
Lightweight Source Model Extraction*

Gail C. Murphy and David Notkin

Department of Computer Science & Engineering

University of Washington,

Box 352350

Seattle, WA 98195-2350 USA

{gmurphy, notkin}Qcs.Washington.edu

Abstract

Reverse engineers depend on the automatic extrac-

t ion of information from source code. Some use-

ful kinds of information+ource models—are well-

known: call graphs, file dependence, etc. Predict-

ing every kind of source model that a reverse engi-

neer may need is impossible. We have developed a

lightweight approach for generating flexible and tol-

erant source model extractors from lexical specifica-

t ions. The approach is lightweight in that the speci-

fications are relatively small and easy to write. It is

flexible in that there are few constraints on the in-

formation in the source that can be extracted (e.g.,

we can extract from macros, comments, etc.). It is

tolerant in that information can be extracted from

source that cannot necessarily be compiled or linked.

In essence, we scan for source constructs that con-

tribute to the specified source model while ignor-

ing constructs that do not contribute to that source

model. We have developed tools to support this ap-

proach and applied the tools to the extraction of a

number of different source models (file dependence,

event interactions, call graphs) from systems imple-

mented in a variety of programming languages (C,

C++, CLOS, Eiffel). We discuss our approach and

describe its application to extract source models not

available using existing systems; for example, we com-

pute the invoked-by relation over Field tools. We

compare and contrast our approach to the conven-

tional approach of generating source models from a

program database.

* This research was funded in part by the NSF grant

CCR-8858804 and a Canadian NSERC post-graduate

scholarship.

Permission to make cfigital~ard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyrighffsewer
notioe, the title of the pubiioation and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise: to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SIGSOFT ’95 Washington, D.C., USA
01995 ACM 0-89791-71 8-2/95/0010...$3.50

116

1 Introduction

Extracting various kinds of information from

source code is a central undertaking of any

reverse engineering tool. Examples of useful

kinds of information—which we call source mod-

els—include call graphs, file dependence, cross-

-reference lists, program dependence graphs,

among others. Predicting every kind of source

model that a reverse engineer may need is im-

possible.

One way to lessen the need to anticipate fu-

ture demands is to define an engine that can ac-

cept specifications of the desired source model,

extracting that source model when given source

code. We have developed a lightweight approach

that allows reverse engineers to generate flexible

and tolerant source model extractors from lexical

specifications of the desired information.

●

●

●

By lightweight, we mean that the specifica-

tions for new extractors are reasonably small

and easy to write. For example, the specifi-

cations of the source model extractors that

we discuss in Section 3 fit on a screenful or

two.

By flexible, we mean that there are few con-

straints on the information in the origin~

source that can be extracted. For example,

our specifications can extract models from

macros, comments, and other information

contained within the source code.

By tolerant, we mean that information can

be extracted from source that cannot nec-

essarily be compiled or linked into an exe-

cutable.

The essence of our approach is to scan only for

source constructs that contribute to the specified

source model. For instance, a specification to ex-

tract a call graph states only those lexical con-

structs that represent calls, skipping over non-

contributing constructs such as data declarations

and control constructs.

Our approach provides similar flexibility in

matching source information as is found in

lexically-based tools like grep and awk [AKW79].

In contrast to these tools, we provide additional

support for matching source constructs in con-

text and across multiple lines. Another common

approach to extracting information from source

uses parsers. The parsers in these systems gener-

ally recognize most of the syntactic constructs in

the source code, including those that may not

contribute to the desired source model. This

tends to make the parsers harder to change to

accommodate new source models. Like existing

lexical and some syntactic methods of extracting

source models, our’ approach produces approx-

imate information—not all intended constructs

may be extracted, and some unintended con-

structs may be extracted. Our approach gener-

ally balances precision in extraction for increased

flexibility y and tolerance.

Section 2 describes the technical basis of our

approach, which is grounded in the generation

and execution of non-deterministic finite state

machines. Section 3 describes an application

of our approach, focusing on how we extract

tool invocation relationships from Field source

code [Rei90, Rei95]. Section 4 provides a discus-

sion of our approach, including an assessment of

the efficiency of our tools. Section 5 covers re-

lated work, and Section 6 summarizes the effort.

