
Visual Formalisms for Con�guration Management

Michael W. Godfrey

Department of Computer Science

University of Toronto

and

IBM Centre for Advanced Studies

Abstract

As reuse of software components becomes
more commonplace, being able to understand,
manipulate and reason about software system
architectures acquires new importance. Al-
though commercial software development en-
vironments have addressed many of the issues
of con�guration management, there is still a
need for visual formalisms that can aid in
representing and manipulating architectures
of software systems. This paper introduces
ConForm (Con�guration Formalism), a graph-
ical notation for representing con�gurations of
software systems. Several of the basic concepts
of ConForm were inspired by the C/Mesa lan-
guage [8]; however, ConForm is both language
and tool independent. ConForm is notable be-
cause it is both a visual and a formal approach
to representing software architectures.

1 Introduction

Con�guration management plays a key role
in the engineering of large software systems;
it comprises several sub-areas, including ver-
sioning, access control, system modelling and
system building. While several commercial
software development environments have suc-
cessfully attacked many of the problems of
con�guration management, most approaches
have been tightly integrated with a partic-
ular set of tools. Consequently, there is a
need for notations and tools for con�guration

management that are both powerful and intu-
itive yet not bound to particular environments
or languages. Visual notations hold promise,
yet they have not yet been investigated very
thoroughly.1

This paper introduces ConForm (con�gura-
tion formalism), a visual formalism for repre-
senting software architectures. Many of the
concepts in ConForm were inspired by the
C/Mesa language [8]; however, ConForm is
programming language independent. Indeed,
much of the investigation into ConForm was
done using example systems written in a vari-
ety of programming languages, including Mesa
and Object-Oriented Turing [6].

The main intended bene�t of ConForm is
to facilitate system modelling. Other aspects
of con�guration management | such as ver-
sioning, access/concurrency control and sys-
tem building| are not explicitly addressed by
ConForm. The reasons are manifold: di�erent
versions of a program unit can be considered
to be di�erent implementations of the same
interface; access control is inherently process
and/or tool dependent; and once a system
model has been completely con�gured, system
building (loading, binding and running) is then
a straightforward mechanical process that can
be carried out by the tools of the particular
environment. System modelling, however, is
common to all languages and environments

1\It is our duty to forge ahead to turn system mod-

elling into a predominantly visual and graphical pro-

cess. I believe this is one of the most promising trends

in our �eld." [5]



that have the concept of con�gurations, and
many of the issues of system modelling can
be attacked at a language-independent level.
This is the area in which ConForm is intended
to aid.

2 An Overview of ConForm

A ConForm implementation consists of a
repository of software components, tools for
viewing and querying the repository, plus
mechanisms for changing existing components
or creating new ones (which then may be
added to the repository). ConForm is intended
to aid system modelling; that is, it is intended
to help the user build new con�gurations of
systems from existing components. ConForm
entities have both a graphical and a textual
representation; ConForm's tools can operate
using either representation.

ConForm is intended to augment an existing
programming language and/or software devel-
opment environment. Although ConForm is
not tied to a particular language or environ-
ment, there are several assumptions about the
underlying platform; these will be discussed
below.

Program Units

ConForm requires that the underlying pro-
gramming language have a unit of abstraction
at the level of a class or module. This concept
is called a a \program unit" or just \unit" in
ConForm. ConForm does not model language
concepts of any �ner granularity than the pro-
gram unit.

A program unit is represented graphically
by a blue box labelled with the unit's name.
The boxes may also be \decorated" by green
tabs and slots whose labels indicate the inter-
faces the unit implements and requires. Figure
1 shows a simple repository of four units. The
left-most box represents an Object-Oriented
Turing (OOT) class named StackImpl; it im-
plements an interface named stackDefs and
requires an instance of a class that implements
the interface named listDefs.

stackDefs

stackDefs stackDefs

listDefs

listDefs

listDefs

StackImpl
DebugListImpl

Component Repository

FastListImpl

main

Tracker

Figure 1: A simple repository. The blue boxes
represent program units. The green \tab" on
the top indicates the interface the unit imple-
ments. The green \slots" (striped tab) indi-
cated the required imports.

