
Design Maintenance: Unexpected Architectural Interactions

(Experience Report)

Ian Carmichael, Vassilios Tzerpos and R.C. Holt

University of Toronto

Toronto, Ontario, Canada

fihc,vtzer,holtg@cs.toronto.edu

Abstract

There have been many systems developed that

attempt to recover design and structure from

code. In this paper, we present our experience

with using one such tool, SoFi, to extract de-

sign structure from a large industrial system

written in C. We compare the extracted struc-

ture to that which was intended by the design-

ers of the system. We observe and categorize,

for our system, the reasons why these two views

di�er. We observe that seemingly minor deci-

sions in implementation, can have a large im-

pact on the extracted design, and draw some

conclusions about the practicality of trying to

recover \intended designs" from source code.

1 Introduction

Many tools have been developed with the

goal of extracting structure from code.

These include tools such as Rigi [Muller 88],

Star[Mancoridis 94], CIA [Ramamoorthy 90],

ARCH [Schwanke 89] and CARE [Linos 92].

We present our experience with using this

kind of a tool on a large, recently-developed

industrial system.

The tool we used to perform source code

analysis is SoFi [Tzerpos 95] (for Source File),

developed as an extension to the Star Tool.

SoFi comprises facilities for source code infor-

mation extraction from C programs. There are

3 basic components to our design-extraction

tool.

1. Information on source inclusion relation

between source �les can be extracted. (For

this project, each c �le, had a correspond-

ing header �le describing the interface to

that �le, thus the source inclusion does de-

scribes dependencies. This is not necessar-

ily the case in any 'C' program.)

2. Source �les can be grouped into subsys-

tems based on various criteria such as di-

rectory structure or naming similarities.

3. A tool is provided for viewing and navi-

gating the resulting \software landscape"

[Penny 92].

We were interested in seeing how views ex-

tracted from such tools, and the informal dia-

grams developers use to describe their systems

di�er. We wanted to see what kind of insight

the visualizations provided by the tools might

o�er to the developers of such systems.

The system we analyzed was a commercial

compiler recently developed at IBM. In size, it

was about 300,000 lines of new code in about

200 source �les. It was thought of as a reason-

ably well designed and well constructed piece

of software.

2 Experience with the Tool

From our experience, we have concluded that

visualizing the source �le structure of non-

trivial systems without employing some clus-

tering of �les is of little value. The resulting

\picture" (�gure 1) has become familiar.

The �le naming convention of the compiler

project gave us a simple, yet useful way to ap-

proach clustering. The major subsystems were

identi�able by the �le-name pre�xes.

1



Figure 1: The unclustered structure of the sys-

tem.

Utilizing this naming convention, SoFi was

able to produce a much better visualization of

the source �le structure of the system, as shown

in �gure 2. This picture begins to show a

meaningful structure, identifying interconnec-

tions between major components.

Figure 2: Layout produced by SoFi after source

�les were grouped into subsystems.

2.1 Interacting with the system

designer

At this point, we enlisted the help of the sys-

tem designer to help us lay out the diagram

in a more meaningful fashion. The designer

was also able to identify some low-level shared

subsystems, whose connections with the overall

system were elided.

In �gure 3, we see the view of the system, af-

ter consultation with the system designer. The

layout was rearranged to more closely match

the design of the system.

This view, however, was still quite di�erent

from the original design of the system. We were

most interested in discovering the underlying

reasons for these discrepancies.

2.2 Analysis

We looked, in detail, at the unexpected inter-

connections between those subsystems which

formed the core of the compiler (the Tokenizer,

Parser, Semantic Analysis, Rewrite, and Code

Generator). The dependency graph, in the

original design, looked like that shown in �g-

ure 4. (This picture appears in early design

documentation for the system.)

In sharp contrast, the graph, as extracted

from the source code by our tool, was two edges

short of a complete graph (�gure 5). The de-

signer did not expect these views of the system

to be so di�erent.

Among these 5 subsystems, there were 14

subsystem to subsystem include dependencies

which the designer did not expect to see. These

14 unexpected dependencies were the result of

over 450 �le to �le include depencencies which

crossed the boundaries of these subsystems.

We had the system designer sit down and

look at each one of these, and decide exactly

why the include dependency was present.

We found, to our surprise, that all of these

unexpected dependencies were the symptoms

of a small handful of underlying decisions in im-

plementation. This was not what we expected,

given the rather large number of dependencies.

We have categorized the implementation deci-

sions we found as follows:

� ARCHITECTURAL EVOLUTION. One

of the edges in this graph (Code Gener-

ation back to Rewrite) was decided by the

designer to belong as part of the system,

even though not part of the original de-

sign. It was considered a natural evolution

of the original design.

2



Figure 3: Redrawn by system designer.

