
Dynamic (Re)Generation of Software Documentation

W. Lewis Johnson

USC / Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292-6695

johnson@isi.edu

Abstract

We are developing an authoring tool called I-Doc
that will automate the process of generating docu-
mentation and user help for software systems. The
focus of the tool is on capture of the requirements
and design decisions that form the content of soft-
ware documentation. This information can then be
used to generate summaries and explanations of the
software on demand. The objective of this research
is to provide on-line assistance for software maintain-
ers and other software professionals that can take the
place of conventional bulk documents. I-Doc is de-
signed to support the reengineering of software sys-
tems, since some of the necessary design information
will have to be captured by annotating existing code.
Reengineering technology, speci�cally transformation
technology, is employed during the generation process
to simplify and reorganize design information when
describing software.

1 Introduction

Conventional documentation for software systems
has surprisingly little value, given the amount of time
and e�ort spent to create it. This is particularly true
for large, mature systems. Such systems typically have
voluminous design documents, in which it is di�cult to
�nd information relevant to any speci�c maintenance
task. If the documentation is not maintained in lock
step with the code, it quickly becomes inaccurate, so
maintainers cannot rely upon it. There is an increas-
ing need for alternative technologies that can provide
maintainers and users of software systems with the
information that they need to operate and maintain
those systems.

We are developing a documentation authoring tool
that will automate the process of generating documen-

tation and user help for software systems. This tool
will result in dramatic improvements in the way doc-
umentation is developed, maintained, and used. If
the design, requirements, and assumptions underly-
ing code are made explicit, generation of documenta-
tion can be substantially automated. This underlying
knowledge can be acquired and formalized in a natu-
ral, incremental fashion that does not overly burden
developers.

Documentation will be generated dynamically, in
response to speci�c requests for user information.
When the user requests information, the documen-
tation system determines what information content
should be presented. It composes a response by com-
bining textual descriptions previously entered in a
database, and automatically generating natural lan-
guage output to �ll in the rest. The content of the
generated output depends upon the level of expertise
of the user, and the history of previous user docu-
mentation requests. This fundamentally changes the
nature and role of documentation. There will be less
need for users to search through bulk documents in
order to obtain answers to speci�c questions. Instead,
the documentation system will search its own knowl-
edge base for the information that the user requires,
and compose explanations meeting the user's needs.

Other CASE (computer-aided software engineer-
ing) tools have been developed to support the author-
ing of documentation. These tools di�er in that they
tend to be oriented toward the generation of speci�c
reports, such as those mandated by Department of
Defense procurement standards. They make it eas-
ier to produce such reports, but that does not make
the reports themselves signi�cantly more useful. The
I-Doc approach is designed to make such reports un-
necessary for most purposes, although it will still be
possible to generate bulk reports from I-Doc's design
repository.

The approach employs reengineering technology,



and is designed to be compatible with reengineering ef-
forts. Information required to support documentation
is entered in a reengineering knowledge base, in the
form of annotations on source code parse trees. Trans-
formations are employed to generate simpli�ed and re-
organized sections of code that highlight the aspects
of the system being documented. Design recovery ac-
tivities have the e�ect of bringing documentation up
to date, facilitating subsequent software maintenance.

2 The State of Current Documenta-

tion

Let us examine the problems associated with con-
ventional software documentation, to see how new
techniques can alleviate those problems.

The primary emphasis of conventional system doc-
umentation is on amassing information. Documenta-
tion standards, especially government standards such
as MIL-STD-2167A or SDD, require developers sys-
tematically to describe all details of a design, such as
the inputs and outputs of each function. The structure
of such documents is �xed and standardized.

The �rst problem with such system documentation
is that is not su�ciently activity-oriented, i.e., it is
not designed to support the activities of the intended
readership. User manuals are activity-oriented in this
sense: such manuals are designed to help people whose
activity is to use the software system. System docu-
mentation is not, or if it is the set of activities being
supported is incomplete. System documentation can
potentialy support a number of activities, including
the following:

� review by the customer to check that all stated
requirements are met in the design,

� design reviews in which the quality and validity
of the design is evaluated, and

� maintenance activities, in which maintainers seek
to obtain information about the design so that
modi�cations and enhancements can be per-
formed correctly.

