
Software Architecture: Foundation of a Software Component Marketplace

E. James Whitehead, Jr. Jason E. Robbins Nenad MedvidovicRichard N. Taylor

Department of Information and Computer Science
University of California, Irvine
Irvine, California 92717-3425

{ejw,jrobbins,neno,taylor}@ics.uci.edu

Abstract
This paper provides a characterization of software

architectures which become the foundation for the estab-
lishment of marketplaces for software components. A
description is made of a framework of key properties that a
software architecture should exhibit to be the basis of a
component marketplace. As examples of existing software
component marketplaces, Unix filter and Visual Basic VBX
marketplaces are examined with respect to this framework.
The Chiron-2 architectural style is analyzed with respect to
these properties to determine its potential as a future soft-
ware component marketplace in the user interface
domain.1.

1.0 Introduction

The goal of a software components marketplace, though
decades old, is still compelling. In a component based
development scheme, instead of hand-crafting systems,
software designers browse catalogs of software components
from multiple vendors, assembling complex systems from
abstract building blocks. Many benefits result from this
scheme, including decreased system development time and
cost, low component cost due to the amortization of compo-
nent development costs over multiple users, robust compo-
nents due to greater maintenance resources supported by

1. This material is based upon work sponsored by the Air
Force Materiel Command, Rome Laboratory and the
Advanced Research Projects Agency under contract number
F30602-94-C-0218. The content of the information does not
necessarily reflect the position or policy of the Government
and no official endorsement should be inferred.

multiple users of each component, and a wide range of gen-
eral-purpose and domain specific components. The benefits
of component based software development have motivated
many researchers, from its introduction by McIlroy in 1968
[McIl69] to the present day work on megaprogramming
[BoSc92] [Trac91], domain specific architectures [Haye94]
[ADAG92], hierarchical systems with reusable components
[BaOM92], and formal modeling of components and archi-
tectures [AAG93].

Existing marketplaces, such as those for digital elec-
tronic components, share the common feature that they are
based on the existence of a common architectural standard.
Digital electronics components interoperate based on a sim-
ple architecture, usually based on the mapping of +5 volts to
a logical 1, 0 volts to a logical 0, with signals passed
through wires. More complex components build upon this
standard, for example adding clocking and bus conventions
in the case of the architecture for microprocessor compo-
nent families. In all cases these simple standards are supple-
mented by rules detailing meaningful connections and
configurations of components.

A commercial software component marketplace is the
coming together of buyers and sellers to exchange money
for software components. The relationship of an architec-
ture to a marketplace is that an architecture is a necessary
but not sufficient condition for the creation of a market-
place. Just as an electronic components marketplace could
not exist without the existence of the digital electronics
architecture, software component marketplaces cannot exist
without appropriate architectural standards. Architectures
provide a foundation upon which component marketplaces
are potentially built.

Non-commercial software component marketplaces are
also possible. In these marketplaces, components are given
away without direct monetary compensation in the expecta-
tion of achieving some other goal. Sometimes the motiva-
tion is purely altruistic, in the tradition of the Internet



community. With other exchanges, there is an expectation of
increased prestige or recognition derived from the positive
experiences of community members using the software
component. Just as for the commercial case, software archi-
tectures provide a potential basis upon which non-commer-
cial software component marketplaces may be built. In fact,
a well-designed architecture should support both types of
component marketplaces, commercial and non-commercial.

In the remainder of this paper, we describe proposed
requirements a software architecture must meet to be the
basis of a component marketplace. Note that these require-
ments have not been entirely validated by existing research,
and should be considered a framework for further research
into what should be the complete set of requirements. These
requirements are used to examine a software architecture
introduced decades ago, the Unix pipe and filter architec-
ture, and to examine an architecture introduced more
recently, the Visual Basic VBX architecture. Finally, a cur-
rent research architecture, Chiron-2 [TMA+95], is analyzed
with respect to these properties to determine its potential as
a future software component marketplace in the UI domain.

