
A Framework for Specifying and Visualizing

Architectural Designs

Richard C. Holt and Spiros Mancoridis

Department of Computer Science

University of Toronto

Canada

Abstract

Architectural designs specify the components of a software system, their inter-

faces, and their interrelationships. Module Interconnection Languages (MILs) are

useful for specifying architectural designs, but lack an intuitive visual representation

similar to the visual design notations found in CASE tools. This paper presents a

framework for formally de�ning the syntax and semantics of languages for specifying

and visualizing architectural designs. Also described are an instance and prototype

implementation of this framework consisting of two languages: one for specifying

designs and one for visualizing them.

1 Background

One of the phases of the software development process is the speci�cation of the system's

components, their interfaces, and their interrelationships. Throughout this paper, we will

refer to the product of this phase as the architectural design.

Our de�nition of architectural design is close to the de�nition of software architecture

given by Schwanke, Altucher, and Plato� [15], who de�ne software architecture as the per-

mitted or allowed set of connections among components. More recent research in software

architecture has led to de�nitions that subsume the one given by Schwanke et al. More

speci�cally, Perry and Wolf [13] argue that there is more to software architecture than

simply components and their connections. This argument is consistent with the approach

of Garlan and Shaw [5], who de�ne software architecture as the design and speci�cation

of the overall system structure. Among their extensive list of structural issues, which in-

cludes protocols for communication, physical distribution, and performance, Garlan and

1



Shaw mention the composition of design elements. In this paper, we use the term archi-

tectural design, instead of software architecture, and concentrate on components and their

interrelations, rather than on interfaces.

In current practice, architectural designs are commonly speci�ed informally in English

text accompanied by diagrams. Although these speci�cations act as a useful reference for

developers and maintainers, their informality implies that they cannot be mechanically

checked for syntactic and semantic consistency.

Module Interconnection Languages (MILs), such as those de�ned by DeRemer and Kron

[3], Cooprider [2], and Tichy [18], represent early attempts to de�ne languages for speci-

fying architectural designs. MILs are layered on top of common programming languages.

Their advantage is that they closely couple the design speci�cation to the source code,

making the speci�cation amenable to mechanical processing. (Speci�cations can be com-

piled and executed.) MILs, however, lack the intuitive visual representation that designers

are accustomed to using.

Visual notations1, such as those found in CASE tools, evolved separately from MILs as

a set of diagrammatic conventions to support a rich class of design approaches. Examples

of such notations are Jackson's System Design [7], Booch's Object{Oriented Design [1],

and Data{Flow Diagrams from Yourdon and Constantine [20]. These visual notations are

intuitive but often informal, closely tied to particular software development process, and

detached from the implementation programming language.

There has been an attempt to formalize some of these visual notations using the theory{

model paradigm. In particular, Ryman, Lamb, and Jain [14] speci�ed a theory for the

Jackson System Design notation and subsequently veri�ed that examples (models) of de-

signs satis�ed this theory. Their long{term goal is to formalize a large set of these visual

notations and include these formalisms in a library of design theories.

Recently, there have been e�orts to formally de�ne visual notations that are more like

MILs and less like the visual CASE notations. These notations are not tied to a particular

software development process, and have explicit mechanisms for coupling design diagrams

to source code. Examples of such notations are Penny's Software Landscape [11], with

related work by Holt, Godfrey, and Mancoridis [12, 6], and ARCH de�ned by Schwanke,

Altucher, and Plato� [15].

2 Overview of the Framework

Our work can be thought of as a formal approach to MILs, design theories, and visual CASE

notations, which integrates these into a single framework. This framework is illustrated in

Figure 1.

A particular MIL has a syntax, given in the oval at the top left of Figure 1. A design

theory corresponds to the lower left box. The semantics of a MIL speci�cation is given

by mapping its syntax to a model in the design theory2. The design theory, expressed in

1We assume that languages are always textual; hence, we use the term notations when referring to

diagrammatic or visual representations.
2In this paper, we consider that the semantics of a MIL is given by translating each MIL speci�cation

to a corresponding model in the design theory. At a separate level, not addressed in this paper, one must

2



mathematical set theory, is used to describe the components, their interrelationships, and

their constraints.

