GENOA - A Customizable, Language- and Front-End independent
Code Analyzer

Premkumar T. Devanbu
AT&T Bell Laboratories, 600 Mountain Ave,
Murray Hill, NJ 07974*

prem@research.att.com

Abstract

Programmers working on large software sys-
tems spend a great deal of time examining code
and trying to understand it. Code Analysis
tools (e.g., cross referencing tools such as CIA
and CsCOPE) can be very helpful in this pro-
cess. In this paper we describe GENOA, an ap-
plication generator that can produce a whole
range of useful code analysis tools. GENOA is
designed to be language- and froni-end inde-
pendent; it can be interfaced to any front-end
for any language that produces an attributed
parse tree, simply by writing an interface spec-
ification. While GENOA programs can per-
form arbitrary analyses on the parse tree, the
GENOA language has special, compact itera-
tion operators that are tuned for expressing
simple, polynomial time analysis programs; in
fact, there is a useful sublanguage of GENOA
that can express precisely all (and only) poly-
nomial time (PTIME) analysis programs on
parse-trees. Thus, we argue that GENOA is a
convenient “little language” to implement sim-
ple, fast analysis tools. We describe the sys-
tem, provide several practical examples, and
present complexity and expressivity results for
the abovementioned sublanguage of GENOA.

1 Introduction

The growing cost of software development, particularly
in larger systems, is well documented. A significant por-
tion of this cost is due to the time programmers spend
on maintenance. Programmers are constantly trying to
comprehend large, unfamiliar pieces of code. In a re-
cent paper on the LaSSIE system [9], we argued that
knowledge about a large software system can be cap-
tured in a software information system (SIS), and made
available to assist programmers. One of the most im-
portant issues raised in our work is the difficulty of
acquiring the knowledge for a SIS. Current technology
provides analysis tools such as ci1a, SCOPE [5, 21] etc;
these tools perform a partial, focussed scan of the code,
and produce predefined reports (perhaps directly into

*The Author is also with the Department of Computer
Science, Rutgers University, New Brunswick, NJ 08903

a database). While these tools can be quite useful, the
information they extract is quite limited; as we shall see
below, there is often a need for information that is syn-
tactically extractable, but is not available from existing
analysis tools.

cENoA (GENerator Of Analyzers) is an applica-
tions generator that produces arbitrary analyzers from
specifications. The GENOA specification language uses
the vocabulary of abstract syntaz trees; it is designed to
be programming-language independent. GENOA is In-
tended to work in concert with existing front-ends for
programming languages that generate abstract syntax
trees. GENII, the companion system, can be used to
generate the interface between GENOA and existing lan-
guage front-ends.

We motivate our work with a simple example of a
kind of analysis not performed by most current code
analysis tools (for the C programming language [19]),
and show how it can be implemented in GENOA. We
then describe the details of the GENOA implementation,
and describe how GENII can used to hook GENOA up to
a front end for a given programming language. We then
formally analyze the computational properties of a sig-
nificant subset of the GENOA query language, which is
characterizable as precisely the PTIM E computations
on parse trees. We then present some more illustrative
examples of the use of GENoA. We conclude with a com-
parison of GENOA with similar systems, and a summary
of our research contributions.

2 Some Simple Analyses

Without further ado, we present some examples of anal-
yses for C programs (i.e., examples where C is the farget
language) that can be implemented quickly with GENoA
(and are not quite so easy with other systems).

Example 1 For each source file, print in the report file
/tmp/globlist, all functions where global variables oc-
cur on the LHS of assignment statements.

While existing tools are able to identify where global
variables are used (either read or written into) most of
them are unable to detect where they are changed!.

'In the presence of pointers, detecting exactly all the
cases where globals are changed is in general undecidable; we
are simply looking for cases where a global variable syntacti-
cally occurs directly on the LHS of an assignment statement.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

©1992 ACM 0-89791-504-6/ 92/ 0500- 0307 1.50

307

GLOBAL FILEOUT ‘‘/tmp/globlist’’

PROC GlobalFind

2 ROOTNODETYPE File;

3 LOCAL GNODE GlobList;

4 LOCAL STRING TheFuncName;

5 {

6 (file

7 <globals-

8 (assign GlobList $ThisHode) >

9 <functions-

10 {FunctionDecl

11 <funcname- (assign TheFuncName $TheString)>

12 [assignment

13 <lhs-

14 (?variable

15 (Co¥D

16 ((MEMBER $ThisNode GlobList)

17 (FPRINT

18 FILEQUT

19 “Function ¥s modifies variable ¥s"
20 TheFuncWame $TheString))))>] }>)
21 }

Figure 1: GENOA query- Example 1

The GENOA specification to implement this analysis
is shown in figure 1:

We begin our explanation of figure 1 with a de-
scription of the GENoA’s domain of discourse. The
generic abstract data type that GENOA works with is a
node. Nodes in GENOA are typed; the types correspond
to terminals (or non-terminals) in the target language
grammar (e.g.,, function, statement, expression,
variable, constant etc are considered types of the C
programming language). Nodes can have slots. Con-
ceptually, there are two kinds of slots: child, and at-
tribute. Child slots of a node n are generally the
{non-}terminals that are generated by a nonterminal
of type n in the grammar of the target language (e.g.,
a node of type assignment in C has two children, 1hs
and rhs, both of type expression, corresponding to
the left and right sides of the assignment statement).
Attributes, on the other hand, correspond to proper-
ties of nodes (e.g., a node of type expression will
have an attribute type~of, and a stmt has an attribute
linenumber?.) Section 4.1 describes how the details of
the types, children, and attributes in a programming
language are defined in the GENII interface specification
language. In addition, GENOA has the generic notion of
a list of nodes (e.g., filler of slot arguments of a node
of type function is a list of nodes of type variable).