2 Source Model Extraction

The architecture of our source model extraction

system is shown in Figure 1. The source model

specification an engineer provides as input to our

system defines:

1. the patterns of interest in the source code,

2. the actions to execute when a pattern is

matched in the code, and

3 the post-processing analysis operations for

combining local information extracted from

individual source code files into a global

source model.

The first two parts, the pattern and action def-

initions, are used to generate a scanner—a non-

deterministic finite state machine—that reads in

a sequence of source code files and produces a

stream of local output using a relational inter-

mediate represent ation. The third part, the def-

inition of post-processing operations, is used to

generate an analyzer that reads the intermediate

representation stream and computes the desired

source model.

rlSource
Model
Specification

~enera7yJ
/ , Generate

/ \

“-”e
Representation

Figure 1: Architecture of the Source Model Ex-

traction System

2.1 The Specification Language

The specification language defines the patterns,

the actions and the analysis operations.

Specifying Information to Extract The en-

gineer describes the information to extract from .

the source code as a set of hierarchical patterns.

Each pattern uses a form of regular expressions

to describe a construct that maybe found within

the source. For example, a pattern to extract

the names of functions defined within a file con-

taining K&R C [KR78] source code is shown in

Figure 2.1

10ur notation uses square brackets to indicate optional

constructs, { }+ to indicate non-empty lists of const ructs,

I to represent alternation, and backslashes to escape re-

served single character tokens.

117

[(type)] (functionName) \([{ (formalArg) }+] \) [{ (type) (argDecl) ; }+] \{

Figure 2: A Pattern for Locating Function Definitions in C

The pattern shown in Figure 2 specifies that

a function definition consists of an optional type

specification, followed by the name of the func-

tion, a left parenthesis, an optional list of formal

arguments, a right parenthesis, an optional list

of declarations of the types of the formal argu-

ments (each of which is terminated by a semi-

colon), and an opening curly brace for the start

of the function body.

This pat tern will not generally extract all func-

tion definitions; for example, it will not match

definitions with an argument declared to be of a

pointer type where the asterisk is not appended

to the type nor prepended to the argument iden-

tifier (e.g., int * x;). Simple refinements of this

basic pattern, however, can be used to find vir-

tually all function definitions for existing bodies

of code. For example, this pattern has been it-

eratively refined to find 99% of all function defi-

nitions in the 18,000 lines of C, yacc [Joh75] and

lex [Les75] code comprising Field’s xref tool,

Patterns may be nested hierarchically. For in-

stance, to extract a static calls relation between

functions, the engineer may specify the two pat-

terns shown in Figure 3 where the pattern after

the blank line is a child of the first pattern,

During extraction, the source will be scanned

for an occurrence of the first pattern in Figure 3.

Once the first pattern is matched, scanning will

continue looking for both another occurrence of

the first pattern and also occurrences of the sec-

ond pattern. This ensures scanning will not miss

the start of the next function declaration while

still being tolerant to syntactical deviations in

the source code, For example, the scanning is

not dependent upon a closing curly brace (or,

moreover, to perfectly matched braces in the def-

inition of the function).

Disjunction is supported by permitting the de-

scription of multiple patterns at the same level

of the hierarchy. For example, an engineer can

search for global data declarations and function

definitions by defining

hierarchical level.

Specifying Actions

two patterns at the same

An engineer may attach

action code to patterns to be executed when a

pattern is matched in the source code. The ac-

tion code can access the value of matched lex-

emes and perform operations such as writing

to the intermediate representation stream. Fig-

ure 4 shows a pattern that will write out a sim-

ple stream of the form “function calls function”

when static calls are matched in the source. The

@ symbols introduce action code to be executed

when the second pattern is matched in the input

source. Our current tools define actions using

Icon [GG83] code.

Implicitly Specifying Lexical Information

Rather than defining the tokens on a per-

language basis, as is common in many scanning

approaches (for instance, ‘in lex), we define two

classes of tokens based on the specified patterns.

The first class of tokens is the class of single char-

acter tokens. These tokens are defined implicitly

by their appearance within a specified pattern.