The textual representation of a program
unit is, of course, entirely dependent on the un-
derlying programming language. As this paper
is aimed at in-the-large concepts, the textual
equivalents of the units in Figure 1 have been
omitted.

Program Units Implement
Interfaces

Each program unit is assumed to imple-

ment a named interface. Although this rule
might seem restrictive, it can be added on top
of most conventional programming languages
with minimal e�ort. In some languages, such
as Modula-3 [1] and Mesa [8], this conven-
tion is actually part of the language.2 In oth-

2In practice,Modula-3 programmers often omit cre-

ating an explicit interface when no other Modula-3

module will implement the same interface. In this case,

a default interface is considered to be created with

the same name as the implementing module. How-

ever, the language de�nition presumes the existence of

the interface, even if it is not created explicitly by the

programmer.



ers, such as Object-Oriented Turing [6], it is
optional; in this case, interfaces can be triv-
ially extracted from unit de�nitions and given
names.
In most programming languages, an inter-

face provides a listing of items that will be
implemented and \exported" by a subsequent
program unit. For example, an interface for
a stack abstract data type might be called
stackDefs and de�ne entry points for proce-
dures called Push and Pop. One can further
imagine the existence of several program units
that implement stackDefs, such as a fast im-
plementation, and a slower one that provides
a tracing facility.
It should be noted, however, that the partic-

ular kinds of entities contained in an interface
is not a concern of ConForm. At the very least,
it might reasonably be expected that an inter-
face contain some syntactic information, such
as signatures of exported procedures. More in-
formation might also be present, such as pre-
and post-conditions or even default implemen-
tations. But precisely what constitutes an
interface will depend on the underlying pro-
gramming language.
For the sake of uniformity, ConForm re-

quires that a main program within a system
also implement an interface. Consequently,
there is a special interface called main that
is considered to be implemented by programs
intended to be used as the main program in
a system. The main interface is not funda-
mentally di�erent from any other interface; it
exports a single procedure called Run that ini-
tializes the system and starts it running.
A further restriction on the underlying pro-

gramming language is that each program unit
must completely implement exactly one in-
terface. This restriction makes it di�cult to
model a language such as Modula-3, where a
module may implement all or part of multiple
interfaces. This restriction may yet prove to
be easy to relax, but for now simplicity is felt
to be a more important design goal than such
a exible but potentially confusing language
feature.3

3Modula-3 is a descendant of Mesa, which also has

The implements relationship is indicated
graphically by a green \tab" on top of the blue
box representing the program unit. The tab is
labelled with the name of the interface imple-
mented by the program unit. Con�gurations
may also implement interfaces; this will be dis-
cussed later.

Program Units De�ne Classes and
Import Unit Instances

ConForm supports object-based computing
[9]; that is, it supports instantiation of pro-
gram units. Thus, a program unit de�nes a
class of entities rather than a single entity.4

Instantiation of program units occurs only
within con�gurations; if a client unit requires
an instance of another server unit, the client
unit may specify only the name of the inter-
face of the server unit. It is the responsibility
of the con�gurer to decide which instance of
which implementation to provide to the client
unit.5

If a program unit P requires an instance that
implements interface I, it is indicated graphi-
cally by a green \slot" drawn on the bottom of
the box that represents unit P. The slot is la-
belled by the name of the required interface. If
a unit requires multiple instances of the same
interface, then a slot is shown for each required
instance. For example, Figure 1 shows the unit
Tracker requiring two stacks.

A program unit instance is drawn as a box
with a striped interior. The instance name ap-
pears near the centre of the box; the name of
the corresponding class is indicated in small
type at the bottom right. An instance has the
same tabs and slots as its parent unit. Figure
2 shows several unit instances within a con�g-
uration. Note that s1i and s2i are distinct

this exibility. This is a point of divergence between

ConForm and C/Mesa.
4ConForm does not yet support class inheritance.

This possible extension is discussed at the end of the

paper.
5A con�guration de�nition also de�nes a class

rather than an instance; con�guration de�nition and

instantiation is discussed below.



instances of the same class.