GENOA has several iteration operators. There are two
kinds of operators - one iterates through all the nodes
in a subtree (such as all the nodes below a node of type
function), and the other iterates through a list (such as
a list of nodes of type variable). One can also define

*We emphasize that the distinction between “child” and
“attribute” is only conceptual. Usually, attributes tend to
be terminals and children, non-terminals. GENOA doesn’t
distinguish between them; however, it can be helpful for the
GENOA programmer to keep this difference in mind while
writing specifications such as the one in figure 1.

308

procedures that can be called on a node. Recursion
is also allowed. Essentially, a specification in GENoA
defines a traversal of the parse tree in terms of the types
of nodes encountered, their children, attributes, etc.

Returning to the query in figure 1, we first set up
an output file (line 0). Line 1 names the procedure,
GlobalFind. Procedures in GENOA always have one im-
plicit argument, the “current node”. This node is the
rootnode of the function. Line 2 specifies the type of
the current node to be a node of type “File”. We then
define a few local variables (lines 3 & 4).

Lines 6 to line 16 form the body of the procedure.
First, (line 7) we take the child, globals, (the left an-
gular bracket indicates a slot, in this case, a child) of the
file type rootnode, and store it in variable GlobList
(line 8). Then we take the child functions of the rootn-
ode (line 9). We then iterate through this list (the
leftcurly on line 10 is a list-iteration operator) look-
ing qt each node of type function. For each function,
we save the name of the function (attribute funcname,
line 11), and then we search the entire subtree of the
function node, looking for assignment statements (the
square bracket with the “assignment” node type, on line
12, indicates a search of the entire subtree rooted at the
current node). For each assignment statement node, we
take the child 1hs of this node (13), (the left hand side of
the assignment) and check if it is of type variable (line
14). We then check to see if the variable ($ThisNode on
line 15) is a member of the list of globals (16); if so,
we print out a message to the effect in the output line
(lines 17-21).

Similarly, other compact GENOA programs can be
written to analyze code and answer the following
queries:

1. Do any of the routines that call CollectDigit di-
rectly modify the global variable CallStatus (i.e.,
without following pointers3.) .

. Where is the value of the LampStatus field of the
StationRec structure being modified directly?

Of the functions that switch on a variable of enu-
meration type TrunkType, which ones handle the
ISDNrateB case?

. Is somebody putting a pointer to a CallRec data
structure directly into a UserRec data structure?

. Do any routines that call the SendMsg routine, di-
rectly pass an argument of type “pointer to a struc-
ture of type MsgBuf”?

Which routines call only the routine SendMsg?

What functions typecast an expression of defined
type TRUNK D to the defined type PHONED ?

Check that no subroutine redeclares a variable in a
contained context with the same name as a param-
eter or a global variable.

3Some of these questions, particularly those where point-
ers might be involved, cannot be answered purely by static
analysis; however, quite often, this is not of concern - direct
accesses to variables, structures, etc., without going through
pointers, would themselves be useful to find.

The ability to implement the wide range of analyzers
illustrated by the above set of questions comes at a price:
the structure of GENOA is more complex than existing
analysis tools, as we now describe.

3 Structure of Code Analysis Tools

Widely available tools such as c1a, ¢cscoPE and LINT
make a firm, ¢ priori commitment to the kind of anal-
ysis they perform on the code. CIA, for example, gen-
erates a relational database with a predefined schema
from C source code. This schema includes objects such
as functions, variables, and macros and relationships
such as “< function defined-in file »” and “< func-
tion referenced-in file >”. This fixed scope is a feature
of most analysis tools; this has important implications
on their internal design. Analysis tools have a similar
structure to compilers; they can include a lexer, a parser
and (sometimes even) a type inferencer (which together
comprise the so-called front end), that build an abstract
syntax tree (AST); this is followed by a “data genera-
tor”. (Instead of generating code from the parse tree,
they generate data about the source code.) Since the
goal of these tools is fixed and limited a priors, it’s usu-
ally not necessary to have a full syntactic and seman-
tic analysis of the language; they do not need to build
a full parse tree. For example, a function-call cross-
referencing tool may not do full type checking to ensure
that there are no type conflicts. Even compilers very of-
ten only build fragmentary parse trees as they scan the
input source; after code generation, they discard these
partial trees as they scan further.

The designers of source code analysis tools can thus
limit the processing to extract only the information
needed. There is a good reason for this: writing full,
complete, front ends for most languages is quite diffi-
cult. There are many tricky details to be considered,
even in a relatively simple language like C; languages
like C++ and ADA present a far greater challenge.

However, in the case of GENOA, since our goal is to
perform any analysis requested by our users, we must be
able to process the entire language, and extract all the
semantic information contained therein into a full AST;
a GENOA specification would then simply be translated
into a program to traverse this tree in the manner spec-
ified. As discussed earlier, implementing a full front end
is a daunting task for even one programming language,
let alone many different ones.

However, front-ends of most languages have some-
thing in common: they all produce data structures that
implement an AST. GENOA can use this structure, in-
dependent of where it came from. This AST abstract
data type forms a “movable fire-wall” between GENOA
and the front end: we can use attributed trees built by
already existing front ends for programming languages.
We describe how this is done in the next section.

4 Architecture of the GENOA System

In GENOA, the “fire-wall” is an abstract data type layer
that defines a notion of trees with typed nodes, and
operations on trees; we call these abstract data types
g-irees, which are made up of g-nodes This firewall is

309

made “movable” by the translator-generator tool GENII,
which performs the following function:

e it accepts an abstract syntax specification of a tar-

get source language SC and the descriptions of the
abstract syntax tree built by an arbitrary front end
(for the language SC), and

it produces interface routines that can translate the
tree built by the front end into the data structures
used by GENOA.