Separately, we consider diagrammatic approaches, which are shown on the right in

Figure 1. The oval on the top right corresponds to a drawing language in which we specify

how to draw CASE diagrams. The semantics of the drawing language is given in terms of

a simple set{based theory, which corresponds to the bottom right box in Figure 1. Models

in this theory have an obvious interpretation as CASE diagrams consisting of boxes and

arrows.

The ovals in Figure 1, which give the syntax of the MIL and the drawing language, are

connected by an arrow, indicating a two{way mapping between them. This mapping allows

us to interpret a CASE diagram as a MIL speci�cation and hence to give it semantics in

design theory. Conversely, it allows us to mechanically produce a CASE diagram from a

MIL speci�cation.

Our framework provides the advantage of neatly separating our concerns about various

aspects of architectural design. We can concentrate on theories of design with its questions,

such as the details of rules for visibility among modules, without concern for the syntax

of a MIL or CASE diagrammatic conventions. We can separately design the syntax of

a MIL, which many programmers seem to feel is the natural way to express higher level

constraints on their code. We can separately investigate CASE notations that are intuitive

and practical for capturing a designer's intentions. And we can separately deal with the

mechanics of producing diagrams on a computer screen and the means of updating and

navigating through these diagrams. We hope that our framework will help to show how

to use formal approaches in each of these areas of concern in the design phase of software

development.

As an example of a framework instance, we de�ne a language for specifying architectural

designs called SIL (Subsystem3 Interconnection Language), as well as a drawing language

called DL (Drawing Language), for specifying diagrams comprising annotated, colored

boxes and arrows. A number of the properties of SIL and DL have evolved from ideas

described in Penny's thesis [11]. Our long{term goal is to de�ne more elaborate languages

and semantic theories for specifying architectural designs (as outlined in Section 9.)

Thus far we have given the motivation behind our work, described its relationship to

previous research, and presented an overview of our framework. The rest of the paper

is structured as follows: Section 3 presents a diagrammatic example of an architectural

design, and then presents this example as a SIL and a DL speci�cation. Section 4 presents

an overview of the mathematical notations used in our formalisms. Sections 5 and 6 present

the syntax and semantics of SIL and DL, respectively. Section 7 de�nes the syntactic

mapping between them. Section 8 presents an overview of the prototype implementation

to support them. Finally, Section 9 presents a summary of the paper and our directions

for further research.

also give the semantics of the program (e�ect of execution) that is based on a particular design model.
3We will refer to composite modules as subsystems and atomic units as modules. Hence, our preference

for the term SIL rather than the more traditional MIL.

3



  Syntax of
Architectural
   Design
  Language

Syntax of
 Drawing
Language

Semantic Theory
 of Architectural
Design Language

      Interpreting the
Syntactic Representation
using the Semantic Theory

Semantic Theory
     of Drawing
      Language

 Syntactic Mapping

      Interpreting the
Syntactic Representation
using the Semantic Theory

Figure 1: Overview of the Framework

3 An Example

In this section we present an example architectural design depicted in Figure 2. White

boxes represent subsystems, dark4 boxes represent modules, dark arrows represent import

relations, light arrows represent use relations, nested boxes represent contain relations, and

light frames around boxes represent export relations.

Nested boxes are used as an aggregation mechanism so that hierarchies of subsystems

can be speci�ed. Dependencies between subsystems are speci�ed with the import relation.

The export relation is used as an information hiding mechanism. Finally, the use relation

is employed to specify dependencies between atomic entities.

This architectural design consists of a subsystem MAIN that contains two subsystems:

DEMO and LIB. The stackDemo module in DEMO uses the exported stack module in LIB.

For this usage to be allowed, the parent subsystem of stackDemo (DEMO) must import

the stack module. This constraint is imposed by the semantics of our SIL, presented in

Section 5.2. The LIB subsystem contains the node and stack modules. The arrow between

them indicates that stack uses node.

In the diagram, each box has a coordinate system, and all of the values5 speci�ed in

the diagram are in local coordinates. Each coordinate system has an adjustable origin

and a scaling factor. The origin is the bottom left corner of the box, plus an o�set to

facilitate the movement (panning) of its contents. The scaling factor is used for enlarging

or reducing (zooming) the size of its contents. Both the adjustable origin and scale factor

are used for layout and navigation purposes (panning and zooming), which are features of

our prototype visual editor for specifying designs similar to the one in Figure 2.