These activities are very di�erent, yet documents
often must support more than one of them. The ac-
tivity that is least supported, of course, is mainte-
nance. Maintenance manuals are common for physical
devices, but are rare for software systems. Of course
it is harder to write maintenance manuals for soft-
ware than it is for devices, because maintenance tasks

change as the software evolves. Nevertheless, main-
tenance activities in general are vastly di�erent from
speci�cation and design reviews. Maintainers rarely
perform methodical reviews of entire systems; rather,
they inspect speci�c modules in detail in order to de-
termine how they can be modi�ed. Interrelationships
between modules can be extremely important. Doc-
uments such as design documents, which describe all
components in a uniform way, are more suited to de-
sign activities than maintenance activities.

In addition to being activity-oriented, good docu-
mentation is task-oriented, i.e., designed to help read-
ers perform speci�c tasks. Tutorial user manuals are
frequently written in a task-oriented fashion. For ex-
ample, a word processor manual might have the user
work through sample tasks such as composing a busi-
ness letter or printing mailing labels.

A task-oriented approach centered on hypothetical
tasks is not necessarily the best way to design doc-
umentation in general. It requires the reader to take
the time to work through exercises, whereas document
users typically are impatient and skip through the doc-
umentation trying to �nd out what they need so they
can get on with their actual job. This is the motivation
for the new \minimalist" approach to documentation,
which uses overviews, structured exercises, and any
information that the user cannot discover through ex-
perimentation with the system [3]. However, the min-
imal approach is not a rejection of task orientation per
se, just of manuals that are oriented around lengthy
hypothetical exercises and that contain information
one can �gure out on one's own.

It is certainly true that system documentation can
be improved simply by learning lessons from other
types of documentation such as user documentation.
However, even well-written paper documents su�er
from basic limitations. A person writing a document
can only make rough guesses about what tasks the
reader might be performing, what information he or
she might want to know, and the level of expertise of
the reader. Detailed exercises can help eliminate the
guesswork|if the reader works through an exercise,
the writer can try to anticipate what kinds of ques-
tions the reader might want to ask at each point in
the exercise. This does not work if readers lack the
patience to work through the exercises, as the mini-
malists argue.

The key to a substantial improvement in documen-
tation is an on-line system that can construct presen-
tations dynamically, reducing the reliance on guess-
work. Interaction with the system should be in the
form of a question-answer dialog; that way, the reader



indicates to the system what he or she wants to know.
The system can present information in the context
of the reader's activities, simply by asking the reader
questions about those activities. If the reader does
not understand the descriptions generated by the sys-
tem, the reader should be able to request a clari�ca-
tion, and have the system adjust its estimate of the
reader's level of expertise. The process of supporting
documentation then becomes less an activity of writ-
ing text and more an activity of providing the system
with the information that it needs to produce a range
of descriptions of the system.

Such a capability constitutes a clear advance of the
state of the art in documentation support. However,
the technologies needed to realize such a capability,
such as design repositories, hypertext, program analy-
sis and transformation, and natural language genera-
tion, are well developed and in a state where they can
be brought to bear e�ectively on the documentation
problem.

3 An Example from the Reader's

Standpoint

The following example illustrates how I-Doc is in-
tended to function, from the viewpoint of the reader,
i.e., the person asking questions about the system.

The system in question is real-time embedded con-
trol software of a �ghter aircraft radar system. This
example was studied by Hughes in a research e�ort
sponsored by Wright Patterson Air Force Base [4].
Hughes built a demonstration hypertext documenta-
tion system to support a hypothetical maintenance
task on this system. We have been using the same ex-
ample as an initial test case, to design I-Doc so that it
can generate descriptions automatically that are sim-
ilar to what the Hughes group constructed manually
in their demonstration.

One of the functions of the radar system software
is a Range While Search function, which electronically
controls how the aircraft's radar scans the airspace.
Normal Range While Search scans a volume of air
space that is wider in azimuth than it is in elevation,
say 60 degrees to the left and right of the aircraft, and
10 degrees above and below the horizon. The volume
is scanned by sweeping back and forth horizontally,
top to bottom. The hypothetical maintenance task is
to change the code so that it can scan volumes that
are wider in elevation than in azimuth, by scanning
vertically rather than horizontally.