For instance, the escaped left and right paren-

theses in the patterns shown in Figure 3 become

single character tokens. The second class of to-

kens is the class of identifiers consisting of any

sequence of non-whitespace characters that do

not contain any single character token.2

Specifying Source Model Computations

In some cases—for instance, the calls example

in Figure 4—the engineer may be able to extract

the desired source model from a simple scan of

the source code. Often, however, the desired

21n most cases, whitespace consists of any number of

space, tab, and newline characters. Mechanisms are pro-

vided for redefining starting and end character sequences

to identify blocks of comments to be ignored by the to-

kenizer. In some cases, this may remove a newline from

consideration as whitespace.

118

[(type)] (functlonName) \([{ (fomnalArg) }+] \) [{ (type) (argDecl) ; }+] \{

(calledFunctionName) \([{ (parm) }+] \) (\) [;)

Figure 3: Nesting Patterns to Locate C Calls

[(type)] (functionName) \([{ (formalArg) }+] \) [{ (type) (argDecl) ; }+] \{

(calledFuncti.onName)

@ write (functionName, “ calls “, calledFunctionName) @

\([{(Pard }+l\)(\) l;)

Figure4: Attaching Action Code to Patterns

source model requires some additional compu-

tation; for example, a calls relation that is to

include information about the files in which the

functions are declared must go beyond the exam-

ple in Figure 4. To support this, our system pro-

vides special functions that may be used within

action code to place relational information onto

the intermediate representation stream.

The engineer may then specify any global anal-

ysis to be performed within an analysis section of

the source model specification file. For example,

placing the lines

analysis fA

relationWrite (

relationSelect (

“calls”, ““, “file= foo. c”

)

)
@

in the specification file selects all tuples from the

calls relation on the intermediate representation

stream that involve a call to a function found

within the foo. c file, writing out the tuples as a

source model. The second and third parameters

to the relationSelect function are used as selec-

tion criteria on the tuples; in this case, the second

parameter is an empty string indicating that no

restrictions are placed on the calling functions.

2.2 The Generated Tools

Given a specification for a source model, our sys-

tem generates a scanner and an analyzer.

Scanner The scanner generator translates the

patterns specified by the engineer into a de-

scription of a lexer and a description of a non-

deterministic finite state machine. These de-

scriptions are combined into an Icon program

that executes the described non-deterministic fi-

nite state machine on input that is tokenized by

the lexer.

An example of the non-deterministic finite

state machine generated from the calls pattern

given above is provided in Figure 5. Each node

in the figure has a label indicating its level in the

pattern hierarchy. The initizd state is marked by

an oval. Each pattern in the input source model

specification has a match state (basically, a final

state for the pattern, as described below), repre-

sented in the figure by a diamond-shaped node.

The portion of this machine that matches formal

arguments and their type declarations has been

elided for presentation purposes but is similar to

the portion of the machine that matches param-

eters to a function call.

Transitions are represented by edges, with in-

put tokens indicating when the transition can be

taken. Two special tokens appear on the edges

of the state machine: e and any. The .E token

indicates a state transition may occur without

any input. The any token indicates the transi-

tion may be taken upon any identifier except a

single character token.

Transitions are taken in the state machine as

tokens are produced by the lexer. Whenever

there is a choice of transitions available, each

possible transition is taken in parallel. The scan-

119

t e

I 1

I 1 J

1
v <type>

E
1

1

y 4uncticmN.me

[
1

v (
1
I

%

Portmn of mmhme to match argument.

argument type declaratlms ended

1

)

1

E

1
E

1

and

E

1 l--

<caliedFunctkmN,me

E

E

Figure5: Generated Non-deterministic Finite State Machine for Extraction

120

ner maintains a set of all possible paths through

the state machine based on the token stream.

Each pattern in the input source model spec-

ification has a match state. Whenever a match

state is reached during execution, the state ma-

chine tries to reduce. If only one match state

has been reached when a token is consumed, the

machine reduces by executing all action code as-

sociated with the matched pattern and by prun-

ing all current paths in the search space. After

a reduction occurs, execution continues from the

matched state.