2.0 Requirements on Architectures for
Software Component Marketplaces

From an economic standpoint, architectures have been
defined as “a complex of standards and rules” [MoFe93],
while from a software engineering standpoint architectural
styles are essentially key design idioms. That is, the stan-
dardizing aspects of architectures carry greater relevance to
an economic frame of reference, while structures for the
design of systems are more relevant to the software engi-
neer. These two viewpoints show that aspects of a given
architecture are valued differently, depending on the factors
most relevant to the observer.

While the motivation for examining the key aspects of
an architecture that make it a good foundation for a compo-
nent marketplace is primarily economic, the requirements
listed below are technical in nature. The strength of this
approach derives from choosing a economically-motivated
goal (successful component marketplaces), and emphasiz-
ing technical requirements that help reach that goal. By
choosing an economic goal, the resulting requirements are
in some cases quite different to those embodied by current
software architectures.

There are a myriad of factors beyond these architectural
requirements which affect the commercial success of a com-
ponent marketplace, such as amount of capitalization, sup-
port by key players, backing by smaller companies willing
to develop components, timing, marketing strategy, access
to distribution channels, and pricing. However, we feel that
meeting these requirements can substantially enhance the
chances a given architecture can become a successful mar-
ketplace.

The key properties of an architecture which make it suit-

able as a potential basis for a component marketplace
include:

1. Multiple component granularities

The architecture must support components that are both
small and large, for example, as small as a linked list
and as large as a spelling checker. While most larger
components could undoubtedly be constructed from
smaller components, larger components can provide a
more meaningful packaging of functionality to design-
ers. In most cases, a buyer who wants a spelling checker
component would find a pre-made spelling checker
component more relevant than more generic compo-
nents which can be used to construct the spelling
checker.

2. Substitutability of components

The architecture must provide support for removing one
component and substituting for it an equivalent compo-
nent. This allows competition based on features and
price for a particular component. For example, a word
processor vendor might want to replace their current
spelling checker component with one that is cheaper, or
more tailored for a niche market which has a highly spe-
cialized vocabulary. As another example, in the user
interface domain it might be desirable to replace one
low-level graphical toolkit with another, perhaps less
expensive toolkit.

3. Parameterizable components

The architecture must support components which can be
parameterized before being used in a design, allowing
the behavior of the component to be tailored by the
designer. For example, a sorting component might be
parameterizable based on characteristics of the input set,
and different designs would use the same component
with differing parameterizations. Ideally, the parameter-
ization of a component should be easy to perform, aid-
ing the ease of use of the component by the designer.
When available and appropriate, a GUI interface is the
preferred interface to the component for performing this
parameterization. Note that this interface does not nec-
essarily have to be supplied by the component itself, but
could instead be a scaffolding that is used during design,
then removed for execution.

4. Customizable components

To support customization by the end-user, the behavior
of the component must be customizable via a facility
provided by the component. The customization interface
should be tailored to the skill level of the user, and
should have an emphasis on its usability.

5. Component development in multiple programming lan-
guages

Since different programming languages have strengths
for different applications, and since new major lan-
guages emerge periodically, an architecture should sup-



port components developed in different programming
languages. Additionally, an architecture should provide
support for legacy systems, which will likely be written
in multiple programming languages.

6. Component-specific help

Ideally, it should be possible for software designers and
component users to get help from the component itself.
This might vary from an embedded phone number for a
support line to a help window or an automatic connec-
tion to a WWW server which contains documentation
and a frequently asked questions list.