Front End 105

" Lenguage &
Interface
Speakcalions

102

“PareTres

4
101 l GENIL

generater

1 T LT e e
| Analyzer
Spealications

tenerates

104| Abstract Syntax
Dictionary

(Parts numbered in order described)

Figure 2: How GENOA and GENII interact

Figure 2 illustrates how GENII and GENOA work to-
gether. The shaded boxes denote data items, and the
unshaded boxes represent “processing” elements. GENII
(101) takes specifications (102) (the GENII specification
language is described below) of a source language SC,
and the front end, and generates data translation rou-
tines (103), as well as an abstract syntax dictionary
(104). Analyzers produced by GENoA work as fol-
lows. The (existing) front end (105) produces an ab-
stract syntax tree (106) from the S£ source code (107).
The (GENII-generated) translation routines (103) trans-
late, on demand, the abstract syntax tree representation
(106) into a standard g-tree data structure (108) used
by GENOA.

Now, given a specification (109) for an analyzer,
GENOA (110) validates it, using the (GENII-generated)
abstract syntax dictionary (104), and generates an an-
alyzer (111)). This analyzer runs over the g-tree repre-
sentation (108) of the source code (107), (invoking the
translation routines (103) when needed, to derive the g-
trees from the front-end data structures (106)) and pro-
duces the desired output (112). It is important to note
that except for the one labeled “Analyzer”, the other
processing elements in the figure remain the same for
all analyzers; they depend only on the (existing) front
end.

In the following section, we describe how the interface
to a given existing front end is specified and generated
therefrom.

4.1 GENI - GENOA Interface Usage Specification

In this section, we describe the GENII specification lan-
guage, which is used to specify the interface between
GENOA and a specific front end for a particular language.
From this specification, GENII generates the code that
implements the language-independent GNODE abstract
data type that GENOA uses to implement code analyz-
ers.

The GENII specification language is used to describe
the abstract syntax structure of the target language,
as well as the data structures used by the particular
front end to implement the abstract syntax tree. Space
considerations prohibit a description of the full details
of the GENII specification language; however, to illus-
trate the GENII specification language, we show part of
the specification that implements the interface between
GENOA and the CIN [15] C interpreter®. The specifi-
cation consists of a series of declarations of the node
types that constitute the abstract syntax of the C lan-
guage. Examples of node types are non-terminals such
as assignment-statement and expression, as well as
terminals such as identifier. Each node declaration
can contain two kinds of information: first, it describes
the schema of the abstract syntax of the language; sec-
ond, it contains code fragments (particular to the front
end) that should be invoked to implement the opera-
tions on this node. The full specification for the CIN
interface is quite long; in this section, we show the part
having to do with the different types of statements in
C, and the details of the compound statement.

There are essentially three major kinds of node type
declarations; a single node declaration, a node variants
declaration, and a variant node type declaration. First,
we show a single node type of declaration; here we define
the children of a single node, and how these children can
be generated from the parent single node (by invoking
front end code).

0 Stmt:

1 {

1 LineNo:an Integer

2 < ¢¢((CH *) GvalG)->CValue.LinenoOffset’’ >
3 Filename:a String

4 < ¢¢((CH *) GvalG) ->CValue.LinenoFname’’ >
5}

This declares a node of type stmt to have two at-
tributes - LineNo, with a filler of type Integer, and
FileName which is a String. They refer to the line
number of the file where this statement occurs. The
fragments of C in the quotes indicate the front-end code
to be invoked to get the line number of a statement
from the data structures used by the front end. These
attributes would be inherited by nodes of types corre-
sponding to the different kinds of statments in C.
Next, we show how we describe these kinds of state-
ments. This is a node variants type of declaration.

Line 0 identifies the node type (here it is a stmt) for
which the variants are being declared. Eleven differ-

*CIN is a reflective C programming environment with fa-
cilities to create, execute, test, debug, and analyze C pro-
grams. CIN has an open architecture that allows it be incor-
porated into other tools.

310

%
ot
El
ot
L}

Exit
Freturn
Goto
Continue
CompoundStmt
Switch
Whileloop
If
Forloop
Doloop
ExprStmt

WO WND=O

ent kinds of statements in C are displayed, from Exit
(line 1) to ExprStmt (line 11) (which is an expression
statement, like an assignment statement). We call each
of these a variant node of type stmt. Nodes that are of
any of these variant node types inherit all the attributes
from Stmt. Clearly, when the front end produces nodes
(in its representation of the parse tree) corresponding to
these different kinds of statements, we need to be able
to identify the type of statement it is, and translate it
back into a node of the right variant type for GENOA.
Here’s a variant node declaration:

0 CompoundStmt : *“((CH *) GvalG)->CnWhat == NtBlock" {

1

2 LocalVars: SetOf Variable

3 < “¢((CK) GvalG)->NtVar’’

q ¢¢((ID) GvalG) =->NextVar’’

5 >

6 StmtList: ListOf Statement

7 < ‘“(FirstStmt ((CN) GvalG))’’
8 “¢((CE) GvalG)->EextStmt’’

9 >

10 }

We declare a node of type CompoundStmt (line 0).
The code fragment in quotes is the front end code that
can be invoked to test if a node is a compound state-
ment. If so, such a node has two children - LocalVars
(a list of nodes, each of which is of type Variable), and
StmtList, (a list of Statements). The code fragment
on line 3 (respectively, 7) tells us how to get the first
Variable (resp., Stmt) in the list of LocalVars (resp.,
Stmtlist); the fragment on line 4 (8) tells us how to
get the next successive variable (resp., Stmt) in the
list.

The full interface specification for the CIN front end to
C has declarations of about 90 node types (both variant
and simple); it is about 800 lines of GENII code. The
specification in this case expands to over 17,000 lines of
interface code that build the data description tables for
the attributed syntax tree in CIN, and implement the
needed translation routines to translate the cIN data
structures to those used by GENOA.

GENII includes facilities to specify unparsing of nodes
in the parse tree—e.g., one can specify how the concrete
syntax of a node of type CompoundStmt is to be derived
from the constituents of its abstract syntax specifica-
tion. Space considerations prohibit a full description of
this feature; see [10].