Figure 1 shows the window that the user interacts

Figure 1: I-Doc Query Window

with in order to initiate the query. The user types in
the name of the component that he or she is interested
in. Mechanisms for selecting components from a menu
of alternatives will also be provided.

Before I-Doc can accept a query, however, it �rst
requests information about the user and the task be-
ing performed. The user parameters are input via a
menu such as that shown in Figure 2. The user is
requested to indicate what role the user plays on the
project, and indicates Maintainer. I-Doc will there-
fore include in the system descriptions that it gener-
ates information relevant to maintenance, e.g., inputs,
outputs, and functional decomposition of each mod-
ule. If the user had chosen a di�erent selection, such
as User, descriptions would be more functional in na-
ture, and limited to those aspects of functionality that
would be visible to the user (in this case the pilot or
radar intercept o�cer responsible for controlling and
monitoring the radar).

Additionally I-Doc requires an initial estimate of
the user's degree of familiarity with the system. In
this case the user selects Low, which causes I-Doc to
limit the extent to which it refers to implementation
details such as data representations.

Next, I-Doc requests a characterization of the task
the user is performing. Four types of activities are
known relating to system maintenance: adding func-
tionality, �xing bugs, optimizing, and validating doc-
umentation. Add Functionality is the choice in this
case. In this context, it causes I-Doc to generate high-
level overviews of the functionality in question. If Fix
Bug or Optimize were chosen, the description would
focus more narrowly on those system components in-
volved in generating the behavior that must be opti-
mized. Validate Documentation is chosen when the
user (typically a developer) wishes to see a variety of
descriptions generated by I-Doc, to verify that the sys-
tem can generate valid documentation in each case.



Figure 2: User Parameter Window

Figure 3 shows a sample output, based upon the
parameters selected above. I-Doc cannot yet generate
this output, as the project is just getting started; this
is merely an illustration of the type of output that will
be generated. The �gure is a display generated by the
Mosaic hypertext system [2], which is the hypertext
system used as an output interface by I-Doc. The �g-
ure contains a simpli�ed decomposition diagram show-
ing the major components of Range-While-Scan: Scan
Generation and Output Processing. It summarizes the
function of each component, and the main inputs and
outputs of each.

Several points are illustrated by this output exam-
ple. First, the output is selective both in terms of
what components of Range-While-Scan are described,
and what properties of those components are men-
tioned. In this overview the major components of
Range-While-Scan are shown, but not those compo-
nents responsible for checking and reporting errors.
(For example, if Output Processing detects erroneous
radar input, an error is signaled.) It characterizes
the function of the components (e.g, Scan-Generation
creates a scan pattern), and the inputs and outputs
of each component. If the task or user parameters
were di�erent, the summary would have changed ac-
cordingly, perhaps including more detailed informa-
tion about the system.

Because the presentation medium is hypertext, it is
not necessary to enumerate all relevant properties of
Range-While-Scan. It is su�cient to provide hyper-
text links which, if selected, will permit the reader to
obtain further information. Some of these buttonable
items are interspersed through the text, and appear
underlined in the �gure. Other items appear at the
bottom. Because Range-While-Scan's performance re-
quirements are particularly important for anyone at-
tempting to add functionality to it, a special hypertext
link is included to access this information. Other rel-
evant topics are included at the bottom. The links
named \electronically controlled radars" and \radar
data processing" provide background about the ap-
plication domain that might be useful to a main-
tainer who is unfamiliar with the application. Below
are listed links for obtaining more information about
Range-While-Scan's components. Further down, be-
low the bottom of the scrolling window in this exam-
ple, are pointers that allow the reader to see the source
code from which this description is derived, either the
full text or a simpli�ed version corresponding to what
appears in this hypertext description.



Figure 3: Hypertext Description of Range-While-Scan



4 System Architecture

I-Doc contains the following major functions.

� An acquisition interface is used to input the anno-
tations necessary to generate system descriptions.

� This information is stored in a repository, and
in annotations embedded within the source code
itself.

� A query interface, as shown in Figure 1, is used
to input queries from the user.

� The source code and repository are processed to
extract the information to be presented.

� A presentation layout for the information is con-
structed.

