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Abstract

The aim of program analysis and visualisation (PA&V) is to help

the programmer understand a program by means of graphical pre-
sentations of di�erent aspects of the program. Program analysis and

visualisation systems can be classi�ed according to the speci�cation
method of visualisation, e.g. in what way can the user of the system

specify his own visualisers. In the article three speci�cation methods

(prede�nition, annotation and declaration) are discussed and some
example systems are presented. Particular attention is paid to the

declarative speci�cation method, thus, in addition, knowledge-based

program analysers are discussed. Increased understandability and
modi�ability are argued to be the main advantages of declarative

PA&V systems.

The general discussion is continued by a short presentation of a
case study, where the declarative and synthesisable visualisation in

the NUT system is discussed.

Keywords: program analysis, program understanding, program
visualisation, declarative visualisation, knowledge-based program

analysis

1 Introduction

Program analysis and understanding. The aim of program code anal-

ysis is to help the programmer understand the functionality of a program.
What is then program understanding? The de�nition of program under-
standing constitutes itself a research topic. We agree with the informal
de�nition provided in (Biggersta�, Mitbander & Webster 1994) : \a per-
son understands a programwhen able to explain the program, its structure,
its behaviour, its e�ects on its operational context, and its relationships
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to its application domain in terms that are qualitatively di�erent from the
tokens used to construct the source code of the programs".

Program understanding has been called a challenge of the 90's (Corbi
1989). This statement is in no need of justi�cation. A huge amount of
legacy code is in use which is di�cult to maintain, di�cult to change and
even more di�cult, or even impossible, to discard. Documentation is usu-
ally out-of-date, inconsistent or incomplete. Working in such conditions
\programmers have become part historian, part detective, and part clair-
voyant"(Corbi 1989). It follows that any tool, which facilitates program
analysis and understanding is valuable.

In software engineering research, program understanding is, according
to (Johnson 1994), understood in two di�erent ways: \some use it to refer
to automated techniques that determine the intended function of a software
system from source code. Others use it to refer to tools that help people
understand the design of a piece of software but may not be capable of
analyzing the code themselves".

We assume that only intensive research and experimentation can trans-
form the current assistant-tools into fully automated \decision-makers".
Consequently we shall only discuss the tools and techniques of program
analysis aimed at helping the programmer with program understanding.

Program visualisation. Traditionally in software engineering tools,
program understanding has been enhanced by means of graphical presen-
tations illustrating divers aspects of a program. The construction of a
graphical presentation of a program is called program visualisation. The
term software visualisation is also used instead of program visualisation,
although we argue that software visualisation covers much more. In addi-
tion to program visualisation it may also include visualisations of require-
ment speci�cations, information of con�gurations, history of corrections
and similar.

Program visualisation, as discussed in (Shu 1988), covers pretty-printing
of source programs, visualisation through diagrams, multiple views of a
program and its execution states, algorithm animation. It is interesting
to observe that most program visualisation systems introduce their own
graphical notations as well as methods for the presentation of the textual
code. It is rather di�cult to distill a common notation or technique. This
is, of course, in part due to the fact that the systems have quite di�er-
ent goals. But it also indicates that program visualisation is still in the
experimental stage.

The distinction between program analysis and program visualisation
tools is not clear-cut. On one hand, program visualisation tools usually
work with a �xed program model (for example, an abstract syntax tree)
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and place the main emphasis on e�cient and appropriate graphical pre-
sentations of the information from the model; whereas program analysis
tools o�er alternative, advanced program models (such as, for example,
connectionist models). On the other hand, every program visualisation
tool contains at least one analysis feature, and program analysis tools usu-
ally include graphical presentations of program models. As the distinction
is highly subjective and, in many cases, cannot be deduced from articles,
we will henceforward refer to program analysis and program visualisation
tools as: program analysis and visualisation tools.

Program analysis and visualisation. Program analysis and visual-

isation (PA&V) research investigates the ways of combining the features
of program analysis and program visualisation tools. Ideally, PA&V tools
should o�er the possibility to specify di�erent program models and to
present these models graphically in di�erent (also speci�able) ways. Nei-
ther of the systems presented in the paper fully satisfy these requirements.
In practice, PA&V tools do not cover such a wide range of features and
either program analysis or program visualisation is limited.

