
1

GEN++ | an analyzer generator for C++ programs

Prem Devanbu

Artici�al Intelligence Principles Research Department

prem@research.att.com

Laura Eaves

Object Oriented and Arti�cial Intelligence Technologies Group,

laurae@mozart.att.com

1 Introduction

The C++ programming language is becoming increasingly popular within and without

AT&T. C++ supports an object-oriented style of programming, and has many powerful

features that contribute to information hiding, software reuse, and programmaintainability.

Because of the increasing value of C++ software assets, it is important for developers and

managers to have access to tools that extract information, generate metrics, check coding

standards, etc. Tools such as CIA++ [3] make a signi�cant contribution in this area, but

more tools are needed. Unfortunately, tools for C++ are hard to build, primarily because of

the complexity of processing the source|parsing, type checking, and symbol resolution for

C++ are di�cult tasks. In addition, introducing additional functionality into C++ tools,

or tracking the evolution of the C++ language, involves major e�ort.

In this paper, we describe gen++, a tool generator for C++ 3.0. gen++ was implemented

by attaching the GENOA/GENII [2] portable parse tree querying mechanism to the Cfront

3.0 compiler. gen++ is designed to reduce the di�culty of building C++ tools in 3 ways:

�rst, tools are implemented by writing a speci�cation in a compact domain speci�c language;

second, all tools generated by gen++ use the Cfront compiler to do parsing, type checking

and symbol resolution, and �nally, gen++ masks Cfront's implementation details from the

tool builder. To implement a particular C++ language tool with gen++, the tool builder

simply speci�es the operations on the C++ parse tree that are of interest to her; the speci�cs

of processing the source language, and traversing the internal datastructures of Cfront, are

no longer of concern.

2 Background{Decorated parse trees and GENOA/GENII

Language analysis tools (such as CIA, LINT, etc) can be thought of as having two phases. In

the initial phase, the raw source is lexed, parsed, typechecked, all the symbols are resolved

from uses to de�nitions, and an internal representation is constructed (this representation

is called a \decorated parse tree", since it is a parse tree enhanced with notations for

types, references, etc.). In the second phase, the decorated parse tree is traversed and the

information relevant to the particular tool is extracted. In the case of CIA, the relevant

information is de�nition/use occurrences of global names, macros etc; LINT, on the other

hand, is extracts a range of information to check the proper use of types, values, expressions

and so on. The important di�erence between di�erent tools is the processing they perform

2

on the decorated parse tree; thus the decorated parse tree forms the natural \domain of

concern" for a language tool builder.

GENOA/GENII is a portable, language independent analyzer generator tool that can

be used to create arbitrary analysis tools to process source �les and extract useful informa-

tion. An analysis tool is generated by writing a speci�cation in the GENOA special-purpose

query language. The query language has special traversal and iteration operators specially

designed for processing decorated parse trees of programs, and is independent of any partic-

ular source language. GENOA is portable; it can use a decorated parse tree representation

built by any language front end (that is implemented in C). It is ported to a new lan-

guage front end by writing a speci�cation in GENII. A GENII speci�cation describes the

data model of the decorated parse tree built by a particular front end, in a style similar

to entity-relationship or semantic data modeling; it also describes the implementation of

the decorated parse tree in the front end's speci�c data structures. This speci�cation is

compiled by GENII into a set of translation routines and look up tables. These translation

routines and lookup tables support a standard, language- and front-end independent ab-

stract datatype view (ADT) of decorated parse trees. This ADT is used by all the di�erent

tools generated by GENOA.

Thus, simply by writing a GENII speci�cation, an existing front end can be turned into

an analyzer generator. Other approaches to building language processing tools typically

involve constructing a new front end from scratch. Very sophisticated compiler-generator

tools have been proposed for constructing front ends, but given the syntactic and semantic

vicissitudes of practical languages like C and C++, the GENII approach is still o�ers an

economic advantage, if a front end is already available.

3 gen++ and its uses

gen++ was constructed by simply interfacing GENOA to the Cfront compiler: a GENII

interface was written, which describes the internal representation of a C++ decorated parse

tree in the Cfront compiler. gen++ is fairly robust, and has been tested on it's own source

code, and the source code for InterViews.