As discussed earlier, the interface code generated by
GENII helps implement the g-tree abstract data type

“fire-wall” used by GENoA. The main operations avail-
able on a node in a g-tree (a g-node) are:

e Ertract the filler(s) of a given slot for a given node
(e.g., find the linenumber of a statement node)

o Ezpand a given node, i.e., find all its children, and

e TypeOf a given node: find the type of a given
node (e.g., is this Statement an If, or Switch, a

As a GENOA program executes, it invokes these opera-
tions on the g-nodes; the GENII-generated interface code
then invokes the appropriate front-end code to perform
these operations, and creates other g-nodes as needed
to store the results. These g-nodes can in turn be ex-
panded, as the analyzer proceeds.

In addition to the interface code, the GENII also gen-
erates a set of tables that are used by GENOA to validate
an input analysis specification. For example, if a GENOA
specification to analyze C source code wants to take the
attribute LocalVars for a node of type TypeDef, GENOA
would generate an error message.

Given a particular language and a front end, writing
an interface specification in GENII involves two steps.
The first, and most significant part of the task is to de-
termine the abstract syntax structure of the language,
and the datastructures used by the front end to imple-
ment this structure. Given a front end that is designed
to be portable, with a well documented abstract syntax
implementation, this task is greatly simplified. Once
this information has been determined, the next step,
coding it into GENII, is quite straightforward. Now,
adapting this interface specification to a different front
end for the same language, or even to a front end for
a slightly different dialect (say from PL/I to PL/C) is
a simpler task, since the abstract syntax remains sub-
stantially the same; only the code to be invoked in the
frontsend changes, to reflect the different datastructures
used®.

From our experience, we estimate that interfacing to
a well-documented front end for a fairly simple, typed,
algorithmic language like C or PASCAL would take a
few days: far less time than it would take to imple-
ment a new front-end from scratch. As the complex-
ity of the target language increases, the abstract syn-
tax structure becomes more intricate; this would call
for a longer GENII specification. Generating an inter-
face to a documented front-end for a complex language
like C++, PL/I or ADA would be proportionately more
time-consuming. A rough rule-of-thumb would be that
the time to write a GENII specification for an inter-
face to a front end for a given language grows linearly
with the size of the BNF specification of the grammar
of the language. Of course, once the GENII specifi-
cation for a particular front end is done, GENOA can
be used to build any number of analyzers; thus, the
GENII/GENOA combination provides an economical
way to add powerful analysis facilities to existing lan-
guage front-ends.

5If the new front end is missing some pieces of the ab-
stract syntax structure, or adds some new information, the
GENII specification would have to be modified to reflect
these variations

Expressions
constant := $ThisNode | $Frontier
expr := Variable | Constant

:= (cons ezpr ezpr)

:= (append ezpr expr)

:= (length ezpr)
Conditional:= (eq ezpr expr)

= (equal erpr expr)

:= (member-eq expr expr)

:= (member-equal ezpr expr)

:= (null expr)
Statements
stmt = assign | print | eval | call | condstmt
assign := (assign variable expr)
print := (print variable string expr*)
call = (call tag expr*)
eval := (eval siring)
condstmt := (cond onecond*)
onecond = ((conditional) traversal*)
Traversals
traversal = stmt| child | slot

| test | istmembers | subtree | fulltree

child := (typetag traversal®)
slot := (slotname - traversal®)
test = (7 typetag traversal*)
listmembers ;= {typetag traversal* }
subtree = [traversal * |
Sulltree := [$ROOT traversal *]
Declarations
declarations := wvardecl | procdecl
vardecl 1= globaldecl | argdecl | localdecl
globdecl = globalvardecl | globalfiledecl
globalvardec! := (newline) global varspec
globalfiledec! := (newline) file tag string ;
localvardec! := (newline) local varspec
argdecl := (newline) local varspec
varspec = wvartype tag ;
vartype := node | float | string | int
procdecl := (newline) PROC tag (newline)

rootnodetype typetag
{argdecl | localvardel }* (newline)
{ traversal* }

Complete Query

g-query := globalfiledecl* globalvardecl™ procdecl*

Figure 3: Syntax of the GENOA query language

311

5 Complexity of GENOA as a Query
Language

Analyzers generated by GENOA are likely to be run over
large bodies of code, just as database queries are run
over large bodies of data. Therefore, the complexity
concerns that exist for database query languages are
applicable to the GEN0OA language. Consequently, we
would like to analyze GENOA qua query language, and,
if possible, identify a subset that can express most prac-
tical queries (for example, the ones on page 2), and still
has desirable computational properties. To do this, we
consider the various constructs in GENOA, and eliminate
the ones that are not absolutely necessary to express the
practical queries.

Computationally, there are two main categories of
constructs in the GENOA language: expressions and
traversals. In the case of expressions, the operations
listed in Figure 3 - append, equal, cons, member, etc.,
are all low order polynomial time. Cons of a single node
to a list is O(1), as is equal with single nodes. Append of
two lists is linear, as are equal and member. Considering
traversals, taking a specific child of a node (say, the 1hs
of an assignment node) is a constant time operation;
finding a child of a certain type could be linear in the
number of subnodes of a given node. List traversals and
subtree traversals are respectively linear in the size of
the list, or of the subtree. The full tree traversal (“[“)
iterates over the entire tree, starting with the root.

What class of queries can be specified in the full
GENOA query language? Clearly, using recursions, one
can write a non-terminating computation; but most
practical examples we came across, including the ones
listed on page 2, can be handled without recursion, or
for that matter, even procedure calls. Let us therefore
omit these from consideration. Next, it is easy to see
that with append, we can easily construct lists that are
exponential in the size of a parse tree (simply embed an
append expression inside a “[” traversal, doubling the
length of a list each time through). Thus, it is possible
write queries whose execution time can be exponential
in the size of the parse tree. To eliminate this, we can
restrict one argument of append and cons expressions
to be elements of the tree, not a variable; this restric-
tion does not affect our ability to write many practical
queries (such as the ones on page 2). With this restric-
tion, in the worst case, we can grow the lists at most
n nodes (where n is the size of the parse tree) for each
node we visit in the tree.