The organisation of the paper. The paper discusses current trends
in the development of tools for program analysis and visualisation. These
trends are revealed in an overview of a set of existing PA&V tools (Part 2)
where the systems are classi�ed according to the speci�cation method of
visualisation. Three common methods are discussed: prede�nition, anno-
tation and declaration. For each of these methods, a description, example
systems and notes on limitations and advantages are given. The overview
of PA&V tools is continued (Part 3) by a presentation of knowledge-based
program analysers. Then the general discussion is \mapped" to a case
study (Part 4). In particular, we discuss the development and usage of
declarative and synthesisable program visualisers in the NUT system (the
NUT system itself and the language are also briey presented in the arti-
cle). An illustration of the construction of a declarative visualiser as well
as its work are provided informally, through an example.

2 Speci�cation methods of PA&V tools

Researchers contributing to the PA&V �eld o�er di�erent classi�cations of

systems being developed. (Price, Baecker & Small 1993) use such classi�-
cation criteria like scope, form, content, method, interaction and e�ective-

ness, whereas (Roman & Cox 1993) consider scope, abstraction, interface,
presentation and speci�cation method. In this article we adopt the last
criteria mentioned - speci�cation method. Thus, we ask the question: Can
the user of a particular PA&V system specify his own visualisers? If yes,

3



then how? As in the taxonomy of (Roman & Cox 1993), we distinguish
three main speci�cation methods: prede�nition, annotation and declara-
tion.

2.1 Prede�nition

2.1.1 Method description

Tools with a prede�ned method for PA&V hide inside a \black box" all
knowledge employed in the visualisation process. The user can neither
construct his own views nor modify them and is obliged to employ the
prede�ned graphical notation.

2.1.2 Examples: Code Viewers

The most common PA&V tools are code viewers - tools, which o�er the
user a �xed set of graphical presentations of an input program. In a series
of articles (Koskinen, Paakki & Salminen 1994) (Linos & Courtois 1994)
(Wilde & Huitt 1992) on object-oriented program maintenance, a book
on visual object-oriented programming (Burnett, Goldberg & Lewis 1995)
(articles (Citrin, Doherty & Zorn 1995) (Chang, Ungar & B.Smith 1995)
(Grundy, Hosking, Fenwick & Mugridge 1995) in particular) a rich set of
views is o�ered. These include the following (the list could de�nitely be
lengthened by consulting more articles and books):

� control ow graphs;
� data ow graphs;
� backward and forward slicers (showing the minimal subset of the code

that a�ects a set of variables and showing the minimal subset of the code
a�ected by a set of variables);

� dicers (showing the subset of the code that can be executed when a
given assertion is true);

� de�nition/usage graphs of program variables;
� call graphs;
� module dependence graphs;
� class hierarchies (inheritance, containment) in OO programs;
� tracing chains of polymorphic functions;
� symbols' (program tokens) lookups;
� deadcode views;
� program layers;
� results of simple queries;
� domain-speci�c execution visualisers.

4



The construction of some views is also a feature in many CASE tools
which support reengineering. For example, in Rational Rose (a product of
Rational Software Corp.) inheritance and aggregation hierarchies can be
shown from the user's C++ program. Similarly, but more con�gurable, the
Graphical Designer (a product of Advanced Software Technologies, Inc.)
constructs a variety of views of C and C++ programs.

Why are there so many and so di�erent views? The existence of code
views is based on the idea of program dependencies. A program depen-
dency can be described as a triple hPoint1InCode; Point2InCode; Linki.
(An example could be hClass1; Class2; Inheritancei.) On the other hand,
during the development of the area of software engineering, various graph-
based presentations of software were o�ered, beginning with simple pro-
gram block-charts and continuing to the present day object-oriented dia-
grams. The graphs are also described by a triple hNode1; Node2; Linki.
Combining various program dependencies and views of graphs has caused
the emergence of quite a varied set of program views. In essence, the pro-
cess of viewing a program as a graph includes the extraction of instances of
a program dependency, the storage of these instances, and the retrieval (for
a query) or mapping to a graph (for a graphical view). (Chen, Nishimoto
& Ramamoorthy 1990) point to the need of having a concise conceptual
model (for example, the entity-relationship model), which de�nes the soft-
ware objects and relationships at a selected level of abstraction. But in
many of the aforementioned articles this need is not addressed.

2.1.3 Method Advantages and Limitations

The main advantage of the above mentioned systems is performance. As
the construction of views is prede�ned, then specialised, optimised algo-
rithms can be applied. Very often program visualisation is but one feature
among others, nicely integrated with other subsystems (like forward and
reverse engineering features are integrated in many CASE tools).