7. Composing component-specific user interface dialog
and presentation properties

While there are many components which do not present
an interface to the user, there are some domains and
some components which do have stereotypical user
interfaces. For example, a component which provides
modem dialing functions may present an interface of
phone numbers, while a spreadsheet artist component
may present a grid view of the spreadsheet data. In the
case where there are multiple component-specific user
interface dialog and presentation properties, an architec-
ture must support their composition into interfaces
which can be tailored to meet the specific requirements
for the application user interface. For example, a pro-
gram which automatically dials a modem and down-
loads data for display and manipulation by a spreadsheet
component should look like it has an integrated inter-
face tailored to its specific task and typical users rather
than something haphazardly patched together.

8. Easy distribution of components from seller to buyer

It should be easy to package and distribute a component.
Ideally, an architecture should support the distribution
of components in binary form, so they can be used with-
out need for a compilation step. This supports ease of
use: a component can be copied off of a CD-ROM, or
received from a network in a ready-to-use format.

9. Support for multiple sales models

Existing software has multiple sales models, ranging
from single sale, single-user (PC software model), to
single sale, multiple users (workstation model). In a
highly vertical market it is common to give away evalu-
ation copies that expire after a given time period. An
architecture should not be biased towards only one sales
model. Also, an architecture should ideally provide sup-
port for differing sales models, for example by provid-
ing a standard license handling component for the
workstation sales model.

Fundamental to these requirements is the notion that
components should be designed with an emphasis on usabil-
ity. Unlike traditional usability of a product interface where
the only significant interface is between the program and the
end-user, components potentially have two interfaces: one

between the component and the designer, and another
between the component and the end-user. Like traditional
applications, an emphasis on usability in components is
expected to provide benefits in ease of use, flexibility, lower
learning time, and ease of adoption through a reduction of
interface complexity.

3.0 Existing Software Component Marketplaces

We will now examine two architectures which have both
achieved significant success. The first, the Unix pipe and fil-
ter architecture, achieved significant success in forming the
basis of a primarily non-commercial components market-
place comprised of many filters accessible via the Internet.
A more recent example is the Visual Basic VBX architec-
ture, which has formed the basis of a successful commercial
components marketplace. These two architectures will be
described below, followed by an analysis of how they each
satisfy the requirements of Section 2.

3.1 Unix Pipe and Filter
The Unix pipe and filter mechanism, provided by all major
shell programming languages for the Unix operating sys-
tem, is one of the oldest component based architectures.
Using pipes, the output from one component becomes the
input to another component. A component typically acts as
either a source of data, a sink for data, or a transformational
filter which converts input data into a different form of out-
put data. Components interact by passing streams of
untyped data. Using the language facilities of the shell,
components can be combined in very intricate ways. As
well, languages likeawk andsed allow for the creation of
filters with complex behaviors.

The power and flexibility of this architecture has influ-
enced many other operating systems, and has created a size-
able non-commercial components marketplace. Many
components are available, ranging from chess games to file
format converters to compilers. A smaller commercial com-
ponents marketplace also exists, exemplified by printer fil-
ters that convert different output file formats into the page
definition language understood by a particular printer.

Unix pipe and filters meet many of the requirements
given in Section 2 (referred to by number in the paragraph
below) for becoming the basis of a software components
marketplace. Filters can be of arbitrary granularity (#1), and
can easily be substituted for one another (#2). Limited num-
bers of parameterizable components (#3) do exist, such as
the programmable filters,grep, sed andawk, but these are
more the exception than the rule. While some filters are cus-
tomizable through initialization files or command line
options, they are typically weak in this area (#4). Filters
have been written in every programming language imagin-
able (though mostly in C), easily meeting the requirement
for independence of programming language (#5). Most fil-
ters do offer limited component-specific help (#6) from
within the filter, typically on command-line options. How-



ever, almost all filters do come withman pages describing
their operation.