� The presentation layout is displayed as hyper-
text. Requests to traverse hypertext links are in-
tercepted and passed back to the extraction and
layout subsystems to generate new presentations.

These components will be described in further detail
below, but �rst the information content that these
components operate on will be discussed.

5 Underlying Knowledge

In order to generate appropriate software descrip-
tions, I-Doc requires a variety of informationabout the
software and its design. Some of this information can
be extracted directly from the code and from CASE
repositories. Other information must be added to the
design in the form of annotations.

First, a hierarchical decomposition of the design
into functional components is required, together with
the types of the components' inputs and outputs. The
pattern of data 
ow among components is necessary
as well.

In order to present the information 
ow between
modules in natural language, some additional char-
acterizations of the data and the operations on the
data are required. First, it is useful to classify the
type of operation being performed by the component.
Classi�cations that have been identi�ed so far as use-
ful include create, destroy, �lter, insert, remove, re-
trieve, process, and validate. For example, the mod-
ule Scan-Generation is classi�ed as creating scan pat-
terns. Modules whose function is to validate data were
omitted from the summary in Figure 3, under the as-
sumption that initial descriptions should assume that

all data is valid, and methods for handling exceptional
data will be described later. The content and use of
data structures is characterized as well. Data struc-
tures are categorized as to whether they represent ob-
jects, aggregates of objects (sets, sequences, etc.), or
names of objects. This enables I-Doc to refer to the
output of Output-Processing as a set of contacts, re-
gardless of the actual data representation (e.g., an ar-
ray of pointers to contact objects).

Function categorizations can be applied to seg-
ments of components or groups of components, as well
as to individual components. For example, a set of
routines may be employed to process radar data, or
a set of statements may be employed to validate the
data.

Another type of information that plays a prominent
role in I-Doc descriptions is information about require-
ments, particularly nonfunctional requirements. A set
of attributes such as speed requirements or accuracy
requirements may be associated with functional com-
ponents and data.

In order to determine how to render data dictionary
elements most e�ectively in natural language, I-Doc
uses grammatical annotations. The annotations used
in I-Doc are based on those used in the ARIES require-
ments acquisition system for annotating speci�cations
[7]. Data expressing relationships between objects are
categorized as to whether they are attributes, actions,
circumstances, classes, or relations. Attributes de-
scribe properties of the object, actions describe actions
that involve the object, circumstances describe states
of the object, classes identify categories to which the
object belongs, and relations are default data relation-
ships. Objects participating in such relationships can
assume one of several grammatical categories, e.g., ac-
tor, goal, location, or bene�ciary. These categories are
drawn from case grammars for natural language [5].

Finally, descriptions of classes of behavior, called
scenarios, are useful in the description process. Sce-
narios are useful for de�ning system requirements, as
a way of describing types of behavior that a system
should or should not exhibit [1], which can be used to
validate system speci�cations. They are intended to
serve two roles within I-Doc. First, scenarios can be
used to illustrate system behavior. Second, scenarios
provide the context in which to describe systems. If
the I-Doc user is trying to �x a bug, for example, then
if a scenario illustrating the bug is available it can be
used by I-Doc to focus on describing those components
of the system that are relevant to the bug.



6 Knowledge Acquisition

The information described above is acquired from a
variety of sources. These sources will be described be-
low. It is important to emphasize, though, that I-Doc
can still generate comprehensible system descriptions
without much of this information. The added design
information is used to improve the quality of system
descriptions, and can be acquired when and as appro-
priate.

Some information is available in front-end CASE
tools such as Software through Pictures [6]. I-Doc
will have the ability to query one or more such CASE
repositories in order to extract such information if
available.

Another means of acquiring the documentary in-
formation is through a special acquisition interface.
This method is used especially for inputting grammat-
ical annotations and design component classi�cations.
These annotations need not be selected directly; in-
stead, the person entering the information can request
that I-Doc attempt to provide the annotations au-
tomatically, and present samples of natural language
output based upon those annotations. Although the
grammatical annotations are based on linguistic con-
cepts that may be unfamiliar to software engineers,
it is easy to see when the generated natural language
is awkward or incorrect. Once the user has selected
from among alternative descriptions generated by I-
Doc, I-Doc saves the annotations used to produce that
sample output.