Users of these systems face di�erent kinds of problems. First, they are
often o�ered a narrow set of views in one system. Users may have their
own, highly individual \mental maps" of programs. The potential user
of program visualisation tools is, most probably, a programmer himself
and capable of specifying his own visualisers. It could be argued that the
user should be provided with the option to specify his own visualisers,
considering that PA&V is still a hot research topic and that researchers
are still far from having de�ned the complete set of program views.

Second, the semantics of graphical symbols used are described in a
very informal way. If we can assume that a program dependency can be
explained informally or understood intuitively (which is not always true),
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then we cannot rely on an informal description of the mapping from a
program dependency to a graphical view. Suppose, for example, that two
classes in a graph are joined with a line presenting link \uses". Do we take
into account calling a class from an implementation of a method of another
class or not? This and similar points might not be clear. Evidently, the
user would like to open the \black box" or, in other words, he needs access
to internal representations of visualisers.

2.2 Annotation

2.2.1 Method Description

The annotation method is mainly applied in algorithm animation. Here,
the user develops animation procedures and marks (or annotates) an input
program text with calls to these procedures. Procedures' parameters are
used for data passing.

2.2.2 Examples: Program Animators

In the Balsa-II system (Brown 1988), the animation of an algorithm in-
volves three steps. First, the program is split into three components: the
algorithm itself, various input generators that provide data for the al-
gorithm and di�erent views. Second, the components are implemented.
Components have parameters through which the data is exchanged. The
implementation of new views or input generators involves the reuse of ex-
isting components from the library. Third, views and input generators
which can be used with each algorithm are identi�ed and named. The
main e�ort of a Balsa-II programmer is spent in annotating the algorithm
being animated. This is quite understandable, as the identi�cation of the
essential operations in the algorithm is by no means a trivial task itself.
To the eager reader we suggest to take a look at the article (Brown 1988),
where the di�erent steps in the construction of the animation are presented
(as well as attractive snapshots of animations).

The Tango system (Stasko 1990) is based on a framework which in-
cludes three components. To produce an animation, the user must 1)
annotate the program with algorithm operations (or calls to animation

procedures-as named above), 2) write animation actions and 3) specify the
mapping from algorithm operations to animation scenes. Keeping map-
ping and animation procedures separated gives a signi�cant advantage in
exibility terms as the user can change the animation simply by editing
the mapping �le.
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Figure 1: The general architecture of a declarative PA&V toolkit.

2.2.3 Method Advantages and Limitations

The key advantage of the annotation method is that the user is permitted
to provide his own de�nition of what should be animated and how. The
user can himself de�ne appropriate events in program execution as well as
the way these events should be presented graphically.

The possibility to write your own animation procedures can be consid-
ered a disadvantage as well, because it consumes additional work. Here,
libraries of animation procedures facilitate the process and ease the work-
load. But then instead, libraries must be well understood themselves,
which is not a trivial task in imperative programming. One more dis-
advantage of the annotation method is the need to modify the program
code.

2.3 Declaration

2.3.1 Method Description

PA&V tools which apply declarative approaches di�er as signi�cantly from
each other as di�erent are the methods which can be typed declarative.
Typically, the user is provided with an environment in wich he can specify
his own visualisers in a given declarative language. As shown in Figure 1,
the process of writing your own visualiser includes, essentially, the spec-
i�cation of program and view models and of a mapping between these
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models. The extraction of a program model from an input program and
the presentation of the view graphically can also be speci�ed by the user
or else done automatically by the system. Additional models (like a user
model or similar) can easily be added in the same way as, for example, a
new view model.

2.3.2 Examples: Declarative Visualisers

The usage of the declarative approach in PA&V systems ranges from the
introduction of simple declarative mappings to the employment of declar-
ative languages tailored to the speci�cs of PA&V.

Declarative mappings. In the aforementioned TANGO system the
control �le serves as storage place for the declarative speci�cations. Here
the names of algorithm operations and animation scenes and mappings
between them can be listed. The mappings have simple form: algorithm
operations �! animation scenes.

In the reexion model approach (Murphy, Notkin & Sullivan 1995) for
software analysis, a reexion model is introduced in addition to a source
model, a high-level model and a mapping. Although the authors do not
purport to follow a declarative approach, they actually use a declarative
language for the speci�cation of maps.