Con�gurations

As mentioned above, program units de�ne
classes rather than instances; instantiation is
done at con�guration time. A con�guration is
a construct in which units are instantiated and
import requirements are resolved by binding
instances together.

A con�guration is drawn as a red box.
Within the con�guration reside instances of
program units (and possibly sub-coni�gura-
tions).

Imports are resolved by binding instances
that implements a given interface to instances
requiring an instance of that interface. This
binding is indicated graphically by a thick ar-
row from tab (exported interface) to slot (re-
quired interface). Each instance has its own
data space and may be bound into more than
one slot; thus, two unit instances may, for ex-
ample, share the same stack. A system is fully
con�gured once all slots have been �lled in.

The internals of a displayed con�guration
may be hidden from view most of the time;
usually, all that is important to someone ex-
amining the con�guration is an indication of
which interface it implements and which ones
it requires.

Sub-Con�gurations

In many ways, a con�guration can be con-
sidered to be a kind of \super-unit", as it
has much in common with program units.
Both con�gurations and units have names,
can be instantiated and are assumed to im-
plement an interface. A self-contained con-
�guration, as exempli�ed by c1 in Figure 2,
can be considered to implement the main in-
terface. A sub-con�guration, as exempli�ed by
FastStackConf and DebugStackConf in Fig-
ure 4, may implement an interface by creating
an instance of a unit that implements the in-
terface and exporting the instance. Finally,
a con�guration may also require an instance
that implements an interface in the same way
that a unit can.

stackDefs stackDefs

stackDefs stackDefs

listDefs listDefs

listDefs listDefs

ti

s1i
StackImpl StackImpl

Tracker

s2i

FastListImpl DebugListImpl
dlifli

c1

main

Figure 2: A simple con�guration. Each blue
box represents an instance of a program unit
found in the repository of Figure 1. The im-
ports of each unit instance are resolved by link-
ing each slot with a tab. This system is fully
con�gured since all slots have been �lled in.

configuration c1

implements main by ti

configure

var fli : FastListImpl

var s1i : StackImpl [fli]

var dli : DebugListImpl

var s2i : StackImpl [dli]

var ti : Tracker [s1i, s2i]

end c1

Figure 3: The textual representation of the
con�guration c1.



Logically, sub-con�gurations are unnec-
essary; any con�guration that uses sub-
con�gurations can also be de�ned using only
unit instances. However, having a repository
of well-used components clearly aids in system
construction and in the quest for the object-
oriented \holy grail" of component reuse.

The graphical representation of con�gura-
tions is the same as that of units, except that
con�gurations are red instead of blue. Inter-
faces implemented or required are indicated in
the same way (green tabs and slots), and con-
�guration instances are indicated by striped
red boxes. Note that the tab of a con�guration
corresponds to the tab of an instance it instan-
tiates and exports. Furthermore, the slots of
a con�guration correspond to the unresolved
slots of internal unit instances.

The Repository

As mentioned above, a ConForm implemen-
tation consists of a repository of components,
tools for querying the repository, and mecha-
nisms for creating/modifying/adding/deleting
repository elements. The ConForm repository
stores two kinds of components: program units
and con�gurations. However, these entities
de�ne classes, not instances.6 To get a run-
ning system, the user simply selects a complete
con�guration from the repository, or creates
one using repository components. The sys-
tem building process is then automatic; the
mechanics will depend on the underlying plat-
form.

Constructing a complete con�guration from
repository components bears some explana-
tion. An extended example is presented in the
next section.

The organization of the repository has been
deliberately underspeci�ed. Clearly, having a
at namespace of repository elements is not
practical for more than a very small system.
However, repository organization is considered
to be an implementation issue, and will also

6Unit and con�guration instances within a con�g-

uration can be thought of as attributes of the class;

no space is allocated for them until an instance of the

containing con�guration is created.

depend on the particular tool platform be-
ing used. Consequently, no more will be said
about repository organization.