With these limitations, we call the remaining query
language Qg enoa-

Query Complexity

Lemma 1 Any program written in Qgenoa can be eze-
cuted time polynomial in n, the number of nodes in the
parse iree.

Proof: The proof is by induction on the size of the
query. The full proof is available in a longer version of
this paper [10]. For brevity, we just present an outline:

As a basis, it is evident that any GENOA query of unit
size is evaluable in time polynomial in the size of the

tree. For the inductive step, consider an arbitrary query
qi-1 of size k — 1, which executes in time f(n,k ~1) on
a tree with n nodes. We construct the most expensive
query ¢x of size k that can be constructed out of this
query, and show that it can be evaluated in time f(n, k);
It turns out, this is done by embedding g¢i_; within
“[SROOT...]” operator. We then show that if f(n,k—1)
is polynomial, so is f(n,k). QED

This shows that any query expressed in Qgenoq can
be evaluated “quickly”. It provides us with the com-
fort that we can write various analyzers using this lan-
guage, and bravely run them over very large collections
of source code; they will run in time polynomial in the
number of nodes in the parse tree. Furthermore, the
construction of the “most expensive query” used in the
proof yields a simple guideline to estimate the expected
complexity of a query: a query can be evaluated in time
bounded by a polynomial (of the size of the parse tree)
whose degree is one greater than the greatest depth of
nesting of the “ [” operators in the query. Using this
rule, a quick rough bound of the computational cost of
a Qgenoa program can be made.

On the other hand, Lemma 1 limits the kinds of
queries that can be written in Qgenoq: one simply can-
not express any query that would determine a property
that takes, for example, exponential time to evaluate.
This leaves open the question as to what queries can
in fact be expressed in Qgenoq- It may be possible that
while queries in this language can be evaluated very fast,
the language itself is so weak that only very few queries
can be expressed in this language®. This motivates us to
take a closer look at the class of queries that can be ex-
pressed in this sublanguage, using techniques developed
in database theory.

Database query languages (typically) are not Turing-
complete—they tend be expressively restricted. Rela-
tional algebra for example, cannot express all polyno-
mial time queries on relational databases. But we can
prove a strong result for Qgenoa-

Query Expressivity

Lemma 2 Any PTIME computation on e parse tree
can be expressed in Qgenoq

Proof: The proof is based on a technique due to Im-
merman [14]. Again, for brevity, we present only an
outline here.

Essentially, an arbitrary PTIME Turing machine
computation on a parse tree is encoded directly in
Qgenoa; The encoding is as follows:

1. We encode the tape by two lists (R-list and L-

list), each representing the tape on either side of
the head;

2. we encode the parse tree on one side of the head;
(say the R-list.).
3. we then represent the transition table of the

PTIME machine in a series of GENoA COND state-
ments.

6Though, we have reasons to suspect that Qgenoq is fairly
expressive, since after all, the examples on page 2 where all
expressible therein.

4. Reading, writing and moving the tape, respectively,
are achieved by CAR, CONS, and CDR on the ap-
propriate list.

5. When a transition to a halting state is made, cer-
tain variables are set to “TRUE”, and the tape con-
tains the output.

6. The PTIME running of the machine is simulated
thus: by definition, there is some k such that the
machine runs in time < n*, where n is the size of
the parse tree. We then merely nest the finite state
machine encoding in n levels of the “[$ROOT” it-
eration operator (which executes the contents over
every node of the parse tree) to ensure nf steps of
TM machine execution”.

Lemmas 1 and 2 together provide following tight
characterization of Qgenoq:

Theorem The queries ezpressible in Qgenoa GT€ pre-
cisely the queries computable in PTIME on parse trees.

This is a result with very practical consequences.
First, any analyzer built with GENoA, using the re-
stricted Qgenoa sublanguage, is guaranteed to run rea-
sonably fast (and can therefore be run safely over large
bodies of code). Secondly, Qgenoa is expressive enough
to implement any analysis task that is computable in
time polynomial in the size of the parse tree. Finally,
as we described above, we can quickly estimate the ex-
pected execution time of a Qgenoa program. Qgenoq is
thus a suitable language for implementing a whole range
of simple, useful, source code analysis tools.

6 Related Work

The most widely-used systems similar to GENOA, par-
ticularly in the UNIX”M community, are cscopPE [21]
and cia [5]. These systems are limited in functional-
ity; they cannot questions such as the ones presented in
page 2. Furthermore, they are restricted to one source
language: C.

As discussed in Section 3, to answer arbitrary ques-
tions about the structure of the code, it is necessary to
make a full parse of the code, and construct a fully at-
tributed parse tree; an analyzer can then walk over this
tree and extract the information desired. Tools that
can be used for building parsers, tree-builders and tree-
manipulators are also potential competitors for GENOA.

The UNIX tools Lex and Yacc are useful for building
lexers and parsers, respectively. Yacc can be used to
build context-free grammar (CFG) parsers. Most real
programming languages are not context free, so Yacc
provides “semantic actions” that can be used to check
symbol tables etc. More modern tools, such as the Pan
system {1], CENTAUR [2], Gandalf [11] , REFINE [17],
the Cornell Synthesizer Generator [18] provide an in-
tegrated environment to implement syntactic/semantic

"The GENOA query might run through the “tramsition
loop” a few more times than necessary, but after the simu-
lated Turing Machine halts, the further runs would be inef-
fectual; we still however, complete the query in time O(n*),
of course.

processing. In addition to a CFG parser-generator (or
syntax-directed editor-generator), they provide ways of
implementing semantic processing. The Pan system
uses a PROLOG-like rule based method for propagat-
ing semantics (type information etc); the CENTAUR
system has two methods, one based on a tree manipula-
tion language (VTP) and the other based on a natural-
deduction style semantic specification (TYPOL); the
Synthesizer Generator uses attribute grammars, while
GANDALF uses a special-purpose language called ARL
to manipulate abstract syntax trees. REFINE provides
a parser-generator environment, and a pattern-action
mechanism with powerful pattern-matching (based on
unification) over the tree structures. The Metapro-
gramming System of Cameron & Ito [3] also provides
constructs, embedded in a PASCAL-like language, to
manipulate an intermediate, parsed representation of
source code. However, their system is limited to purely
syntactic context-free formulations of source languages,
which don’t handle any semantic information. The sys-
tem described in their paper cannot handle some of the
queries listed above that involve semantic information.