(Selfridge & Heineman 1994) Interactive Code Understanding Envi-
ronment (ICUE) takes the information about a C program stored in a
database and provides the user with a graphical query-formation facility
as well as the environment for manipulating object graphs (the graphical
representations of the results of queries).

Declarative languages. In the Pavane system (Roman, Cox, Wilcox
& Plun 1992) the underlying visualisation model is declarative in the sense
that visualisation is treated as a mapping from program states to a three-
dimensional world of geometric objects. All mappings are represented
by rules. Rules can be added, deleted or modi�ed during visualisation.
The speci�cation of the visualisation in Pavane requires the user to for-
mally specify the state of programs. This forces the user to work more
on the conceptualisation of program behaviour, which although being a
time-consuming requirement also gives a fundamental bene�t - a deeper
understanding of the nature of computations and their graphical represen-
tations.

In the SPE/Cerno system (Grundy et al. 1995), users are free to choose
both the contents and layout of views. The construction of new display ab-
stractions involves specialising and creating new abstractor classes (written
in Snart), while new display visualisations can be developed using the icon
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layout language. Both Snart (an object-oriented extension to PROLOG)
and the icon layout language are declarative.

The key technological idea in the (Kotik & Markosian 1992) approach
is code representation as an annotated abstract syntax tree in an object-
oriented database. This approach di�ers essentially from code viewers
(discussed above) as it also provides a high-level language, the Re�ne lan-
guage, which allows the user to operate on the abstract syntax tree. For
example, one can de�ne one's own analysis functions. The same language
is used for the speci�cation of graphical views of the results of analysis
functions. This is implemented in Re�ne Language Tools (a product of
Reasoning Systems, Inc.), where the initial set of graphical views can be
extended with views written by the user in the Re�ne language.

In the SoftSpy system (discussed in more detail in Part 4), the user
is given full liberty to specify his own visualisers in the NUT language.
A speci�cation, as well as a request for computation, are translated into
logical language, a proof is performed and, if successful, a visualiser is
synthesised. The user is also provided with an environment, which has
facilities for NUT language processing, graphics management and other.

2.3.3 Method Advantages and Limitations

In the declarative approach the user has to abstract (or conceptualise)
the construction of a program's view and to record the abstraction (or a
conceptual model) in a given declarative language. The conceptualisation
is always time and e�ort-consuming work. But this conceptualisation is
in any case performed by the user when trying to understand a program.
And so, the main role of a declarative PA&V system is to provide an
environment, where the user can operate with the conceptual models he
produced: to record, reuse or modify them.

An explicit representation is particularly important in the process of
PA&V, as in this case, at least two distinct conceptual models are involved:
a model of the program and another of its view. The mapping between
di�erent models is declarative by nature, and, can thus, more naturally be
represented in a declarative language.

In addition to being more understandable, visualisers written in a
declarative language are easier to modify. Easy addition, deletion or
change of atomic units of knowledge (like rules, de�nitions of domain enti-
ties etc.) is a feature inherited from knowledge-based systems (knowledge-
based systems are chosen as implementation environments for many declar-
ative visualisers).

The main disadvantage (which declarative PA&V systems inherited
from knowledge-based systems) is a low speed of execution. The good side
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of the coin is that speed measures of many knowledge-based methods have
been extensively investigated and optimisations are known. In addition,
the language used is usually adapted to the visualisation problem and
simpli�ed.

3 Knowledge-based Program Analysers

(Kozaczynski, Ning & Sarver 1992), (Johnson 1994) discuss the general
organisation of typical knowledge-based program analysers. This organ-
isation usually includes the parsing of a code, typically generating an
abstract syntax tree representation, stored in a knowledge base. The
knowledge base also includes representations of programming knowledge
or, more precisely, common programming patterns and techniques, vari-
ously called design schemas, programming cliches and programming plans.
The analyser matches the programming patterns with the code to infer
that higher-level speci�cation concepts are present in the code. The user
of a knowledge-based code analyser is provided with the possibility to mod-
ify the knowledge-base (programming patterns) as well as to use inferential
services by asking questions.

Various representations of programming knowledge and system models
as well as inferential features inuenced the development of di�erent know-
ledge-based software analysers:

� (Wills 1992) studies a graph parsing approach to automating pro-
gram recognition in which programs are represented as attributed
dataow graphs and a library of cliches is encoded as an attributed
grammar. A graph parsing algorithm is used to recognise cliches in
the code.