3 Constructing a Con�gu-

ration | An Example

Consider the example repository of Figure 1.
There are four unit de�nitions in the reposi-
tory: Tracker, a main program that requires
two stacks (i.e., instances of units that im-
plement the interface stackDefs); StackImpl,
which implements a stack and requires a list;
and FastStackImpl and DebugStackImpl,
both of which implement lists. Since Tracker
is the only main program in the repository
(it is the only component that implements the
main interface), let us consider constructing a
con�guration that completely implements an
instance of it.

To start building a new con�guration, we
choose the Build New Config option from the
main ConForm menu. This creates a new win-
dow containing an untitled con�guration box.
Thus, as our �rst action on the new con�gura-
tion, we can give it a name, say c1.

Next, we browse the repository for instances
to add to the new con�guration. To add an
instance of Tracker to our con�guration, we
click on the box representing Tracker in the
repository and drag the mouse into the new
con�guration window. The result is that an
unnamed instance of Tracker now appears
within the box representing our new con�g-
uration c1. Furthermore, since Tracker im-
plements the interface main, the new instance
is automatically positioned at the top of c1
with its green interface tab extending beyond
the top boundary of c1; this indicates that c1
exports the interface main, and thus contains
a main program.

The act of clicking on a component (unit
or con�guration) in the repository and drag-
ging it into a con�guration under construction
corresponds to component instantiation. The
new instance must be given a name by the con-
�gurer, or the system can provide a default



one.

ConForm uses context to constrain the
building of con�gurations. The instantiation
of a main program unit described above is one
example. Trying to instantiate multiple main
programs in a single con�guration would (cor-
rectly) be disallowed by the system.

So far, c1 consists of a single instance of
Tracker. Let's call the instance ti. We note
that two instances that implement stackDefs
are required (i.e., these are the tabs attached
to the bottom of ti). By double-clicking on
one of the tabs, all elements of the repository
that implement stackDefs are highlighted. In
this case, only the unit StackImpl satis�es the
query. We can now \click and drag" twice to
instantiate two instances of stackDefs; let us
name them s1i and s2i. Next, we perform
binding: we click and hold on the tab (ex-
ported interface) of s1i and release the mouse
button when the mouse is pointing to one of
the slots of ti. Since the tab and slot refer
to the same interface, the binding is legal and
s1i is now considered to be bound into the
slot of ti. This is indicated graphically by a
thick arrow from s1i to ti. Similarly, we can
bind s2i to the second tab of ti.

We could decide to stop at this point and
simply store the new con�guration in the
repository. If we did so, the ConForm con-
�guration editor would detect that there were
two unresolved slots, and these would become
slots of the con�guration c1. A con�guration
with un�lled slots is not capable of being built
as a system; however, it can be instantiated
within a new con�guration and have its slots
�lled in there.

To make c1 a complete con�guration, the
imports of s1i and s2imust be resolved. Each
requires an instance of a unit that implements
the interface listDefs. A double-click on the
interface slot reveals that there are two such
units within the repository: FastListImpl

and DebugListImpl. We can create one in-
stance of each and bind them in to the slots of
s1i and s2i. The con�guration is now com-
plete; since neither of the list instances have
slots, there are no more slots to be �lled in.

stackDefs stackDefs

stackDefs stackDefs

listDefs listDefs

listDefs listDefs

ti

si
StackImpl StackImpl

Tracker

si

FastListImpl DebugListImpl
dlifli

c2

fsci dsci

DebugStackConfFastStackConf

main

Figure 4: A con�guration that uses sub-
con�gurations. Usually, the internals of the
sub-con�gurations are hidden; the interfaces
that it provides and/or requires are of most
interest.

We can now add the new con�guration c1 to
the repository. Figure 2 illustrates the �nal
version of c1. Figure 3 gives the textual equiv-
alent.

A repository entity (con�guration or pro-
gram unit) is said to be complete if it imple-
ments main and has no (un�lled) slots. This is
the case with our newly-created con�guration
c1. A complete component can be built, but
exactly what this entails will depend on the
underlying platform. However, this is trans-
parent to the con�gurer.