The boldface numbers in brackets specify the x and y coordinates of the bottom left

corner of each box. The numbers on the sides of the boxes represent the height and width

of the box. Because we do not discuss panning and zooming in this paper, for simplicity

of presentation, we assume that the scaling factors are all 1.0 and the o�set of the origin

4In a color diagram the dark boxes would have been blue, light arrows blue, and light frames green.
5These values do not appear in actual visualizations but are shown here for illustration purposes.

4



MAIN

DEMO
LIB

node

stack

stackDemo

(10,15)
(30,12)

(20,10)

(10,20)

(10,25)

(10,10)

60

60

25 30

20

25

10

10

10

10

10

10

Figure 2: Example of a Visualization of an Architectural Design

of each coordinate system is 0.

3.1 Example in SIL

The architectural design in Figure 2 is represented below as a SIL speci�cation. Each

box in the �gure corresponds to either a subsystem (white box) or a module (dark box).

Note that modules have no contents, other than a possible use list. The contents of these
modules are source statements written in a programming language. Because our languages

are concerned with the architectural design, the source statements have been omitted for

simplicity.

subsystem MAIN module stackDemo subsystem LIB

contain DEMO, LIB use stack export stack

end MAIN end stackDemo contain stack, node

end LIB

subsystem DEMO module stack module node

import stack use node end node

export stackDemo end stack

contain stackDemo

end DEMO

3.2 Example in DL

We now present the DL speci�cation of the design in Figure 2. Each box in the �gure has

a corresponding box clause in the DL speci�cation. Nested boxes are speci�ed using the

contain clause, and arrows between boxes are speci�ed using the edge clause.

5



For example, the DEMO box in Figure 2 corresponds to a box clause in the DL speci�-

cation. The stackDemo box appears as a contain clause within box DEMO. The x, y, width,

height attributes of the contain clause are used for positioning the contained box within the

container box's coordinate system. Hence, box DEMO speci�es that the bottom left corner

of the stackDemo box is at position (10,20). The attributes of the edge clause are used for

specifying: the color of the edge (edgecolor), the identi�er of the box that the edge points

to (target), and the side of the box from which the edge exits and enters (exit/enter side)

along with the position of contact between the box and the ends of the edge. This position

is given as a percentage of the side of a box (that is, 0.5 means that the edge contacts the

middle of a box side.) Following is the complete DL speci�cation:

box MAIN box DEMO box LIB

xorigin 0 yorigin 0 xorigin 0 yorigin 0 xorigin 0 yorigin 0

scale 1 scale 1 scale 1

boxcolor white boxcolor white boxcolor white

titlecolor black titlecolor black titlecolor black

contain DEMO contain stackDemo contain stack

x 10 y 15 x 10 y 20 x 10 y 25

width 20 height 25 width 10 height 10 width 10 height 10

framecolor black framecolor green framecolor green

end DEMO end stackDemo end stack

contain LIB edge contain node

x 30 y 12 edgecolor black x 20 y 10

width 25 height 30 target stack width 10 height 10

framecolor black exit right side 0.5 framecolor black

end LIB entry left side 0.5 end node

end MAIN end DEMO end LIB

box stackDemo box stack box node

xorigin 0 yorigin 0 xorigin 0 yorigin 0 xorigin 0 yorigin 0

scale 1 scale 1 scale 1

boxcolor blue boxcolor blue boxcolor blue

titlecolor white titlecolor white titlecolor white

edge edge end node

edgecolor blue edgecolor blue

target stack target node

exit side right position 0.5 exit side bottom position 0.5

entry side left position 0.5 entry side top position 0.5

end stackDemo end stack

Before proceeding with the de�nitions of the languages, we give an overview of the

mathematical notations used in our formalisms.

6



4 Mathematical Notations

We use regular expressions for specifying the symbols and extended Backus{Naur Form

(BNF) for specifying the grammars of both the SIL and DL languages. In formalizing

the semantics of the languages, we will use mathematical set theory. Entities in both

languages will then be sets, and interrelations between entities will be modelled as relations

among sets. An appropriate alternative would have been to formalize the semantics of the

languages using a formal speci�cation language based on set theory, such as Z [16].

If A and B are sets, A � B will denote their cartesian product. It is convenient to

reference the di�erent sets that participate in a cross product. To do so, we will specify

the cross product together with a naming convention for the product operands, when

necessary. Thus, if set A is to be called the �rst attribute, �rstAttr, of the cross product

and set B is to be called the second attribute, secondAttr, we will specify the cross product

as �rstAttr:A � secondAttr:B. The attribute names can then be used to access the attribute

values for a speci�c member t of the cross product; t.�rstAttr refers to the �rst value of

t, and t:secondAttr refers to the second value. Next, we formally de�ne the syntax and

semantics of the SIL language.