� (Quilici 1994) represents programming plans as data structures con-
taining two parts: a plan de�nition, which lists the attributes of
the plan that are �lled in when instances of the plan are created,
and a plan recognition rule, which lists the components of a plan
and the constraints on those components. An instance of the plan
is recognised when all its components have been recognised with-
out violating the constraints. In addition, each programming plan
also includes indices, specialisation constraints, and a list of implied
plans. The algorithm employed makes use of indices in order to sug-
gest general candidate plans to match top-down against the code,
specialisations to re�ne these general plans once they are recognised,
and implications to recognise other, related plans without doing fur-
ther matching.
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� the LaSSIE system (Devanbu, Ballard, Brachman & Selfridge 1991)
provides two types of inference: subsumption and rules. The knowl-
edge base has descriptions of the objects and operations in the do-
main, the processes, layers and messages in the architecture, and the
functions, variables and �les associated with the code.

� GEN++ (Devanbu 1992), a code analysis tool generator for C++,
is implemented by attaching the portable parse tree querying mech-
anism to the Cfront compiler. GENOA is an applications' generator
that produces arbitrary analysers from speci�cations. The GENOA
language has special iteration operators that are tuned for expressing
simple, polynomial time analysis programs. The GENOA speci�ca-
tion language uses the vocabulary of abstract syntax trees.

� (Kozaczynski et al. 1992) (Harandi & Ning 1990) use an object-
oriented environment to implement the concept recognition system.
All language and abstract concepts are represented internally as ob-
jects of a knowledge base. Plans are also objects and have meth-
ods associated with them for recognising concept instances. These
instances are found by pattern matching, which is a uni�cation of
abstract syntax trees of the attribute values.

� In the DESIRE system (Biggersta� et al. 1994), a domain model
knowledge-base is built as a semantic/connectionist hybrid network
and a connectionist-based inference engine is employed.

The section below is devoted to a case study. We discuss the results
in the development of toolkits for program analysis in the NUT system.
In particular, we point out both merits and de�ciencies of a toolkit (for
the presentation of prede�ned graphical views of a code). We then reason
about the considerable improvements of this toolkit when shifting to a
declarative approach.

4 PA&V in the NUT system

4.1 A general introduction to the NUT system

NUT is a system of object-oriented programming with features of auto-
matic program synthesis (Tyugu 1991). The NUT programming language
rests on two paradigms: procedural object-oriented programming and the
automatic synthesis of programs from declarative speci�cations. The latter
is a technique for automatic construction of programs for unprogrammed
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procedures out of their speci�cations and of the programs and speci�ca-
tions of programmed procedures. Here a procedure's speci�cation embod-
ies its external view (states the names of its input and output parameters).
The automatic synthesis of programs, as practised in NUT, is based on
proof search in intuitionistic propositional logic (a more detailed descrip-
tion of the NUT system and the NUT language can be found in (Uustalu,
Kopra, Kotkas, Matskin & Tyugu 1994)).

The feature of the NUT language of being both an object-oriented
programming language and a declarative language, lead us to the idea
of carrying out various PA&V experiments. That is, starting with the
development of code viewers for object-oriented programs we then moved
on to the investigation of declarative analysis of the same code. The NUT
system is well suited to this purpose as there is no need to change language
and environment when switching to a new (declarative) technique.

In the following two subsections, we discuss the results of our experi-
mentation in PA&V in the NUT system: prede�ned and declarative ap-
proaches. The prede�ned approach presents a toolkit for creating graphical
views of NUT programs. Discussion on the declarative approach includes
informal and brief introduction to the problem-oriented language, logical
language, proof or inferencing issues as well as an example - once again
the toolkit for creating graphical views of NUT programs. The programs
selected for analysis were written in the NUT language.

4.2 A toolkit for creating OMT-based views of a pro-

gram with the prede�ned speci�cation method

A toolkit (Sidarkeviciute, Addibpour & Tyugu 1995) for the automatic
visualisation of object-oriented software modules (or packages as they are
called in the NUT system) was developed. The OMT (Rumbaugh, Blaha,
Premerlani, Eddy & Lorensen 1991) graphical notation was selected, be-
cause it includes notations for the representation of static, dynamic and
functional aspects of a system. OMT graphical icons are simple to draw,
adapt and modify. In addition, many programmers possess knowledge
about OMT.