Since Unix filters predate graphical user interfaces, it is
unfair to be critical of their lack of composable interface
widgets (#7). However, a major flaw of the pipe and filter
mechanism is the difficulty of adding graphical interfaces to
filters. Filters are typically distributed in source code, a
major drawback which effectively limits the acquisition of
new filters to a Unix-savvy elite (#8). Unix filters also only
support a single sales model of buy once, use by everyone.
There is no support for accessing license servers or a pay-
per-use mechanism. (#9). It is perhaps the lack of graphical
user interface support, the high skill levels needed to utilize
existing distribution channels, and the lack of flexibility in
sales model which has favored a non-commercial filter mar-
ketplace over a commercial marketplace.

3.2 Visual Basic and VBX
Microsoft Visual Basic [Aitk93] provides a graphical devel-
opment environment for Microsoft Windows integrated
with a direct manipulation GUI builder. Graphical user
interface elements and their graphical and functional
attributes may be specified interactively through property
sheets. For example, after adding a list box to the GUI, a
developer may specify such attributes as size, position,
color, and whether multi-item selections are allowed. Addi-
tional GUI elements may be seamlessly integrated into the
development environment through the use of Visual Basic
Extensions (VBXs). VBXs package the graphical and func-
tional properties of a new user interface element.

Visual Basic components have several advantages over
software libraries. It requires very little programming effort
to integrate a VBX into a new or existing application since
the user interface and the functionality are provided in a sin-
gle easy-to-use package. Additionally, various attributes of
the component, both visual and functional, can be custom-
ized by the programmer through the property sheet of a
VBX. VBX developers, not the VBX users, are responsible
for creating the GUI interface and property sheets. The
combination of the GUI builder and the property sheets
allow interactive use, configuration, and testing of Visual
Basic components in an environment closely resembling
that of the application environment.

In contrast to VBXs, software libraries typically provide
only functionality and require the programmer to design the
user interface. Software libraries also burden the developer
by requiring written code to configure and tailor the library
for application use. Software libraries are more rigid and
time consuming to use for Windows user interface program-
ming than Visual Basic components. Visual Basic compo-
nents provide functionality with little programming effort,
significantly reducing the barrier to learn, use, and reuse
software.

The down side to Visual Basic is that it is tightly tied to
Windows and its limitations of a segmented memory model,

cooperative multitasking, and lack of robustness. Because
of this, those developing applications in Visual Basic using
VBXs are encountering problems scaling up their applica-
tions [Udel94]. The Visual Basic/VBX architecture is sim-
ple, providing primarily a common interface for event
passing and Windows API calls.

Despite the simplicity of the Visual Basic/VBX archi-
tecture, it still meets many of the requirements for a suc-
cessful architecture. While there are VBX components of
varying size (requirement #1 from Section 2, hereafter
referred to by number), even components within the same
domain (such as databases) are not substitutable for one
another (#2). Components are customizable and parameter-
izable to a limited degree using graphical property sheets as
an interface (#3, #4). VBXs may be written in a limited
number of languages, notably Visual Basic and C++, pro-
viding partial multi-lingual support (#5). While component-
specific help is possible, existing components do not pro-
vide component-specific help from within the component
(#6). Visual Basic provides strong support for composing
user interfaces using widgets from different components
(#7). Components can be easily distributed on disks from
vendor to customer, and can be used as-is, without need for
recompilation (#8). VBXs do not support multiple sales
models since they only support the single-sale, single-user
model typical on PCs (#9).

We now examine a new research architecture, the Chi-
ron-2 architecture by introducing its features, and examin-
ing its suitability for providing a potential basis for a
component marketplace.