If multiple match states are reached simultane-

ously, the machine must choose one match state

to reduce. Two heuristics guide this choice:

1.

2.

If more than one pattern is matched and the

patterns are at different levels of the hierar-

chy, reduce the pattern closest to the top of

the hierarchy. This enables the scanner to

reset. In the calls example above, the start

of the definition of a new function resets the

search from looking for calls to looking for

functions.

If more than one pattern is matched at the

same hierarchical level, reduce the pat tern

with the largest number of matched identi-

fiers and single-character tokens. This gen-

erally selects the most specific pattern,

Explicit path information is maintained only

for paths that involve matches to patterns. Ac-

tive paths are pruned when no transition is pos-

sible with the current input token. However, it is

still possible that the search space may explode

if the patterns are not sufficiently specific. To

bound the search space, a third heuristic is en-

coded into the machine. This heuristic prunes

a path if more than a fixed number of tokens

have been matched on a given path for a specific

pattern.

Analysis The analyzer generator translates

the analysis code from the source model speci-

fication file into an Icon program that reads tu-

ples from the intermediate representation stream

and performs the specified relational operations

on those tuples.

121

3 Example

To help assess our approach, we wrote a specifi-

cation to extract the “implicitly-invokes” [GN91]

source model between tools within the Field pro-

gramming environment. Field tools communi-

cate indirectly through a centralized message

server. Tools announce events of interest by

passing ASCII messages to the message server,

and receive messages of interest from the server

based on matches of those messages with regu-

lar expressions registered with the server. An

understanding of the “implicitly-invokes” source

model in Field may be useful for software engi-

neers modifying an existing tool or integrating a

new tool into the environment.

Most events in Field start with the name of the

tool announcing the event, a coding style that

allows us to statically approximate the dynamic

interconnections of Field tools. More precisely,

some of the C functions that announce events

and register interest in events take, as a first

parameter, a character string starting with the

name of the event. We determine the implicitly-

invokes relation based on registration and an-

nouncement by tools of events with the same

name.

A portion of the specification to extract the

announcement of events by Field tools is shown

in Figure 6.3 Two nested patterns are defined.

The first pattern matches K&R C style func-

tion declarations. The second pattern matches

calls within a function body that take a con-

stant character string as a first argument. Bold-

faced entries indicate where code is attached to

output source model information as patterns are

matched and reduced.

The first pattern looks for function declara-

tions. When a function declaration is matched,

the second pattern is also included in the search.

The second pattern looks for calls to functions

that take as a first parameter a constant string.

The action for the pattern determines if the call

is a registration by checking if the name of the

function called is MSGregister, or an announce-

ment by checking if the name of the function

3The full specifications of this and the other source
model extraction specifications are available upon request.

[(type)] (functionName) \([(a.rg} [{ , (ar-g) }+]] \) \ {

[{ (type) [{ (Mod) }+] (decl) [{ , (decl) }+] ; }+ 1 \{

{ (calledFuncName) \(“ { (pa-m} }+ “

Figure 6: Pattern for Extracting Event Announcements from Field Source Code

called is MSGcall, ibfSGcalla, MSGsend or MS-

Gsenda.

We scan the names of the events from these

strings and output a relation indicating that a

particular function, from a particular file and

directory, registers or announces the specified

event. For example, a snippet of C code from

the jlowmenu. c file, which handles messages for

the Field call graph display tool, is shown in Fig-

ure 7. From this code, we extract the informa-

tion that the FLOWmenu._setup.trace function

announces the DDTR EVENT ADD event.

After scanning the Field source code based on

the above specification, we determined that very

few tools used the MSGregister function with the

event passed as a string. Instead, most tools

called the registration function with a variable

cent aining the name of the event. An inspec-

tion of the source code revealed that the values

of these variables were generally set by reading

an auxiliary data file. We wrote a separate 20

line specification and used our tools to extract

the desired event registration information from

this structured data file.

We generated source model scanners and an-

alyzers based on these specifications and used

the generated tools to extract the desired source

model from the Field source code. Extracting

and analyzing the desired source model from

180,000 lines of Field source code took approxi-

mately 26 minutes on a DEC3000/300X, using

our unoptimized prototype. We extracted 33

event interactions bet ween the 22 Field tools.