For the presentation of the static structure, three graphical symbols
from the OMT Object Model were borrowed and adapted. First, the class
icon shows the name, attributes and methods of a particular class. Inher-
ited attributes and methods are also shown. Second, the class hierarchy is
visualised in a vertical tree (as it is in the OMT Object Model). Third, the
aggregation tree is illustrated with a horizontal tree by using the icon for
aggregation association of OMT OM. Other associations are not shown.
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The dynamic aspects of a code are displayed through the visualisation of a
synthesised algorithm. For the visualisation of functional dependencies and
dataow, the OMT Functional Model was chosen and slightly modi�ed.
The NUT system provides program synthesis on higher-order functional
constraints networks (HOFCN)-which have their own graphical notation.
The graphical notation of HOFCN and the modi�ed graphical notation of
the OMT Functional Model were combined. Thus, in the functional model
the data ow between the methods of a class is shown. Class methods (in-
cluding equivalences and equations) are considered to be processes of the
OMT Functional Model.

Some snapshots of the views constructed by the toolkit can be found
on www on the address:

http://www.it.kth.se/edu/gru/KBPVT/projects/softspy.html.
A number of experiments were carried out. The purpose of the ex-

periments was to estimate how much the suggested visualisation can help
in understanding the program and evaluating the design. Observations
were made like follows. Inheritance trees help in acquiring a general view
of the static structure of a package: how many classes are employed and
how many attributes and methods are used in their de�nitions, whether
the names chosen are self-explanatory, etc. We are able to detect empty
or too big classes. Aggregation trees provide a clue for discovering the
\main" actors of a package. These are the classes which usually have more
aggregated classes and are normally the most general classes of the design
of a given problem. One can go further from this point by investigating
functional models of these \actors". A functional model of a class helps
the user to trace the computation of class attributes.

Some de�ciencies were also detected when using this toolkit. First,
the correspondence between parts of the program and graphical symbols
was described very informally, and so a considerable amount of time had
to be spent in order to get the meaning of pictures (\What does this
symbol stand for in the code?"). Second, a very narrow set of views was
o�ered (\Why can I not create my own view?"). For example if the user
is interested only in coupling between classes or, more simple, to have just
class names in inheritance trees, he can not in a exible way specify the
view he wishes to have.

The exploration of the declarative features of the NUT language seemed
to deal with both problems: it would allow the user to explicitly specify any
kind of internal representations and mappings involved while the structual
synthesis of programs would deal with assembling the visualiser from the
speci�cations. Thus we switched to the declarative approach in order to
further extend the functionality of the code analysis toolkit.
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Figure 2: The relation between languages, proof and program in the NUT
system.

4.3 A declarative approach

The key idea behind our declarative approach discussed is the usage of
the NUT language for the representation of knowledge about a program
and its various views. As shown in Figure 2, the user starts by specifying
his visualiser in a problem-oriented language (the NUT language). Then
this speci�cation is automatically mapped into a logical language in which
a proof for the request is performed. If the proof succeeds, the program
(or a visualiser) is synthesised. The rest of this section will be devoted to
illustrating each of the steps in the process of constructing a visualiser. In
order not to burden the reader with theoretical and technical details, the
illustration is provided informally, with the help of an example.

An example: an OMT-based visualiser. As in section 4.2 we
again discuss an OMT-based graphical presentation of a NUT program.
We redevelop our toolkit in the declarative manner as discussed just above
and presented in Figure 1.

We get three system-subparts: a representation of a program model, a
representation of OM (Object Model of OMT) and a representation of the
mapping of a model to OM. Figure 3 gives a snapshot of these subparts.
The representation of the model includes the classes Package, Class, Object

(two classes are shown on the left side of Figure 3). Each of the classes has a
methodExtract... which de�nes how particular attributes of the class could
be computed in the particular package. The representation of OM consists
of the classes OM, OMClass, OMInhLink, OMAggrLink (two classes are
shown on the right side of Figure 3). The classes describe OM diagrams in
the NUT language and may contain methods Draw... for the construction
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Figure 3: Parts of the speci�cation of an OMT-based visualiser in the NUT
language: 1) speci�cation of the OMT-based view; 2) explicit invocation
of inference; 3) extraction of information directly from the program code;
4) passing of information for graphical layout.

of a drawing. The mapping between Package and OM is represented by
two classes: PackageToOM and ClassToOMClass (shown in the middle
of Figure 3). In the class PackageToOM, the speci�cation of the method
ComputeClasses declares that if in the class ClassToOMClass from Class,
OMClass can be computed then, from Package.Classes, OM.Classes can
be computed. The class ClassToOMClass explicitly de�nes the mapping
between the class in the program model and the class in OM.