4.0 Chiron-2 Overview2

The Chiron-2, or C2, architectural style [TMA+95] is
designed to support the particular needs of applications that
have a graphical user interface aspect, but the style clearly
has the potential for supporting other types of applications.
A key motivating factor behind the development of the C2
style is the emerging need, in the user interface world, for a
more component-based development economy. User inter-
face software frequently accounts for a very large fraction
of application software, yet reuse in the UI domain is typi-
cally limited to toolkit (widget) code. The C2 style supports
a paradigm in which UI components, such as dialogs, struc-
tured graphics models (of various levels of abstraction), and
constraint managers, can more readily be reused. A variety
of other goals are potentially supported. These goals include
the ability to compose systems in which components may be
written in different programming languages, components
may be running in a distributed, heterogeneous environment
without shared address spaces, architectures may be
changed dynamically, multiple users may be interacting

2. This section is a summary of [TMA+95] which will appear
in the Proceedings of the 17th International Conference on
Software Engineering.



with the system, multiple toolkits may be employed, multi-
ple dialogs may be active (and described in different formal-
isms), multiple media types may be involved, and multiple
user tasks (“processes”) supported. We have not yet demon-
strated that all these goals are achievable or especially sup-
ported by this style. However, we have examined several
key properties and built several diverse experimental sys-
tems, and believe that our preliminary findings are encour-
aging and that the style has substantial utility “as is.”

The C2 style can be informally summarized as a net-
work of concurrentcomponents hooked together byconnec-
tors, i.e., message routing devices. Components and
connectors both have a defined top and bottom. The top of a
component may only be connected to the bottom of a single
connector. The bottom of a component may only be con-
nected to the top of a single connector. There is no bound on
the number of components or connectors that may be
attached to a single connector. When two connectors are
attached to each other, it must be from the bottom of one to
the top of the other (see Figure 1).

Each component has a top and bottom domain. The top
domain specifies the set ofnotifications to which a compo-
nent responds, and the set ofrequests that the component
emits up an architecture. The bottom domain specifies the
set of notifications that this component emits down an archi-
tecture and the set of requests to which it responds.

All communication between components is solely
achieved by exchanging messages. This requirement is sug-
gested by the asynchronous nature of component-based
architectures, and, in particular, of applications that have a
GUI aspect, where both users and the application perform

actions concurrently and at arbitrary times and where vari-
ous components in the architecture must be notified of those
actions. Message-based communication is extensively used
in distributed environments for which this architectural style
is suited.

Central to the architectural style is a principle of limited
visibility or substrate independence: a component within
the hierarchy can only be aware of components “above” it,
i.e., components typically closer to the “application,” and
thus further from the windowing system. Components are
completely unaware of the components—including tool-
kits—which reside “beneath” them.

Substrate independence has a clear potential for foster-
ing substitutability and reusability of components across
architectures. One issue that must be addressed, however, is
the apparent dependence of a given component on its
“superstrate,” i.e., the components above it. If each compo-
nent is built so that its top domain closely corresponds to the
bottom domains of those components with which it is spe-
cifically intended to interact in the given architecture, its
reusability value is greatly diminished and it can only be
substituted by components with similarly constrained top
domains. For that reason, the C2 style employs the notion of
event translation. Each component maintains a mapping
from the messages it emits on its top side to those the com-
ponents above it are capable of receiving on their bottom
sides. The C2 design environment [RWMT95] is intended
to provide support for building and maintaining these mes-
sages.

Each component may have its own thread(s) of control,
a property also suggested by the asynchronous nature of

B

C C C

C

B

C

C C C

B

B

B

B
C

Component

Legend:

Connector

FIGURE 1. A sample C2 architecture (C are components, B are connectors). Jagged lines represent the parts of the
architecture not shown.



tasks in the GUI domain. It simplifies modeling and pro-
gramming of multi-component, multi-user, and concurrent
applications and enables exploitation of distributed plat-
forms. Note that separating components into different
threads of control is not a requirement. Moreover, a pro-
posed conceptual architecture is distinct from an implemen-
tation architecture, so that it is indeed possible for
components to share threads of control.

Finally, there is no assumption of a shared address space
among components. Any premise of a shared address space
would be unreasonable in an architectural style that allows
composition of heterogeneous, highly distributed compo-
nents, developed in different languages, with their own
threads of control, internal structures, and domains of dis-
course

5.0 The Potential for a Chiron-2
Components Marketplace

Having just described the C2 architectural style, we now
examine its potential for becoming the basis of a user inter-
face components marketplace by tracing how the features of
C2 meet the requirements given in Section 2.