4 Summary and Research

Directions

Currently, no tools exist to perform check-
ing or enforce constraints. However, previous
experience with the Object-Oriented Turing
(OOT) environment [7] suggests that building
and integrating ConForm tools into the OOT
system should be straightforward. This will be



configuration FastStackConf

implements StackDefs by si

configure

var fli : FastListImpl

var si : StackImpl [fli]

end FastStackConf

configuration DebugStackConf

implements StackDefs by si

configure

var dli : DebugListImpl

var si : StackImpl [dli]

end DebugStackConf

configuration c2

implements main by ti

configure

var fsci : FastStackConf

var dsci : DebugStackConf

var ti : Tracker [fsci.si, dsci.si]

end c2

Figure 5: The textual representations of con-
�gurations FastStackConf, DebugStackConf
and c2.

stackDefs

stackDefs

stackDefs stackDefs

listDefs

listDefs

listDefs

StackImpl

DebugListImpl

Component Repository

FastListImpl

FastStackConf

stackDefs

DebugStackConf

main

Tracker

c1

c2

main

main

Figure 6: Repositories may contain both pro-
gram units and con�guration classes.

investigated in the near future.

ConForm is also restrictive in that it re-
quires a program unit to implement exactly
one interface and it insists that a program unit
specify only the underlying interface of a unit
it wishes to use. These restrictions were intro-
duced mainly to simplify the basic paradigm
of ConForm. Once more experience has been
gained, these restrictions may be relaxed.

Currently, ConForm provides no object-
oriented features, apart from the ability to
instantiate program units and con�gurations.
This is not a considered a major shortcoming,
as many industrial programming languages
do not support the object-oriented paradigm.
However, if the underlying programming lan-
guage does support class inheritance, a trivial
extension to the \implements" relation allows
ConForm to model class inheritance: we con-
sider that class C implements interface I if I is
the \natural" interface of C or an inheritance
ancestor of C. This trivial extension allows
object-oriented software systems to be mod-
elled easily by ConForm. Despite this exten-
sion, object-orientation in ConForm has not
yet been fully explored: inheritance of con�g-
urations has not yet been addressed, and this
is a future research topic.

About the Author

Michael Godfrey is a Ph.D. candidate at
the University of Toronto and is member of

the IBM Centre for Advanced Studies. His re-
search interests include making formal spec-
i�cation and other formalisms practical for
industrial software engineering. He can be
reached by email atmigod@turing.toronto.edu.
His thesis supervisor is Richard C. Holt.

References

[1] Luca Cardelli, James Donahue, Lucille
Glassman, Mick Jordan, Bill Kalsow
and Greg Nelson, \Modula-3 Report (re-
vised)", Technical Report 52, Digital Sys-
tems Research Center, November 1989.



[2] Peter H. Feiler, \Con�guration Man-
agement Models in Commercial Envi-
ronments", Technical Report CMU/SEI-
91-TR-7, Software Engineering Institute,
Carnegie-Mellon University, March 1991.

[3] David
Garlan, Mary Shaw, Chris Okasaki, Cur-
tis M. Scott, and Roy F Swonger, \Ex-
perience with a Course on Architectures
for Software Systems", Technical Report
CMU/SEI-92-TR-17, August 1992.

[4] David Harel, \On Visual Formalisms",
Communications of the ACM, vol. 31, no.
5, May 1988.

[5] David Harel, \Biting the Silver Bullet",
IEEE Computer, vol. 25, no. 1, January
1992, pp 8-20.

[6] R. C. Holt, Turing Reference Manual,
Third Edition, Holt Software Associates,
Toronto, 1993.

[7] Spiros Mancoridis, R. C. Holt and David
Penny, \A Conceptual Framework for
Software Development", Proc. of the

Twenty-First ACM Computer Science

Conference, Indianapolis, Indiana, Febru-
ary, 1993.

[8] James G. Mitchell, WilliamMaybury and
Richard Sweet, Mesa Language Manual,
Version 5.0, Technical Report No. CSL-
79-3, Xerox-PARC, April 1979.

[9] Peter Wegner, \Dimensions of Object-
Based Language Design", OOPSLA '87

Proceedings, ACM SIGPLAN Notices,
vol. 22, no. 12, 1987.