The synthesis of a visualiser can be requested by the goal obj.compute

(Drawing)- here obj is any object of a class OM.
Problem-oriented language. Classes in the NUT language are used

as the main entities of model representation. Classes act as computational
frames as they are enriched with computability axioms (marked with 1
in Figure 3), which contain information about the computability of class

components. A class can also have an image (for example, an image of
a OMClass is a rectangle with one input and one output ports and a
parameter for a name).

The NUT language is tailored to PA&V problem, by extending the
standard function libraries with three new libraries: a library for the ex-
traction of information from a program, another for the graphical layout
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and a third for passing data to visualisation in MatLab (a product of the
MathWorks, Inc.). The libraries are linked dynamically.

The extraction of information from the program is supported by a set of
reective functions (marked with 3 in Figure 3), such as getclasses, getvar,
getrel, etc. The set of available functions covers the extraction of all entities
and relations according to the ontology (or model) of the program. If the
user analyses a non-NUT program, he can write extraction functions in
the NUT language or invoke programs written in other languages. The
existence of reective functions in NUT facilitates our program analysis
task considerably. The program model is easy to build in terms of these
functions.

The functions of an independent graphical layout generate a drawing
from simple graph speci�cations. We solved the task of automatic layout
of the diagrams as an instance of the general graph drawing problem (Ku-
usik, Sidarkeviciute & Tyugu 1996). We adapted algorithms addressing
directed acyclic graphs, which perform, �rst, a level assignment of nodes
by tracing their connections, and then apply some heuristics to reduce
edge crossings and bends. The layout algorithm is encapsulated in a sepa-
rate, self-contained graph layout subsystem under NUT. Functions of this
subsystem (marked with 4 in Figure 3) allow one to construct a graph in
a declarative way by adding edges and nodes to the graph, to request a
layout calculation on the constructed graph, and �nally, to store the layout
as a scheme (diagram representation) of some existing class. The user can
view the automatically generated diagram by requesting the NUT graphics
subsystem to show the scheme of that class.

Visualisation of data in the MatLab is performed by the use of ready
made classes such as Matrix, MatlabLow, MatlabAnim. The link to the
Matlab is transparent for the user, e.g. the user speci�es in the NUT
language the visualisation in the MatLab.

Logical language. A logical justi�cation for the NUT declarative
language and the main reasoning procedure - the structural synthesis of
programs- is provided in (Uustalu 1996). The explanation is given in
terms of a simple intuitionistic normal modal logic as the observation is
made that \classi�cation and computability statements are object-relative
in object-oriented synthesis in the same way as propositions are world-
relative in normal modal logics - objects and worlds are implicit in the
language of each". Thus, objects are treated as worlds and component
relations between objects as accessibility relations between worlds.

Example 1. The classes PackageToOM and ClassToOMClass de�nitions
given in Figure 3 are translated into the following axioms (we shorten
ClassToOMClass to CTOMC, PackageToOM to PTOM, OMClass to OMC, Package
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to P, Classes to Cls and Class to Cl):

PTOM � hPiP (1)

PTOM � hOMiOM (2)

PTOM � [?](CTOMC� (hClir � hOMCir))hPihClsir � hOMihClsir (3)

CTOMC � hCliCl (4)

CTOMC � hOMCiOMC (5)

CTOMC � (hClihNameir � hOMCihNameir) (6)

CTOMC � (hClihVarNamesir � hOMCihAttributesir) (7)

CTOMC � (hClihRelNamesir � hOMCihOperationsir) (8)

Here r stands for computability, hClassComponentNamei and [?] denote
accessibility relations. For example, axiom (6) is interpreted as follows:
the world (or object) w of the class CTOMC implies that if there exists such
a world w0, which is accessible from w via relations Cl and Name and is
computable, then there exists such a world w00, which is accessible from w

via relations OMC and Name and is computable.
End of example 1.