There are three other ways in which information
for constructing system descriptions is obtained. One
means is through the use of object hierarchies. If an
object class has a particular set of attributes, its spe-
cializations are likely to have similar attributes. A
second approach is to annotate the models used in
automated program synthesis systems. The knowl-
edge bases of specialized knowledge-based synthesis
systems, such as user interface development systems,
can be augmented to support the generation of docu-
mentation and help as well [12]. Integration of I-Doc
with one or more such systems is an option being con-
sidered for future development.

The third source of design information for docu-
mentation is code analysis. Analysis routines can de-
tect components that appear to be creating objects,
inserting into or removing from data aggregates, val-
idating data, etc. Such analysis is further facilitated
when some design components are already annotated;
e.g., when data is designated as an aggregate, it makes
sense to look for routines that add and remove el-
ements from that aggregate. The analysis capabili-

ties of Reasoning Systems' reengineering technology,
in particular Re�ne/Ada, are being used as the basis
for such analysis capability.

Use of the above capabilities for extracting rele-
vant design annotations is one way in which reengi-
neering technology plays a prominent role in the con-
struction of documentation in I-Doc. In fact, in order
for automated generation of documentation to suc-
ceed it must be viewed at least partly as a reverse
engineering enterprise. Preparing a design for doc-
ument generation involves adding design information
that is not present in the original design. Front-end
CASE tools, executable speci�cation languages, and
other advanced forward engineering technologies can
reduce the amount of information that must be recap-
tured, but even then some information must be made
explicit that is implicit in the design. Thus a combina-
tion of interactive design capture and design recovery
techniques appear to be essential.

7 Repository Storage and Mainte-

nance

As design information is acquired it must be associ-
ated with the code and maintained. The basic mecha-
nism being used to achieve this is to add attributes to
the Re�ne representation of program parse trees. In
order to permanently associate these attributes with
the code, the following techniques are planned. First,
Ada pragmas will be used to insert the information di-
rectly into the code. Pragmas were originally intended
to record information to guide compilers in generating
object code. In an analogous fashion they can be used
to guide the generation of system descriptions.

In the longer term, it may be appropriate to ex-
tend the data model of a CASE tool such as Software
through Pictures in order to record the design infor-
mation. However, that should not be a substitute for
inserting design information directly into the source
code. In order for the captured design information to
be useful, it must continue to be associated with the
code as it is maintained over time. At the present time
the best way of ensuring this is to integrate the design
information into the source code, so that maintenance
using a front-end CASE tool is not required. For lan-
guages that do not have constructs similar to pragmas,
the approach will be to add grammatical extensions to
the source language to provide such constructs, which
can then be removed from the source code via trans-
formations, using a tool such as Re�ne.



8 Inputting User Queries

If the design knowledge associated with a design is
su�ciently rich, it can be used as the basis for answer-
ing a variety of queries. Following the approach taken
in Lehnert's original work on question answering [8]
and further developed by research in expert system
explanation, such as the work of Moore and Swartout
[10], common questions about software have been cate-
gorized into types. In the initial version of I-Doc, these
question types will be available to the user as explicit
choices from which the user can choose. Examples
of question types include Describe Function, Describe
Design, Describe Interface, and Describe Use. In sub-
sequent versions these choices will be automated to
a greater extent, so that the user can simply request
\Describe" and the system will construct a combined
description appropriate to the context.

The main di�erence between question input in I-
Doc and question input in expert system explanation
is the use of hypertext as a medium for posing ques-
tions. Question-answering systems such as Moore and
Swartout's facility in the Explainable Expert System
(EES) system allow the user to point to an element
of a description and ask one of several follow-up ques-
tions about it. In hypertext, the interaction is more
limited|the user clicks on a section of text where a
link begins, causing the system to jump to the other
end of link. The user does not have the option of
selecting one of several operations to perform on the
link. In order to overcome this di�culty, we are ex-
perimenting with making choices explicit as lists of se-
lectable items at the bottom of the hypertext display,
as shown in Figure 3. It remains to be seen how e�ec-
tive this technique is in comparison to more ordinary
menu-based approaches.