5 Subsystem Interconnection Language (SIL)

The need for languages to support architectural design speci�cation was �rst addressed by

DeRemer and Kron [3] in their seminal paper on MILs. The authors stated that the activity

of producing source code in a programming language is called Programming{in{the{Small

(PitS), whereas the activity of specifying the interconnections between PitS entities (that

is, procedures, variables, types) is called Programming{in{the{Large (PitL).

This section describes the syntax and semantics of our MIL, which is called SIL. Al-

though most of the MILs described in the introduction have mechanisms for composing

systems made up of nested modules, the only relationships between the modules are what

PitS entities are required by a module and what PitS entities are provided by a module

to other modules. SIL relations do not conform to the provides{requires paradigm be-

cause they are not based on relationships between PitS elements but are, rather, based

on relationships between PitL elements such as whole modules and subsystems. Another

di�erence is that SIL is not restricted to only two kinds of relations (provides and requires).

It currently supports four kinds of relations import, export, use, and contain and potentially

more, as mentioned in Section 9.

5.1 Syntax of SIL

The syntax of SIL is described using a set of symbols and a context{free grammar for

constructing strings from these symbols.

5.1.1 Symbols

Following is the set of allowable symbols (Tokens) in the SIL language. Characters and

character strings are written using the sans{serif font, names of regular expressions are

7



written using the italics font. The vertical bar (j) symbol denotes disjunction, and the star

symbol (*) denotes zero or more repetitions of an item.

Token = SpecialSymbol j Keyword j Id

SpecialSymbol = ,

Keyword = contain j end j export j import j module j subsystem j use

Id = Letter (Letter j Digit)�

Letter = a j � � � j z j A j � � � j Z

Digit = 0 j � � � j 9

5.1.2 Grammar of SIL

Following is the context{free grammar of SIL, with the start symbol S. The words in

italics represent non{terminal symbols, the words in sans{serif font represent terminal

symbols, the lambda symbol (�) means the empty string, the vertical bar symbol (j)

denotes disjunction, braces f g mean that an item can occur zero or more times, and

brackets [ ] mean that an item is optional.

S ::= subsystemDecl S j moduleDecl S j �

subsystemDecl ::=

subsystem Id

[import IdList]

[export IdList]
[contain IdList]

end Id

moduleDecl ::=

module Id

[use IdList]
end Id

IdList ::= Id f, Idg

The next section describes how meaning can be attached to these syntactic constructs

by giving semantic interpretations to them.

5.2 Semantics of SIL

Each SIL speci�cation is mapped to a set of entities and relations called a con�guration.

The set of all possible con�gurations is the semantic theory for SIL. There are also logic

formulas for imposing constraints on the entities of the con�guration.

8



5.2.1 Entities in the Semantic Theory for SIL

Entities are the basic items of interest in the semantic theory. Each entity has a unique

name, and can either be atomic or composite. In our formalism, we have a single kind

of atomic entity called module6. Atomic entities cannot contain other entities. Entity

containment is a unique characteristic of composite entities. The only kind of composite

entity is the subsystem. We de�ne the set of all entities E as the following cross product:

E = EntityId:Id � EntityKind:fsubsystem, moduleg

In this context, Id is the set of all identi�ers de�ned by the regular expression given in

Section 5.1.1. The attributes of an entity e are meant to denote the following: e.EntityId

is the unique identi�er of the entity, and e:EntityKind is the type (subsystem or module)

of the entity.

We de�ne the set of all atomic and composite entities, A and C respectively, as follows:

A = fe j (e 2 E) ^ (e.EntityKind = module)g
C = fe j (e 2 E) ^ (e.EntityKind = subsystem)g

Having de�ned the various kinds of entities, we proceed with the de�nition of a con�g-

uration.