The tools mentioned above could theoretically be use-
ful in building source analyzer generators; however, in
practice, they present some difficulties:

e Front-end Re-implementation: In order to use these
tools, it would be necessary to implement, for ev-
ery language, a fully functioning front-end. This is
quite difficult, even for relatively simple languages
like ANSI C. For more complex, irregular languages
like C4++4 or ADA, the task is formidable. Given
the range of different languages and dialects that
can be used in a large project, it would be desirable
to avoid re-implementing front-ends, but rather use
a customizable analyzer that could be readily inter-
faced to available front-ends.

o Back-end Languages: The tree-manipulation and
traversal languages in most of these systems are full
imperative programming languages—VTP in Cen-
taur, and ARL in Gandalf. They define an abstract
tree data type, with operations for traversing trees,
testing node-types, etc., and provide the usual pro-
cedural programming constructs. One writes an-
alyzers essentially by programming in a full pro-
gramming language; no guarantees can be made
about the complexity of analyzers written in ARL,
or VTP. Likewise, the pattern-matching language
in REFINE provides a powerful unification facil-
ity, but this appears to be undecidable—no pub-
lished results are available about the expressive
power of its pattern-matching language. We have
adopted a “query language” approach, using a well
understood, expressively limited, relatively com-
pact query language; with GENoA, if an analyzer
is written strictly using the sublanguage Qgenoa,
the complexity is guaranteed to be polynomial.

o Front-end Separability Some of the tools are
integrated environments; they assume all cod-
ing activity—entering, modifying, etc, take place
within their context. In order to use them, we
have to introduce completely new modus operandi

313

into an existing large software project. However, it
is usually desirable to leave existing processes and
tools alone, and use only the “language processing”
part of the environment. This is not always possi-
ble.

The OMEGA system of Linton [16] and Horwitz and
Teitelbaum’s relational-based editing environments [12,
13] come closest to implementing a customizable ana-
lyzer suitable for Software Information Systems. Linton
is interested in editing environments; he builds a front-
end for ADA that compiles programs directly into a set
of predefined relations, which are entered into a com-
mercial relational database, INGRES. All editing oper-
ations then involve queries and updates to the database.
Since the contents of the database can be queried using
relational algebra, a range of analyses can be obtained.
The problem with this approach® is that the simplest
interactive editing operations, like listing a 10-line file,
take several seconds. Even if this approach were only
used off-line for the analysis of completed code, it would
still be doing much needless work - in a complex lan-
guage like C++, a parser would have to fully material-
ize dozens of different relations into a database, whereas
only a limited number of tuples in a few relations might
actually be of interest. Also, as Horowitz and Teitel-
baum point out in [12], (pp 585-586) the limited power
of relational operators precludes performing several use-
ful kinds of analyses on source code.

Horwitz and Teitelbaum [12] and Horwitz [13] address
some of the limitations in Linton’s work, while retain-
ing the basic relational representation. First, Horwitz
describes the idea of “implicit relations” [13] which are
like non-materialized views in databases—these are gen-
erated from parse trees only when they are needed. This
addresses some of the performance issues in OMEGA,
which relentlessly stores everything into INGRES. Sec-
ondly, Horwitz extends the querying power of pure re-
lational algebra by combining it with attribute gram-
mars as follows. Several relations are declared, along
with an attribute grammar specification. Tuples can be
inserted into relations by a grammar production, and
the synthesis of attributes can include relational algebra
expressions (provided this introduces no circular depen-
dencies (See [12] pp 587-588). With this extension, it
is possible to express more queries than with pure rela-
tional algebra, by combining the algebra with attributes
in production rules.

There are two major problems with this approach.
First, as Horwitz and Teitelbaum point out, there are
complications in extending relational query languages
(page 578):

“While adding new operators would solve some
problems, it would simultaneously introduce
new ones: termination of queries might no
longer be guaranteed, and the efficiency of
query evaluation and view updating would un-
doubtedly decrease ” [12]

In Horwitz and Teitelbaum’s formalism, without any
circular dependencies between the attributes and/or the

8Besides the fact that it is only available for ADA.

declared relations, the termination condition can be as-
sured; however, the complexity of query evaluation in
this formalism is not known. Thus, no a priori guaran-
tees can be made about the effictency of processing any
particular query. With any program written in Qgenoa,
we know the execution time is polynomial; furthermore,
as explained in Section 5, the expected complexity cost
of any given program can easily be bounded.

Secondly, though the new formalism is an extension
of relational algebra, its not clear how ezpressive it is.
What kinds of queries can be expressed in this formal-
ism? Clearly, with circular dependencies, 1t is possi-
ble to have non-terminating computations. But can all
computations on parse trees be expressed? If not, is
there a good characterization of what computations are
expressible?

Finally, the approach to defining a new query involves
modifying the attribute grammar itself, and perhaps
defining new relations. After coding a new query, the
attribute grammar would have to be first checked for
any circular dependencies, (which can be exponential in
the size of the grammar) and then run through a parser-
generator to produce a running analyzer. In some sense,
to build a new analyzer, one must re-validate the gram-
mar and rebuild the parser. This is more complex than
our approach, where the parser remains fixed, and only
the traversal itself is modified by the query. After all,
the difference between analyzers is only in the infor-
mation they choose to extract from the tree built by
the parser; pragmatically, it can be an added compli-
cation to have to re-check the grammar and re-build
the parser for each new analyzer. However, as in the
case of cIA and CSCOPE, their approach could generate
more efficient, custom parsers for each analyzer; GENOA,
then, represents a different tradeoff between efficiency
and ease of implementation.