9 Extracting Relevant Information

Once the type and the object of the query have
been chosen, the information suitable for inclusion
in the presentation must be retrieved and presented.
Retrieval of relevant information can be easily ac-
complished using the retrieval and query mechanisms
available in Re�ne, Software through Pictures, and
other tools. Di�culties arise, though, when the
amount of retrieved information is too much to present
in such a way that the reader can assimilate it. In
such cases �ltering techniques may be employed to fo-
cus on the information of greatest potential interest to
the reader.

The �ltering procedures in I-Doc proceed by mark-
ing code as either central, interesting, or ignored. Cen-
tral components are the primary focus of the descrip-
tion, and consist of all code satisfying a particular cri-
terion, such as code matching steps a scenario. Com-
ponents are designated interesting because of their in-
teractions with the central components. Ignored com-
ponents are removed because they can be explicitly
�ltered out, or because they are not found to be cen-
tral or interesting. The following are some criteria that
have been found in pencil-and-paper studies to be use-
ful in determining code to be central or ignored; others
are expected to be identi�ed.

� Exceptional case handling. In some descriptions,
such as the one shown in Figure 3, code for han-
dling exceptional cases is unimportant; in other
cases (such as when �xing bugs) such code may
be central. Either way, such can be detected in
a signi�cant number of cases. Ada has explicit
constructs for raising exceptions. Additionally, if
a variable is being used as an error 
ag, tests of
the variable can be detected automatically, and
branches of the code marked accordingly.

� Code that sets and/or reads a variable or at-
tribute.

� Code that assigns an attribute or variable to a
speci�c value, or checks that the attribute or vari-
able has a speci�c value.

Once components are found be central, surround-
ing code is often marked as interesting and is therefore
included. The motivation for this is to provide some
context so that the focussed operations are more eas-
ily understood. For example, if a routine sets an in-
teresting attribute of an object, assignments to other
attributes of the same object in the same procedure
may be included as well.

The transformation facilities in Re�ne are to be em-
ployed to implement this �ltering process. The trans-
formation pattern language can be used in some cases
to detect the code that is of interest. In other cases,
transformations can be used to perform simple ex-
pression simpli�cations in order to facilitate pattern
matching. A tool that could recognize all instances
of potentially interesting code would require a more
powerful simpli�er than is envisioned for I-Doc. In-
stead, I-Doc will either inform the reader when the
view being presented is possibly incomplete, or sim-
ply provide a view that is somewhat broader than is
strictly necessary.



10 Presentation Layout

Once relevant information has been identi�ed, I-
Doc must determine what media to use to present the
information, and how to present the information using
those media. In the long term, we hope to be able to
employ a variety of presentation media, including mix-
tures of text and diagrams. At �rst, though, the focus
will be on natural language generation. Such gener-
ated text may be supplemented with diagrams if such
diagrams have already been constructed and are avail-
able, as is currently the case with CASE-generated
documents.

The overall structure of each description that is gen-
erated will be determined by a presentation template,
a library of which will be included in I-Doc's knowl-
edge base. These templates provide standard ways of
presenting di�erent aspects of a system. Each tem-
plate will have a set of selection criteria, based upon
the amount of various types of information that is to
be presented, and the assumed level of expertise of
the user. Slots within the template are then �lled out
using a natural language generator.

The natural language generator consists of two
components. The basic generation work is performed
by a Functional Uni�cation Generator, which can
construct arbitrary sentences from attribute-value de-
scriptions of the content to be expressed. A second
phrase selection component constructs attribute-value
patterns in a form suitable for input to the Functional
Uni�cation Generator, according to directives con-
tained within the system description templates. This
architecture was used successfully in ARIES and the
KBSA Concept Demonstration [11] to generate text
descriptions rapidly. Functional Uni�cation Gram-
mar has been evaluated against competing methods
for natural language generation, and has been found
to be both 
exible and e�cient [9].

11 Presentation Delivery

As indicated in Section 3, Mosaic is being employed
as the hypertext delivery mechanism for I-Doc. Al-
though there are various commercial products avail-
able that provide hypertext capability, Mosaic has a
set of features that make it particularly suitable to
dynamic documentation generation.

� Mosaic provides interfaces to external programs,
so that the user buttoning on a hypertext link can
cause a program to be invoked.