1. Multiple component granularities

The C2 architectural style implicitly supports multiple
component granularities. Nothing within the style pre-
vents arbitrarily large components from being con-
structed, nor does it prevent arbitrarily small
components, so long as they can communicate with con-
nectors. The C2 style also supports the use of a C2
architecture within a single component, and hence com-
posable components are also supported.

2. Substitutability of components

Due to the substrate independence of components
within the C2 style, C2 components have the potential to
be highly substitutable. The C2 style also supports the
notion of a domain translator which can assist the sub-
stitution of components when a particular component
does not exactly provide the desired range of capabili-
ties. The C2 style supports substitution of components
independent of the number of components below it in an
architecture.

3. Parameterizable components

The C2 style expects that components will be parame-
terizable at least to the extent that multiple mappings
between a conceptual architecture and a particular
implementation architecture are possible. For example,
a component might be parameterized so it can have its
own thread of control, or combined with other compo-
nents into a single thread of control. Another potential
parameter is the processor type of the component, so
that one conceptual component can map to one of sev-
eral binaries as the implementation component.

4. Customizable components

There is nothing inherent in the C2 style that would pre-
vent the customization of components. However, there
is at present no explicit support for customization, since
it is outside the set of concerns of the C2 style. A
designer wishing to add customization capabilities to a
C2 component could have it present a customization
interface upon request. This customization interface
would be expressed in an abstract, toolkit independent
fashion by the component, converted into the appropri-
ate drawing commands by the graphics toolkit, and then
presented to the user.

5. Components should be independent of programming
language

The C2 style provides strong support for components
written in multiple programming languages. The C2
assumption that there does not need to be a shared
address space among components, combined with the
ability to have components in multiple simultaneous
processes provides sufficient freedom to support compo-
nents in multiple programming languages.

6. Component-specific help

Like the customization of components, there is nothing
in the C2 style which explicitly supports this require-
ment. However, a designer wishing to add built-in help
facilities to their components could establish a conven-
tion that requires them to export, upon request, either
help text, a help interface, or a notification to perform a
link traversal to a hypertext help system.

7. Support for composing component-specific user inter-
face widgets

The C2 style supports composable component-specific
user interfaces. An artist component may emit messages
abstractly informing components lower in a C2 hierar-
chy how it expects its interface should look. Compo-
nents lower in the hierarchy may then translate these
messages, making the interface description more con-
crete. Finally, a toolkit may receive these messages and
translate them into the drawing commands to place a
component’s interface onto the user’s display along with
the interfaces of other components.

8. Easy distribution of components from seller to buyer

Components in the C2 style will be capable of being dis-
tributed as binaries, and can hence be distributed on
either a CD-ROM, a tape or disk, or via a network con-
nection. The C2 architectural style thus supports the dis-
tribution of components in all of the current major
distribution media.

9. Support for multiple sales models

There is nothing implicit in the C2 style which binds it
to a particular sales model, however there is at present
no explicit support for any sales model. The C2 archi-



tectural style has the capacity for supporting a class of
license handling components which could be used by
components upon start-up to verify that one of several
floating licenses for that component were available. This
would provide support for the workstation sales model,
where one component could be used by potentially
many people, with a maximum number of simultaneous
users. Alternatively, it would also be possible to create a
“usage informer” component which would inform a
remote server each time a component was invoked, thus
supporting a pay-per-usage sales model.

From this examination, it can be seen that the Chiron-2
architectural style either meets, or could potentially meet all
of the requirements to be a basis for a user interface compo-
nents marketplace. However, given the number of require-
ments which are not completely met, it may be premature to
conclude with certainty that the C2 style can become a suc-
cessful marketplace. The results from this analysis are
promising, however.