Determining the true implicitly-invokes rela-

tionship between Field tools is hard. Unix’s

grep can be used to capture many of the invo-

cations and registrations, but the quantity of in-

formation returned is great (380 lines), and data-

and control-flow analysis would have to be done

to compute the true relationship. Performing

an exact analysis by hand would be, at best,

a time-consuming activity. Furthermore, since

Field allows events to be arbitrary strings that

can be constructed at run-time, determining all

announced events is undecidable.

Instead, we compared the extracted source

model with one gleaned from reading the avail-

able literature and man pages about Field. Be-

cause there are many ways of sending messages

between tools beyond using the C functions with

a constant character string parameter, the ex-

tractor missed some implicit invocations between

tools. For example, the scanner determined the

flowview tool (a call graph viewer) announces

events to the debugger, but the analyzer did not

have enough context to understand that the de-

bugger also registered interest in those events.

More events of this nature could have been de-

termined by improving the analysis specification,

On the other hand, there were also relations

between tools that we automatically extracted

but did not find in a study of the documenta-

tion. For instance, the interaction between the

auto- commented tool (autoc) and the annotation

editor tool (annot) was found by our extraction

approach but is not readily apparent in the doc-

umentation. In any case, we are unaware of any

other source model extraction tools that extract

this (or any similar) relation.

4 Discussion

Syntactic vs. Lexical Extraction Many

extraction approaches use a parser. Some-

times these parsers are “full” parsers, extract-

ing sufficient information from which to com-

pile a program; other times they are “par-

tial” parsers, extracting only the information

from the source that is needed to populate the

122

void FLOWmenu-setup_trace(fw)

FLOW-WIN fw;

{ .,, MSGsenda(’’DDTR EVENT ADD %s * * O * * O CALL %1” ,fw->system) ; ,,, }

Figure 7: Sample Code from Field

database. Rigi [MK89], Field, CIA++ [GC90]

and Sniff [Bis92] are examples of partial parsers.

By their very nature, parsers, both full and

partial, place syntactic constraints on the source

code from which source models are to be ex-

tracted. For compilation and some other devel-

opment activities, such syntactic constraints are

natural and useful. But for computing at least

some source models, these constraints are un-

necessary and undesirable. For example, requir-

ing all system header files to be correct makes

it difficult to compute a calls between modules

source model while a system is being ported,

In addition, the difficulty of providing an error-

correcting parser often precludes parser-based

approaches from computing source model infor-

mation subsequent to a syntactic error in the

source.

Building or modifying existing parsers can be

quite complicated in practice.

Expanding a tool’s capabilities to in-

clude additional source languages and

additional analyses, while seemingly

conceptually simple, can often be quite

difficult. The statement that “all you

have to do is add a new parser” is de-

ceptively appealing [RPR93, p. 117].

In practice, such brittleness leads to the use of

ad hoc approaches. For example, Miiller et al.

recently described a case in which they decided

against writing a parser, instead extracting the

information using “a collection of Unix’s csh,

awk, and sed scripts. . .)7 [WTMS95, p. 49].

In cent rast’ our approach is lexical, allowing

additional flexibility and tolerance in the con-

tents of the source code from which a source

model is being extracted. Our lexical engine ap-

plies neither syntactic nor static semantic con-

straints. Even if there are some errors in the

123

source that cause our extractor to miss some tu-

ples in the source model, this does not preclude

the extractor from finding the rest of the source

model. Our approach also provides the engineer

additional flexibility in handling variants of a

language, For example, only small changes in the

source model specifications shown in Section 2

are needed to handle the variants of C common

on personal comput ers.4

Extraction using a Program Database In

many existing approaches, a program database

is derived from the source code; in turn, each

desired source model is then extracted from the

database. In contrast, we produce a separate

source model extractor for each desired source

model. This difference is in part a matter of en-

gineering. To understand in what situations one

approach may be better than the other requires

consideration of a number of dimensions.