In a paper in this conference [8], Consens et al de-
scribe an application where they use Graphlog, a graph-
ical database query language, for querying a Prolog
database containing information about software. In
their paper, they are concerned with structural design
information about software, such as the “use” depen-
dency relationships between modules. They illustrate
how Graphlog queries can be used to identify and re-
move cyclic dependencies.

Graphlog is superficially very different from the
GENOA language; however, we have found that Graphlog
can be used for querying parse tree. Of course, first a
parse tree would have to be translated into a Prolog
database®. We are currently analyzing the exact rela-
tionship between Graphlog and GENQA. Theoretical
results available on Graphlog indicate that Qgene4 is a
more powerful query language. However, our experi-
ments in writing practical queries in Graphlog suggest
that it has some features that are very convenient for
querying parse trees; we are experimenting with adding
some features from Graphlog into the GENOA query lan-
guage.

°The GENOA/GENII approach of directly reading the
front end’s data structures in memory is probably more ef-
ficient in practice.

314

(=

PROC TypeCastCheck

ROOTNODETYPE File;
LOCAL STRING FromType;
LOCAL STRING TheFuncName;

WU bW
———

[FunctionDecl
<funcname- (assign TheFuncHame $String)>
[typecast
(assign FromName "")
<FromType-
10 (?TypeDef
i1 <name (assign FromName $TheString)>
12 <ToType-
13 (?TypeDef
14 <name=~
15 (cond
16 ((and
17 (equal FromName "TRUNK.D")
18 (equal $TheString “PHOEED")))
19 (PRINTF
21 “Fen %s typecasts TRUNKD to PHONED"
22 TheFuncName))>)>]]
23 }

Figure 4: GENOA query- Example 2

7 GENOA- more examples

We now present some more examples of analyzers coded
in GENOA, drawn from the examples listed on page 2 (all
of these have been coded in GENoA, but we show just
two for illustration). The first example is query No. 7
on page 2.

Example 2 What functions typecast an ezpression of
defined type TRUNK.D into the defined type PHONED ?

This example clearly illustrates the need for analysis
tools to have access to type information; purely syn-
tactic parsers will not provide this information. The
GENOA specification to implement this analysis is shown
in figure 4.

As before, we declare the procedure (0), with the root
node type to be a File (1), and some local variables (2-
3). Then we search all the nodes under the File node
(line 5) for function declaration nodes. Now, we save
the name of the function in the variable TheFuncName
(6), and then search all the nodes below the function
declaration node for typecast nodes (i.e., for expres-
sions that do a typecast) (7). We now then initialize
the FromName variable (8). The typecast nodes have a
FromType attribute and a ToType attribute. We check
to see if the “from” type (9) is a typedef, and if so, save
the name of the type in variable FromName (10-11); then
we check the “to” type (12). If this is a typedef name
also (13), we check to see if the name (14) of the “from”
is TRUNK.D and the the “to” type is PHONED (lines 15-18)
and if so, we print out a message (lines 19-22).

Our next example is query No. 3 on page 2.

Example 3 Of the functions that switch on a variable
of enumeration type TrunkType, which ones handle the
ISDNrateB case?

This example (figure 5) illustrates how a GENOA query
gathers information from one part of the tree and uses

0 PROC SwitchExprCheck

ROOTNODETYPE File;
LOCAL STRING EnumTag;
LOCAL STRING TheFuncKame;

1

2

3

4

§ [FunctionDecl
6 <funcname- (assign TheFuncName $TheString)>
7

8

[switchstmt
(assign EnumTag "*)

9 <SwitchExpr
10 (?EnumType
11 <name- (assign EnumTag $TheString) >) >
12 (cond
13 ((equal EnumTag “TrunkType")
14 <SwitchCases-
15 {Case
16 <label-
17 (identifer
18 (cond
19 ((equal $TheString “ISDNrateB")
20 (printf
21 “Function %s handles ISDNrateB case'
22 TheFuncName))) }>)]
23 }

Figure 5: GENOA query- Example 3

it in another. It also illustrates how the level of nesting
in the query is used to go down into, and back up out
of, a branch of the abstract syntax tree.

The first 6 lines are similar to the previous example,
as we find function declarations and save the function
name in TheFuncName; in (7) we search for switch state-
ments under the function node. We then initialize the
EnumTag local variable (8); we then go down to the type
of expression that this statement is switching on (line 9)
to see if it is of type enum (10); if so, we save the name
of enumeration type (line 11) in EnumTag, and back up
to the parent switch statement node (line 12), and if
the enum tag is “TrunkType” we go through the list
of cases,(14) one by one (15), checking to see if one of
them is labeled (16) with an identifier ¢ ‘ISDNrateB’’
(17-19), and print out a message to that effect (20-22).

This example illustrates how each level of nesting in a
GENOA corresponds with a particular leve} of the parse
tree. On line 7, we are searching for a switch statement
node. Once we’ve found one, on lines 8 through 10, we
traverse down from the switch statement node to the
node corresponding to the type of the expression being
switched on, check to see if it is an enumeration type,
and if so, save the enumeration tag (11). The “>)>”
(11) closes the traversal down into the switch expression
begun on line 8, and on line 12, we are back at the
node corresponding to the switch statement. Now, we
make sure the enumeration type is indeed TrunkType we
descend into the cases in the switch statement, looking
for the ISDNrateB label. Thus, we can start at a node,
go down branch of the tree rooted at that node, gather
some information, come back and use this information
in our next traversal. The nesting of the “[({<” controls
the search.