� It interprets hypertext formatting commands dy-
namically, as needed; this makes it possible to
construct a hypertext document dynamically and
display it.

� It runs on a variety of platforms, including X
Windows, Microsoft Windows, and Macintosh.

� It is public domain, and the source code is read-
ily available, making it possible to customize the
system for use within I-Doc.

12 Further Plans and Prospectus

The I-Doc project has just begun; it is expected to
continue for another three years. The project plans to
make available intermediate versions of the system on
a periodic basis. In the near term, the capability will
be demonstrated on a military application selected in
collaboration with the US Air Force's Wright Labora-
tory.

If resources are available, I-Doc will be extended
so that it can describe systems to other classes of
users besides maintainers, such as clients and end-
users. This will further enhance the value of documen-
tation generation technology to software development
projects.

In the long run, dynamic generation of documen-
tation will prove successful if the perceived bene�ts
outweigh the costs of additional design capture. The
bene�ts will be particularly apparent in projects that
undergo periodic design reviews, since automated doc-
umentation should prove to be a great bene�t to the
design review process. Reengineering and program
synthesis technology will gradually reduce the amount
of interaction between developers and I-Doc necessary
for design capture. In the near term, making enhanced
hypertext capabilities available to developers is likely
to bring bene�ts in itself. Hypertext is gradually being
adopted in software development practice, and the ac-
tivities of the I-Doc project will aim to help accelerate
this trend.

13 Acknowledgements

The author wishes to thank Bill Swartout and
Richard Angros for their contributions to this e�ort,
and John Salasin and Marc Pitarys for their support.
Sheila Coyazo assisted with preparation of the arti-
cle. This work is sponsored by the Advanced Research



Projects Agency and administered by Wright Labora-
tory, Air Force Materiel Command, under Contract
No. F33615-94-1-1402. Views and conclusions con-
tained in this paper are the author's and should not
be interpreted as representing the o�cial opinion or
policy of the U.S. Government or any agency thereof.

References

[1] K. Benner, M.S. Feather, W.L. Johnson, and
L. Zorman. The role of scenarios in the software
development process. In Proceedings of the IFIP

W8.1 Working Conference on Information Sys-

tem Development Process, 1993. To appear.

[2] E. Bina and M. Andreessen. NCSA mosaic home
page. Available from World Wide Web server
www.ncsa.uiuc.edu.

[3] J.M. Carroll. The minimal manual. Human-

Computer Interaction, 3(3):123{153, 1988.

[4] R.A. Falcioni and R.L. Buvel. Modular embed-
ded computer software (MECS): Interim report.
Technical Report WL-TR-92-1113, Wright Labo-
ratory, Wright Patterson AFB, OH, 1990.

[5] C.J. Fillmore. The case for case. In Universals

in Linguistic Theory, pages 1{88. Holt, Reinhart
and Winston, New York, NY, 1968.

[6] Interactive Development Environments. Software
through Pictures: Fundamentals of StP, 1993.

[7] W.L. Johnson, M.S. Feather, and D.R. Harris.
Representation and presentation of requirements
knowledge. IEEE Trans. on Software Engineer-

ing, 18(10):853{869, October 1992.

[8] W.G. Lehnert. The Process of Question An-

swering. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1978.

[9] K.R. McKeown and M. Elhadad. A Contrastive

Evaluation of Functional Uni�cation Grammar

for Surface Language Generation: A Case Study

in the Choice of Connectives, pages 351{392.
Kluwer Academic Publishers, Norwell, MA, 1991.

[10] J.D. Moore and W.R. Swartout. A Reactive Ap-

proach to Explanation: Taking the User's Feed-

back into Account, pages 3{44. Kluwer Academic
Publishers, Norwell, MA, 1991.

[11] J.J. Myers and G. Williams. Exploiting meta-
model correspondences to provide paraphrasing
capabilities for the concept demonstration. In
Proceedings of the 5th KBSA Conference, pages
331{345, Syracuse, NY, September 1990. Defense
Technical Information Center.

[12] P. Szekely, P. Luo, and R. Neches. Facilitating
the exploration of interface design alternatives:
The HUMANOID model of interface design. In
Proceedings of CHI'92, The National Conference

on Computer-Human Interaction, pages 507{515,
May 1992.