� CONTAINER INVENTION. When a de-

veloper adds a new item to the system,

a decision has to be made on where to

put the item. (For example, variables and

functions need to be placed in appropriate

�les, �les need to be placed in appropriate

subsystems.) When an appropriate con-

tainer was present, programmers generally

did this rather well. However, it seems

that when a container did not already ex-

ist, rather than create a new one, program-

mers would sometimes add the item to a

container which was not entirely appropri-

ate. This item existing where it doesn't re-

ally belong creates unusual dependencies.

Consider the following two examples.

1. During development, a number of

variables were added to capture

global information about the state

of a compile (had there been a se-

vere error, etc.). Ideally, these vari-

ables would have been collected, and

placed together in their own �le, part

of the shared utilities. However, no

such part existed, and these variables

were scattered through a number of

di�erent �les.

2. The early architectural diagrams did

not distinguish a separate subsystem

for the abstract data-type for parse

3



Figure 4: The intended structure of the �ve main subsystems of the compiler.

trees. As a result, both the parser

and the parse trees ended up as part

of the same subsystem. While this

is plausible on the surface, the parse

tree data-type is shared throughout

the compiler, while the parser is not.

This results in unnecessary depen-

dencies on the parser.

� FUNCTION MIGRATION. As the code

grows, functions that are originally writ-

ten for one purpose become needed else-

where later. Programmers do not always

move such functions to appropriate loca-

tions. They are occasionally left where

they �rst appear, creating unexpected de-

pendencies.

� IMPLEMENTATION EX-

PEDIENCY. There were two cases, where

a developer had deliberately ignored the

\architecture". In both cases, the overrid-

ing concern was minimizing development

time.

� GRATUITOUS INCLUDES. These occur

when a �le includes a header �le on which

there are no dependencies. Typically,

these would appear because when creat-

ing a new �le, an older �le is copied and

used as a boiler-plate. Includes which were

necessary in the original �le, but are not

necessary in the new �le are not always

removed by the developers.

It was the designer's opinion that, with the

exception of the one edge described above as an

architectural evolution, these di�erences were

not necessary, could be �xed with little e�ort,

and were well worth correcting.

3 Conclusions

We have observed some of the ways in which

the concrete structure of a software system

evolves (and de-evolves) during development;

and have categorized some of the ways in which

unexpected interactions between architectural

components can arise.

A small number of seemingly minor imple-

mentation decisions had a profound impact

on inter-component dependencies, and hence

the extracted structure of the system. Con-

versely, correcting these implementation de-

cisions can profoundly reduce the number of

inter-component dependencies.

The intended design did not correspond to

the structure embedded in the source code

4



Figure 5: The extracted structure of the �ve main subsystems of the compiler.

(even though our system had not su�ered years

of maintenance). This suggests that one may

not be able to directly recover \the intended

design" from a software system.

Some degree of restructuring was appro-

priate, even for a relatively new and well-

understood project. This is similar to our expe-

rience with other projects [Tzerpos 95]. When

we have shown the extracted structure of a sys-

tem to a system designer, there are always dis-

crepancies with the way the designer believes

the system should work. It is certainly eas-

ier, faster, and cheaper to restructure a system

while the people who understand the system in

detail are still involved with it.

4 Acknowledgements

References

[Mancoridis 94] Mancoridis S., Holt R.C.,

Godfrey M.W. A Program Understand-

ing Environment Based on the "Star" Ap-

proach to Tool Integration, ACM CSC

1994.

[Schwanke 89] Schwanke, R. W., Altucher,

R.Z., Plato�, M.A., Discovering, Visual-

izing, and Controlling Software Structure,

Siemens Corp. Research, Inc., 755 College

Rd East, Princeton, NJ 08540

[Muller 88] Muller, Hausi A. and Klashinsky,

Karl, Rigi: A System for Programming-

in-the-Large, Proc. of 10th International

Conference on Software Engineering, Sin-

gapore, April 11-15, 1988.

[Tzerpos 95] Vassilios Tzerpos, Visualizing the

source �le structure of software written in

C. Master's thesis, Department of Com-

puter Science, University of Toronto, 1995.

[Penny 92] Penny, D.A. The

Software Landscape: A Visual Formalism

for Programming-in-the-Large. Ph.D. The-

sis, Department of Computer Science, Uni-

versity of Toronto.

[Ramamoorthy 90] Ramamoorthy V., Chen

F., Nishimoto M., The C Information Ab-

straction System, IEEE Transactions on

Software Engineering, vol. 16(3), March

1990, pp. 325-334.

5



[Linos 92] Panagiotis Linos, Philippe Aubet

and Laurent Dumas, \CARE : An En-

vironment for Understanding and Re-

Engineering C Programs", 5th ACM SIG-

SOFT Symposium on Software Develop-

ment Environments, Washington D.C., De-

cember 9-11, 1992.

6


