. hfor 0 � id < NTHREADS, initialize thread id's data 30i�
id = 0;

do

:: id < NTHREADS -> hinitialize thread id's data 9i

if

:: id == NTHREADS - 1 -> break

:: id < NTHREADS - 1 -> id = id + 1

fi

od

This code is used in chunk 29.

22

The full model is 169 (narrow) lines long, includ-
ing both good and bad breakpoint implementations.
The PROMELA checker takes about 4.2 seconds on a
SPARC 10 to check all possible executions for viola-
tions of the embedded assertions. By �nding none, it
shows that the suppression of context switching in the
correct implementation is su�cient to guarantee that
all executions of I are reported to the debugger. If the
bad breakpoint implementation is used instead of the
good one, the checker takes less than a second to �nd
an execution that leads to an assertion violation. Such
an execution was used to prepare Figure 2. The result
may be stated thus:

While the memory at I holds the original instruc-
tion and not a trap, only the thread that trapped
at I may be permitted to execute.

5 Related work

Caswell and Black (1990) describe the implementation
of a multithreaded debugger. They mention that they
use a breakpoint implementation based on trapping
and single-stepping, but they do not identify the pitfall.
Redell (1989) alludes to the problem, indicating that
careful design is necessary in the debugger's treatment
of threads and events. Elsewhere, I have described in
detail a breakpoint implementation based on the model
presented here (Ramsey 1992b).

Much of the work on breakpoints has focused on per-
formance. Kessler (1990) describes a fast implemen-
tation of code breakpoints; Wahbe (1992) describes
simulations of four implementations of data break-
points. In a parallel environment, debugging work
can be o�oaded onto a second processor (Aral, Gert-
ner, and Scha�er 1989). Alternatively, monitoring and
logging can be done by a special-purpose coproces-
sor (Gorlick 1991). All these approaches use either
branch or coprocessor instructions to transfer control
from target to debugging code without kernel interven-
tion, avoiding the overhead of trap handling and con-
text switching. The authors with working implementa-
tions describe performance improvements of three or-
ders of magnitude over trap-based breakpoints as im-
plemented on Unix.

6 Discussion

Breakpoints may be implemented either in the operat-
ing system or in the debugger itself; the choice does not
a�ect the model used here. Although they use similar
breakpoint implementations, the Topaz teledebugger
puts the breakpoint implementation in the operating
system (Redell 1989); ldb, the author's Unix telede-
bugger, puts it in the debugger (Ramsey 1992b). The

model assumes it can plant trap instructions in the in-
struction stream of the target program, and that it will
be noti�ed when the target program encounters a trap.
The model also suits a machine with a \trace mode"
that causes a trap after the execution of every instruc-
tion.

The trap-based implementation of breakpoints is
usually explained in terms of instruction-level single
stepping. This explanation misleadingly suggests that
breakpoints can be implemented using simple, sequen-
tial code. In fact, the implementation must be writ-
ten in a kind of continuation-passing style, using event
handlers to match continuations with events. Thinking
in terms of traps at follow sets makes it easier to un-
derstand the real implementation. It also clari�es the
relationship between an implementation that uses only
traps and one that uses a hardware trace mode; plant-
ing or suspending traps in a follow set is equivalent to
setting or clearing a trace bit in a program status word.

The model forbids context switching when a thread
is in the middle of a breakpoint. On a uniprocessor
switched among several threads, the obvious interpre-
tation is to prevent switching. On a uniprocessor run-
ning only a single thread, the interpretation is that
the debugger must not use the thread's stack to call
a procedure (e.g., during expression evaluation) while
context switching is forbidden. On a shared-memory
multiprocessor, only the processor running the thread
that hit the breakpoint may be permitted to run; all
the other processors must be stopped before the break-
pointing thread executes instruction I.

The \debugger" in the model presented here is re-
ally monitoring, not debugging, because the breakpoint
implementation always resumes execution immediately
after encountering the breakpoint. A richer model
would let the debugger decide when to resume execu-
tion, but it would not change the result. A real de-
bugger must enable users to evaluate expressions when
the target is stopped at a breakpoint. Such expressions
include calls to procedures, which may themselves hit
or \re-enter" the same breakpoint. To permit context
switching from primary code to expression-evaluation
code, the debugger must delay restoration of I until
a suspended evaluation (or the original code) is ready
to resume at I. When this delay is correctly imple-
mented, a debugger can build up an arbitrary num-
ber of suspended evaluations, all of which have hit the
breakpoint at I.

The PROMELA formalism and tools were designed
to help validate network protocols, but they can be use-
fully employed on a wider range of problems. Designers
and implementors of programming-environment tools
should consider using PROMELA (or similar tools) to
model interactions in their systems.

23

References

Aral, Ziya, Ilya Gertner, and Greg Scha�er.
1989 (May). E�cient debugging primitives for
multiprocessors. Proceedings of Third
International Conference on Architectural

Support for Programming Languages and

Operating Systems, in a special issue of
SIGPLAN Notices, 24:87{95.

Bruegge, Bernd. 1985 (September). Adaptability and
Portability of Symbolic Debuggers. PhD thesis,
Carnegie Mellon University.

Caswell, Deborah and David Black. 1990 (January).
Implementing a Mach debugger for
multithreaded applications. In Proceedings of the

Winter USENIX Conference, pages 25{39,
Washington, DC.

Digital Equipment Corporation. 1975.
DDT|Dynamic Debugging Technique. Maynard,
MA.

Dijsktra, Edsger W. 1976. A Discipline of

Programming. Englewood Cli�s, NJ:
Prentice-Hall.

Gorlick, Michael M. 1991 (December). The ight
recorder: An architectural aid for system
monitoring. Proceedings of the ACM/ONR

Workshop on Parallel and Distributed Debugging,

in SIGPLAN Notices, 26(12):175{183.

Hoare, C. A. R. 1978 (August). Communicating
sequential processes. Communications of the
ACM, 21(8):666{677.

Holzmann, Gerard J. 1991. Design and Validation of

Computer Protocols. Englewood Cli�s, NJ:
Prentice Hall.

Kessler, Peter B. 1990 (June). Fast breakpoints:
Design and implementation. Proceedings of the
ACM SIGPLAN '90 Conference on Programming

Language Design and Implementation, in
SIGPLAN Notices, 25(6):78{84.

Knuth, Donald E. 1984. Literate programming. The
Computer Journal, 27(2):97{111.

Linton, Mark A. 1990 (June). The evolution of Dbx.
In Proceedings of the Summer USENIX

Conference, pages 211{220, Anaheim, CA.

Ramsey, Norman. 1992a (August).
Literate-programming tools need not be complex.
Technical Report CS-TR-351-91, Department of
Computer Science, Princeton University.
Submitted to IEEE Software.

. 1992b (December). A Retargetable Debugger.
PhD thesis, Princeton University, Department of
Computer Science. Also Technical Report
CS-TR-403-92.

Redell, David D. 1989 (January). Experience with
Topaz TeleDebugging. Proceedings of the ACM
SIGPLAN/SIGOPS Workshop on Parallel and

Distributed Debugging, in SIGPLAN Notices,
24(1):35{44.

Stallman, Richard M. and Roland H. Pesch. 1991.
Using GDB: A guide to the GNU source-level
debugger, GDB version 4.0. Technical report,
Free Software Foundation, Cambridge, MA.

Wahbe, Robert. 1992 (September). E�cient data
breakpoints. Proceedings of the Fifth
International Conference on Architectural

Support for Programming Languages and

Operating Systems, in SIGPLAN Notices,
27(9):200{212.

24