Using gen++, we have constructed a range of di�erent tools, from analysis tools like

CIA++ to metrics tools and coding standards checkers. To create tool with gen++, one

writes an analysis speci�cation in a domain-speci�c language. To illustrate, we show an

example tool, which detects when variables are modi�ed, and when they are accessed

ROOTPROC VarUse

PROC VarUse

ROOT Cfile;

1 f
2 [

3 (?NameRef

4 (IF (OR (TYPEOF $parent UnaryCount) (AND (TYPEOF $parent Assignment) (EQUAL $slot lhs)))

5 (THEN (PRINT stdout "Variable %s defined at %s" $token $location))

6 (ELSE (PRINT stdout "Name %s accessed at %s" $token $location))))]

7 g

3

A speci�cation in gen++ is a set of procedures, some of which are root procedures; these

get invoked right after Cfront completes the construction of the decorated parse tree. In

this case VarUse is the (only) root procedure. A procedure in gen++ is a series of constructs;

a construct is an operation on a current node; it may print out the current node, copy it

into a variable, or move to a child of the current node, etc. Nodes have types, which are

elements of the C++ decorated parse tree|Expression, Declaration, Assignment etc are

node types. Nodes have slots, the �llers of which are the children (or properties) of the

current node. Thus, a node of type BinaryExpr has slots be lhs and be rhs, the �ller of

each is a node of type Expression. Some times, the �ller of a slot is a list: for example, the

(root) node, of type Cfile has a slot, globals, the �ller of which is a list of Declarations

in the �le.

The various types of constructs are distinguished by enclosure in di�erent types of

parentheses. Let's look at the above procedure to illustrate the features of gen++. The

ROOT Cfile declaration speci�es the current node when the procedure gets invoked is a

node representing the entire �le. At this point, we conduct a global search of all the nodes

below the root node ([: : :] is a global search), looking for nodes of type NameRef which

are essentially references to names of any type. When we �nd name refernces, we check

to see if the parent of that node is a unary increment or decrement operator (denoted

by UnaryCount), or if the parent is an assignment and we got to the NameRef node via

the be lhs slot (which means the name reference being assigned to here). If one of these

conditions is satis�ed, it is a modi�cation; otherwise it's just a use.

Many di�erent tools have been implemented in gen++, to implement di�erent tasks:

1. Generate an inheritance hierarchy of C++ classes.

2. Generate a graph of inter-classmember function calls.

3. Create a default output operator \<<" for a given class.

4. Generate control
ow and data usage reports.

5. Generate C++ metrics: ratio of derived to base classes, ratio of number of public

members to total number of classes, etc. (See Coplien [1] for a more complete list).

6. Check to see that destructors for base classes are always declared to be virtual.

7. Check to see that Constructors and Destructors are never declared virtual.

8. No member function should be both virtual and inline.

Note that the last 3 are coding standards checkers, and the others are information gath-

ering tools. In most cases, the tools are on the order of 30-40 lines of gen++ speci�cations;

the only exception in the list above is the control
ow tool, which is about a 150 lines long,

since it has to handle each kind of control construct in C++. Creating tools with gen++

is easy enough to consider building special-purpose, one-o� tools to meet project-, or even

subsystem-speci�c tool needs; we are certainly willing to do so on request.

4

4 Related Work

There are few related tools that work with C++. We have already discussed CIA++. The

ALF/GRAIL system [4] includes a statically typed, rationalized, C++ source representation

with a well de�ned application programmer interface. GENOA could be easily interfaced to

ALF, to provide the same querying interface; the same advantages as gen++ would accrue: a

tool builder would only have to be familiarwith the abstract structure of C++ programming

language, as implemented in ALF; details of the data structures, classes, methods etc. of

the ALF API would be hidden in the GENII interface speci�cation. GENOA is simply a

portable querying mechanism that can be attached to any representation of a parse tree.

5 Conclusion

gen++ is an analyzer generator for C++ programs. Several sample tools have been built

with it. Documentation is available; the tool has been tested on di�erent bodies of code,

and is reasonably robust. If you would like to experiment with it, please contact one of the

authors.

5

References

[1] Coplien, J. O., \Looking over one's shoulder at a C++ program" 11265-921030-01TM

[2] Devanbu, P., \genoa/genii - A customizable, language- and front-end- independent code

analyzer", Fourteenth International Conference on Software Engineering, Melbourne, Australia,

1992.

[3] Grass J., and Chen, Y-H., "The C++ Information Abstractor", Proceedings, The Second

USENIX C++ Conference, San Fransisco, USA, 1992.

[4] Murray, R.B., \Statically Typed Abstract Representation for C++ Programs", Second USENIX

C++ Conference, 1992.