6.0 Conclusions

We have presented requirements which an architecture
should meet for it to be a suitable basis for a software com-
ponents marketplace. Our examination of the existing soft-
ware component marketplaces of Unix filters and Visual
Basic components suggests that the commercial success of
Visual Basic can be attributed to its focus on providing two
graphical interfaces for each component: one for use by the
end-user, another for use by the designer. They also suggest
the non-commercial nature of the Unix filters marketplace
can be attributed to the combination of the power and flexi-
bility of the architecture combined with the high skill levels
required to acquire and use new components. Analysis of
the Chiron-2 architecture indicates that it has promise as a
basis for user interface components marketplace. These
findings, motivated from an examination of how well they
meet the requirements in Section 2, suggests that these
requirements have utility for analyzing current architec-
tures, and providing design guidance for new architecture
designs.

7.0 Acknowledgments

The authors would like to thank Peyman Oreizy for his
helpful discussion and insight, and the Chiron-2 research
group for their feedback and encouragement.

References
[AAG93] Abowd, Gregory and Allen, Robert and Garlan, David,

“Using Style to Understand Descriptions of Software
Architecture,” inProceedings of the First ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Los
Angeles, 1993, pages 9-20.

[ADAG92] Domain-Specific Software Architecture Engineering
Process Guidelines. ADAGE-IBM-92-02, Version 2.0 (An
abbreviated version of this paper appeared as “A Domain-
Specific Software Architecture Engineering Process Outline”
in Software Engineering Notes (SEN), Vol. 18, No. 2, April
1993).

[Aitk93] Aitken, Peter G.,Microsoft Guide to Visual Basic for MS-
DOS: the Complete Guide to Visual Basic Programming,
Microsoft Press, Redmond, Washington, 1993.

[BaOM92] Batory, Don and O’Malley, Sean, “The Design and
Implementation of Hierarchical Software Systems with
Reusable Components,”ACM Transactions on Software
Engineering and Methodology, Vol. 1, No. 4, October 1992,
pages 355-398.

[BoSc92] Boehm, B. and Scherlis, W. L., “Megaprogramming,” in
Proceedings DARPA Software Technical Conference,
Meridian Corp., Arlington, VA, 1992, pages 63-82.

[Haye94] Hayes-Roth, Frederick, “Architecture-Based Acquisition
and Development of Software: Guidelines and
Recommendations from the ARPA Domain-Specific
Software Architecture (DSSA) Program,” Teknowledge
Federal Systems. Version 1.01 February 4, 1994.

[McIl69] McIlroy, M. D., “Mass-Produced Software Components,”
in Proceedings of the 1968 NATO Conference on Software
Engineering, Garmisch, Germany, 1969, pages 138-155.

[MoFe93] Morris, Charles R. and Ferguson, Charles H., “How
Architecture Wins Technology Wars,”Harvard Business
Review, March-April 1993, pages 86-96.

[RWMT95] Robbins, Jason E., and Whitehead, E. James Jr., and
Medvidovic, Nenad, and Taylor, Richard N. “A Software
Architecture Design Environment for Chiron-2 Style
Architectures,” Tech. Report Arcadia-UCI-95-01, U.C.
Irvine, Irvine, CA, January, 1995.

[Trac91] Tracz, W., “A Conceptual Model for Megaprogramming,”
Software Engineering Notes (SEN), Vol. 16, No. 3, July
1991, pages 36-45.

[TMA+95] Taylor, Richard N. and Medvidovic, Nenad, and
Anderson, Kenneth, and Whitehead, E. James Jr., and
Robbins, Jason E., “A Component and Message-Based
Architectural Style for GUI Software,” to appear,
Proceedings of the International Conference on Software
Engineering 17, Seattle, WA, April 1995.

[Udel94] Udell, Jon, “Componentware,”Byte Magazine, May
1994, pages 46-56.