In the database approach, one must anticipate

what information to include in the database. If

a new source model is needed that depends on

information not in the database, the database

structure must generally be modified, the tool

that creates the database must be modified and

the tools that extract existing source models

from the database may have to be modified. Our

approach is not dependent on anticipating these

needs.

Our approach of computing source models on

demand, however, may be less effective if a num-

ber of source models need to be extracted from

the same source code, since scanning must be

done for each desired model. In contrast, the

conventional approach amortizes scanning costs;

once the database is computed, it is often in-

expensive to extract source models from the

4These variants often permit the declaration of mem-

ory model information when declaring source code con-

st ructs.

database. Griswold and Atkinson’s notion of pig-

gybacking might be applicable to our approach

to reduce the overall costs of extracting multiple

source models [GA95].

Writing Specifications Specifications are

easy to write for three reasons. First, specifica-

tions are straightforward to state because an en-

gineer describes constructs present in the source

code, rather than manipulating some interme-

diate representation. Second, specifications are

generally small. Most of the source model extrac-

tors that we have defined to date—including C

call graph extractors, event extractors for CLOS,

implicitly-invokes extractors for Field, and file

dependence extractors for C and C++ [Str86]—

have specifications of fewer than 80 lines includ-

ing the patterns, the actions, and the analysis

operations. The largest one is the Eiffel [Mey91]

call graph extractor, which consists of about 250

lines, primarily because it must track local sym-

bol table information to resolve the recipients of

messages. Finally, specifications can be written

iteratively because, in addition to the specifica-

tions being small, the extractor generator is quite

fast.

Approximation Being lexical, our approach

is intrinsically approximate for programming

languages. For instance, a calls source model ex-

tractor generated with our approach may both

miss some calls (false negatives) as well as rec-

ognize some lexemes as representing a call when

in fact the lexemes represent some other syntac-

tic entity (false positives). In many cases, this

can be a fair tradeoff for flexibility, allowing a

reverse engineer to extract some useful informa-

tion at low-cost. For example, we could not find

any publicly or commercially available Eiffel call

graph extractor; building a good, even if approx-

imate, extractor in a couple of hours was benefi-

cial for an engineer attempting to understand a

system written in Eiffel.

The confidence an engineer has in the accu-

racy of the information extracted by a lexical

approach is dependent, in part, upon the use

and adherence to particular styles of coding by

the programmers. For instance, an engineer will

have greater confidence in the information ex-

tracted by our C call graph extractor if it is

known that multiple levels of embedded calls are

relatively rare in the target system.

The lightweight nature of our approach is

synergistic with extracting approximate models.

Our specifications are small enough and our ex-

tractor generator efficient enough to iteratively

refine the generated extractors. This allows en-

gineers to balance their efforts in defining source

model extractors with the precision of the gen-

erated extractors. As with Griswold and Atkin-

son’s Ponder system [GA95], the engineer can re-

fine a specification until the accuracy needed for

a given task is achieved. This is not a realistic op-

tion to engineers using conventional parser-based

approaches.

Efficiency Table 1 shows the time required to

run several C calls extraction tools on the source

code for Field’s xref tools. Since neither the Rigi

parser, nor the cflow tool, extract directory and

file information, the table does not show analysis

times for these tools. The tot al time required for

extracting a source model with our unoptimized

prototype is on the same order of magnitude as

a parsing approach. We do not yet understand

the efficiency trade-offs of using Icon as our gen-

erated code, nor do we yet understand the trade-

offs of various heuristic settings.

5 Related Work

Lexical Engineers often use lexical tools in the

style of grep or awk to extract information from

source code. These tools are useful for finding

all occurrences of a particular lexical phrase, per-

haps even reporting the file in which a phrase oc-

curs. They do not, however, support the mat th-

ing of lexical phrases over multiple lines. Tools

in the style of Iex support matching over multi-

ple lines but do not permit an engineer to easily

specify hierarchical structures of search patterns.

It is also difficult with these tools to ignore con-

structs within comments, often leading to a large

number of false positives. Our approach differs in

supporting a contextual scan of source, in the hi-

erarchical matching of lexemes to variables, and

124

Tool Scan Time (s) Analysis Time (s) Total Time (s) ~

our tool 164 6 170

Field 74 47 121

Rlgi 42 — —

Cflovv 60 — —

Table 1: Performance of Extracting C Calls Information (Spare 20~50)

in direct support for post-processing scanned in-

formation into source models.