Proof. The inferencing carried out by the NUT system is called prov-

able realizability (Uustalu 1995). Its main goal is to prove the computabil-
ity or non-computability of an object or its component. If computability
can be proven, then an algorithm (or a program) for its computation is
synthesised. A logical justi�cation of the computability inferencing is also
provided in (Uustalu 1996) and not discussed here. Rather, an informal
illustration of the inferencing procedure is provided by an example.

Example 2.
If we consider the classes discussed in example 1, the goal given to the

system could be: given an object w of the class PTOM with computed com-
ponent Package.Classes, �nd an algorithm for computing its component
OM.Classes. This amounts to proving the inference (here the abbreviation

of class names is the same as in example 1):
w : PTOM w : hPihClsir

w : hOMihClsir
.

The derivation (based on the rules presented in (Uustalu 1996)) is the
following:

(3) w : PTOM

w : [?](CTOM� (hClir � hOMCir))
� (hPihClsir � hOMihClsir)

�
w0 : hOMCir

w : [?](CTOM �
(hClir � hOMCir)) w : hPihClsir

w : hOMihClsir
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Here � stands for the proof
w0 : hClir w0 : CTOMC

w0 : hOMCir
.

This amounts to proving the inference

w0 : hClir w0 : CTOMC

w0 : hOMCihNameir ^ hOMCihAttributesir ^ hOMCihOperationsir
,

because OMC has the components Name, Attributes and Operations.

The proof of
w0 : hClir w0 : CTOMC

w0 : hOMCihNameir
is the following:

(6) w0 : CTOMC

w0 : hClihNameir � hOMCihNameir w0 : hClihNameir

w0 : hOMCihNameir

Here w0 : hClihNameir follows from w0 : hClir, as Name is a component
of Cl.

In the same way hOMCihAttributesir from hClihVarNamesir and
hOMCihOperationsir from hClihRelNamesir are proved.

The proof is completed.
End of example 2.

Synthesised programs. If the proof succeeds, a program for com-
puting the requested component is synthesised.

Let us return to our example of an OMT-based visualiser, where the
request to compute Drawing is given. In the case when classes do not pos-
sess enough information for the computability of Drawing, the unsolvable
problem will be reported. In the positive case, the program will also be
synthesised.

Figure 4 presents the results of the work of the synthesised visualiser.
As input program a visualiser's program was chosen.

The advantages of a declarative approach. First, the user can
easily modify his viewer. For example, if one does not want aggrega-
tion links presented in the OM view, it is su�cient just to take away
AggregationLinks from the method DrawOM in the class OM. By invoking
inference procedures, the user can check whether a modi�ed speci�cation
still possesses the same component's computability features as the old one.
Second, let us consider the di�erent representations - one of the program
model and another of the OMT-based view. The terminology used by

18



Figure 4: Part of the view constructed by an OMT-based visualiser from
a NUT program.

programming language authors and OMT authors is employed in each re-
spective case. For example, the attributes of a class are called Variables

and Virtuals in the model of NUT programs (as in the NUT language
documentation); and they are called Attributes in the OMT-based view
presentation (so are they called by OMT developers). This brings us one
step closer to naturalness and user-friendliness. Moreover it simpli�es the
introduction of changes. Third, one can easily discover, that replacing
the OMT-based viewer with another viewer is not a complicated task. It
involves the development of the NUT language representations of a new
view and a mapping from a program model into this new view.

5 Concluding remarks

We discussed the tendency towards the declarative approach in program
analysis and visualisation. Declarative program analysis and visualisation
tools considerably extend the functionality of traditional PA&V tools. The
main achievement is improvedmodi�ability and extensibility of visualisers.
This is due to the reason that explicit declarative speci�cations are easier
to understand and, consequently, to modify. New program models as well
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as new analysers (for example, metrics tools or evaluators) can be added
by adding new speci�cations.

We also presented a case study: the research in program code analysis
in the NUT system. We argued that viewing a program code in several
prede�ned ways is not su�cient for program understanding. This was
motivated by discussing the results of applying a program visualisation
toolkit in the NUT system. We redeveloped our toolkit in a declarative
manner. We used the NUT declarative language for recording knowledge
about PA&V. Provable realisability was the main inferencing procedure.

An important issue which has not been thoroughly investigated, and
which forms the basis for future work, is the elaboration of a problem-
oriented language, e.g. a language for the speci�cation of visualisers. As
shown in the paper, a declarative language is suitable to PA&V. But what
additional features (for example, what standard libraries or suitable lan-
guage constructs) the language should have - remains to be investigated.
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