The nesting levels and different parenthesis in GENOA
might seem a bit confusing to the novice at first; but

315

they're fairly easy to get used to, and they are a conve-
nient shorthand for expressing complex tree traversals.
To assist the user in writing GENOA specifications, we
are designing an an editing environment that will help
the user construct queries, by providing automatic in-
dentation and matching facilities for the various tree
traversal operators.

8 Conclusion

We first discussed the need for customizable analyz-
ers in large software systems. We then described the
GENOA/GENII system for building arbitrary code analyz-
ers for programs implemented in various programming
languages. GENII allows GENOA to be interfaced to dif-
ferent language front ends, thus simplifying the task of
implementing a customizable analyzer. In addition, we
showed that the GENoA language has some useful it-
eration constructs that are both expressive and easy to
evaluate; in fact, there is a useful sublanguage of GENoA
that can express precisely all the queries on parse trees
computable in polynomial time. The GENOA and GENII
applications generators have been built; GENII was used
to build an interface to the CIN system. The GENOA sys-
tem has been tested on a range of different source anal-
ysis problems. We are now implementing a GENII in-
terface between GENoA and REPRISE [20], a C++ front-
end.

Acknowledgements

GENOA and GENII were both implemented using the
METATOOLTM applications generator generator [6, 7.
Thanks to the following people who provided the in-
spiration and encouragement for the development of
GENOA: Ron Brachman, Dave Rosenblum, Alex Wolf,
Dave Kristol, and Bruce Ballard. Many thanks also
to Tony Bonner, who pointed me to Immerman [14].
Thanks also to Dewayne Perry for comments on an ear-
lier draft of this paper, as well as for coming up with
the acronym “GEN0A”. My deep gratitude also goes to
Alex Borgida for his help and guidance.

References

[1] Ballance, R., Graham, S., and Van De Vanter, M.,
The Pan Language-Based Editing System For In-
tegrated Development Environments, Proceedings,
4th SIGSOFT Symposium on Software Develop-
ment Environments, Irvine, CA. 1990.

(2] Borras, P., Clement, D., Despeyroux, Th., In-
cerpi, J., Kahn, G., Lang, B., Pasual, V., CEN-
TAUR: The System, Proceedings of the SIG-
SOFT/SIGPLAN Software Engineering Sympo-
stum on Practicel Software Development Environ-

ments, 1988, Boston, Mass.

Cameron, R.D., and Ito, M. R., Grammar-Based
definition of Metaprogramming systems, ACM
TOPLAS, Vol. 6, No. 1, January 1984

Chandra, A. K., Theory of Database Querys, Pro-
ceedings of the Seventh ACM Symposium on Prin-
ciples of Databases, Austin, TX. 1988.

(3]

[4]

316

[5] Chen, Y. F. and Ramamoorthy, C. V., The C Infor-
mation Abstractor, Proceedings of the Tenth Inter-
national Computer Software and Applications Con-

ference (COMPSAC), October 1986, Chicago, IL.

Cleaveland, J. C., and Kintala, C., Tools for
building Applications Generators, AT&T Technical
Journal, July-Aug 1988. AT&T Bell Labs, North
Andover, Mass.

METATOOL Specification Driven Tool, System
Overview, AT&T Bell Laboratories, June 1990.
Document Number: 193010-211 (Available from R.
Tatem, AT&T Bell Labs, North Andover, Mass.)

[8] Consens, M., Mendelzon, A., and Ryman, A. Visu-
alizing and querying software structures, Proceed-
ings, ICSE-14 (This conference.)

[9] Devanbu, P., Brachman, R., Selfridge, P., and Bal-
lard, B., LaSSIE: A Knowledge-Based Software In-
formation System, Communications of the ACM,
34:5, May 1991.

[10] Devanbu, P. GENOA/GENII - A flexible applications
generator for code analysis tools, in preparation.

[11] Habermann, N., and Notkin, D., Gandalf: Soft-
ware Development Environments, IEEE Transac-

tions on Software Engineering, SE-12, December
1986.

Horwitz, S., and Teitelbaum, T., Generating Edit-
ing Environments Based on Relations and At-
tributes, ACM Transactions on Programming Lan-
guages and Systems, 8:4, 1986.

[6]

[12]

[13] Horwitz, S., Adding Relational Query Facilities to
Software Development environments, Theoretical

Computer Science, 73:2, 1990.

Immerman, Neil. Relational Queries computable in
Polynomial Time, Information and Control, 68, pp
86-104

Kowalski, T., Seaquist, C. R., Ellis, B., Goguen,
H. H., Puttress, J. J., Castillo, C. M., Rowland,
J. R., Rath, C. A., Wilson, J. M., Vesonder, G.
Schmidt, J. L., A Reflective C Programming En-
vironment Proceedings of the International Work-
shop on UNIX-Based Software Development Envi-
ronments, January 16, 1991, USENIX, Dallas, TX..

Linton, M., Implementing Relational Views of Pro-
grams, Proceedings of the SIGSOFT/SIGPLAN
workshop on Practical Software Development En-
vironments, 1984, Pittsburgh, PA.

[14]

[15]

[17] Refine Users Manual, The Reasoning Systems Cor-
poration, Palo, Alto, CA..

(18] Reps, T., and Teitelbaum, T., The Syn-
thesizer Generator, Proceedings of the SIG-

SOFT/SIGPLAN Symposium on Practical Soft-
ware Development Environments, 1984, Pitts-
burgh, PA.

Ritchie, R., and Kernighan, B., The C program-
ming Language, Prentice-Hall Publishers.

(19]

[20] Rosenblum D., and Wolf A., Representing Seman-
tically Analyzed C++ Code with Reprise, Proceed-
ings of the Third USENIX C++ Conference, April
1991, Washington, DC.

21} J.L. Steffen, Interactive examination of a C pro-

[21] , P
gram with Cscope, Proc. USENIX Assoc. Winter
Conference, Jan, 1985.

317