Syntactic Several research efforts have consid-

ered the extraction of information from source

based on parse tree representations (i.e., Re-

finery [BKM90], Code Miner [DK93], Scru-

ple [PP92], and Ponder [GA95]). These ap-

proaches typically use full parsers for particu-

lar languages. Our approach differs from these

systems in searching only for those source code

constructs that the engineer has specified rather

than performing a full parse. A benefit of per-

forming a full parse is that a wider range of

source models may be extracted (e.g., program

dependence graphs, clef-use chains, etc.).

The use of a parser to create a program

database from which source models are ex-

tracted is used by each of the XL C++

Browser [JMN+92], Sniff, CIA++ and Field sys-

tems, The XL C++ Browser, Sniff, and CIA++

systems extract information from C++ source

code. The Field programming environment can

be used to extract information from C++, C,

and Pascal source code, Our approach dif-

fers from these systems in generating extrac-

tors and scanning the source for desired infor-

mation as needed rather than scanning for and

storing pre-det ermined information into a pro-

gram database. By generating the extractors

as needed, we gain flexibility in both the types

of source languages considered and the kinds of

information that may be extracted from source

code.

Parse Tree Generators Since creating a

parser and parse tree representation is time con-

125

suming and difficult for the engineer, several

research efforts have developed approaches to

generate a parser and parse tree representation

based on a syntactic specification of the language

and the desired parse tree. The Genoa system

[Dev92] supports a wide range of user-defined

analyses of parse trees created from existing com-

piler front-ends. The SOOP system [GL94] takes

as input a specification for the grammar of the

source language to be analyzed and a specifica-

tion of the parse tree to be created, and gener-

ates a parser to transform source code into an

object-oriented form of the parse tree that may

be accessed by client analysis programs. These

approaches ease the specification of source model

extractors requiring detailed syntactic informa-

tion, but are limited in their flexibility to handle

a wide range of source languages, and in their tol-

erance to handling syntactically incorrect source.

In contrast, we make it easier for the engineer to

extract source models where full synt attic infor-

mation is not necessary.

6 Summary

Conventional approaches to source model extrac-

tion place unnecessary restrictions on the type

(i.e., only languages in a particular set are sup-

ported) and on the condition (i.e., no syntax er-

rors) of the source code. Moreover, the informa-

tion that may be extracted from the source is

generally limited to syntactic constructs in the

programming language. We have developed a

lexically-based approach to extracting informa-

tion from source that can extract from a wide

range of source types (e.g., programming lan-

guage source files, structured data files) and

that can consider almost all information con-

tained within the source. Our approach uses a

lightweight specification language that permits a

useful set of source models to be easily described;

some of these models cannot be extracted using

existing systems. We have built tools to sup-

port the approach based on the execution of non-

deterministic finite state machines. The gener-

ated extractors and analyzers are similar in ef-

ficiency to parser-based extraction tools. With

our approach, the engineer is able to trade some

precision in extraction for increased flexibility

and tolerance.

Acknowledgments

Steve Wampler provided valuable assistance in

improving the efficiency of our generated Icon

code. William Griswold, Richard Helm, David

Lamb, Sui-Ching Lan, Kevin Sullivan, Michael

VanHilst and John Vlissides provided valuable

comments on an earlier draft of this paper. We

also thank the anonymous referees for their con-

structive comments.

References

[AKW79]

[Bis92]

[BKM90]

[Dev92]

A.V. Aho, B.W. Kernighan, and P,J,

Weinberger. Awk – A Pattern Scan-

ning and Processing Language. Sofiware

- Practice and Experience, 9(4):267-280,

1979.

W.R. Bischofberger. Sniff-A Pragmatic

Approach to a C++ Programming En-

vironment. In Proceedings of the 1992

Usenix C++ Conference, pages 67-81,

August 1992.

S. Burson, G.B. Kotik, and L.Z.

Markosian. A Program Transformation
Approach to Automating Software Re-
engineering. In Proceedings of the Idth

Annual International Computer Sofiware

and Applications Conference, pages 314–

322, October 1990.

P.T. Devanbu. GENOA - A Customiz-

able, language- and Front-end Indepen-

dent Code Analyzer. In Proceedings

of the Idth International Conference on

Software Engineering, pages 307-317,

May 1992.

[DK93]

[GA95]

[GC90]

[GG83]

[GL94]

[GN91]

[JMN+92]

[Joh75]

[KR78]

[Les75]

[Mey91]

M.F. Dunn and J ,C Knight. Automat-

ing the Detection of Reusable Parts in

Existing Software, In Proceedings of the

15th International Conference on Sofi-

ware Engineering, pages 381–390, May

1993.

W.G. Griswold and D.C. Atkinson. Man-

aging the Design Tradeoffs for a Program

Understanding and Transformation Tool.

Journal of Systems and Sofiware, 1995.

To appear.

J.E. Grass and Y. Chen. The C++ In-

formation Abstracter. In USENIX C++

Conference, pages 265-277, April 1990.

R.E. Griswold and M.T. Griswold. The

Icon Programming Language. Prentice

Hall, 1983.

J. Gil and D.H. Lorenz. SOOP - A Syn-

thesizer of an Object-Oriented Parser.

Technical Report 9404, Technion – Israel

Institute of Technology, April 1994.

D. Garlan and D. Notkin. Formal-

izing Design Spaces: Implicit Invoca-

tion Mechanisms. In Proceedings of

the Fourth Iniernationai Symposium of

VDM Europe (VDM ‘91), Lecture Notes

in Computer Science 551, pages 31–44.

Springer-Verlag, 1991.

S. Javey, K. Mitsui, H. Naka-

mura, T. Ohira, K. Yasuka, K. Kuse,

T. Kamimura, and R. Helm. Architec-

ture of the XL C++ Browser. In J. Bots-

ford, editor, Proceedings of the 1992 CAS

Conference, pages 369-379, Toronto, On-

tario, November 1992. IBM Canada Ltd.

Laboratory, Center for Advanced Stud-

ies.

S.C. Johnson. Yacc – Yet Another

Compiler Compiler. Technical Report

Computing Science Technical Report 32,

AT&T Bell Laboratories, Murray Hill,

N. J., 1975.

B. Kernighan and D. Ritchie. The C Pro-

gramming Language. Prentice Hall, 1978.

M.E. Lesk. Lex – A Lexical Analyzer

Generator. Technical Report Computing

Science Technical Report 39, AT&T Bell

Laboratories, Murray Hill, N. J., 1975.

B. Meyer. Etffe[: The Language & Envi-

ronment, Prentice Hall, 1991.

126

[MK89]

[PP92]

[Rei90]

[Rei95]

[RPR93]

[Str86]

HA. Miiller and K. Klashinsky. A Sys-

tem for Programming-in-the-large. In

Proceedings of the 10th International

Conference on Software Engineering,

pages 80–86. IEEE Compute Society

Press, April 1989.

S, Paul and A, Prakash. Source Code Ret-

rieval Using Program Patterns. In Pro-

ceedings of the Fifth International/ Work-

shop on Computer-Aided Software En-

gineering (’CASE), pages 95–105, July

1992.

S. Reiss. Connecting Tools using Mes-
sage Passing in the Field Program De-

velopment Environment. IEEE Software,

7(4):57-66, 1990.

S.P. Reiss. The Field Programming En-

vironment: A Friendly Integrated Envi-

ronment for Learning and Development.

Kluwer Academic Publishers, 1995.

H. Reubenstein, R. Pi-

azza, and S. Roberts. Separating Pars-

ing and Analysis in Reverse Engineering

Tools. In Proceedings of Working Confer-

ence on Reverse Engineering, pages 117–

125, May 1993.

B. Stroustrup. C++ Programming Lan-

guage. Addison-Wesley, 1986.

[WTMS95] K. Wong, S.R. Tilley, H.A. Miiller, and

M.D. Storey. Structural Redocumenta-

tion: A Case Study. IEEE Software,

12(1):46-54, January 1995.

127