5.2.2 Con�gurations

Each subsystem interconnection con�guration K is a tuple:

K = (Entity, Contain, Import, Export, Use)

where Entity, Contain, Import, Export and Use are de�ned as follows:

Entity � AtomicEntity [ CompositeEntity

AtomicEntity � A

CompositeEntity � C

Import � CompositeEntity � Entity

Contain, Export � CompositeEntity � Entity

Use � AtomicEntity � AtomicEntity

Note that only composite entities can contain, import, or export other entities and that

the Use relation is only de�ned for atomic entities. The SIL speci�cation given in Section

3.1 can be described as the following con�guration:

Entity = f (stackDemo, module), (stack, module), (node, module),

(MAIN, subsystem), (DEMO, subsystem), (LIB, subsystem) g

Contain = f ((MAIN, subsystem), (DEMO, subsystem)),

((MAIN, subsystem), (LIB, subsystem)), ((DEMO, subsystem), (stackDemo, module)),

6Other possible kinds of atomic entities we could have considered in our applications of this work include

classes, monitors, and C �les.

9



((LIB, subsystem), (stack, module)), ((LIB, subsystem), (node, module)) g

Import = f ((DEMO, subsystem), (stack, module)) g

Export = f ((DEMO, subsystem), (stackDemo, module)), ((LIB, subsystem), (stack, module)) g

Use = f ((stackDemo, module), (stack, module)), ((stack, module), (node, module)) g

A mapping for translating SIL speci�cations into these sets is described later on in

Section 5.2.4. The de�nitions given thus far describe the objects of the semantic theory,

but say nothing about the constraints imposed upon them.

5.2.3 Semantic Constraints

Not all con�gurations are well formed. This section de�nes a collection of relations and

�rst{order logic formulas that specify the semantic constraints on con�gurations. Note that

R+ and R� are the transitive and re
exive transitive closures of relation R, respectively.

We de�ne three auxiliary relations:

CanSee, SeeAsSibling, SeeAsImport � Entity � Entity

An entity can see its siblings or entities imported into its scope:

(a CanSee b) � (a SeeAsSibling b) _ (a SeeAsImport b)

An entity can see another entity as a sibling if and only if they both have a common parent:

(a SeeAsSibling b) � 9 p � (p Contain a) ^ (p Contain b)

An entity a can see another entity b as a result of an import if and only if the parent p

of entity a imports entity b:

(a SeeAsImport b) � 9 p � (p Contain a) ^ (p Import b)

A con�guration is well formed if and only if the semantic constraint on entity uniqueness

as well as the semantic constraints on the Contain, Import, Export, and Use relations are

satis�ed.

Constraints on Entity

Entities must have a unique identi�er:

(a 2 Entity) ^ (b 2 Entity) ^ : (a = b) ) : (a.EntityId = b.EntityId)

Constraints on Contain

An entity cannot directly or indirectly contain itself; that is, Contain is acyclic:

(a Contain+ b) ) : (a = b)

An entity cannot be contained in more than one distinct entity:

(a1 Contain b) ^ (a2 Contain b) ) (a1 = a2)

The last two constraints impose a forest structure on the Contain relation.

10



Constraints on Import

Entities cannot directly import themselves:

(a Import b) ) : (a = b)

An entity cannot import any of its ancestors or descendents in the containment hierarchy:

(a Import b) ) : (a Contain+ b) ^ : (b Contain+ a)

An entity can import an entity that it can see, or is exported from an entity it can see:

(a Import b) ) 9 p � (a CanSee p) ^ (p Export� b)

Constraints on Export

An entity can only export entities it contains:

(a Export b) ) 9 c � (a Contain c) ^ (c Export� b)

Constraints on Use

An atomic entity can use another atomic entity that is exported from an entity it can see:

(a Use b) ) 9 p � (a CanSee p) ^ (p Export� b)

Having de�ned both the syntax and semantics of SIL, we now describe how to map the

syntactic structures of SIL to their corresponding objects in the semantic theory.

5.2.4 Mapping the Syntax of SIL to Objects in the Semantic Theory

Below, we show which subsystem S or module M in a SIL speci�cation corresponds to

which element of the sets of the semantic theory.

Syntax Semantic Theory

subsystem S (S, subsystem) 2 CompositeEntity

import I1, � � � ((S, subsystem), (I1, I1.EntityKind)) 2 Import � � �

export E1, � � � ((S, subsystem), (E1, E1.EntityKind)) 2 Export � � �

contain C1, � � � ((S, subsystem), (C1, C1.EntityKind)) 2 Contain � � �

end S

module M (M, module) 2 AtomicEntity

use U1, � � � ((M, module), (U1, module)) 2 Use � � �

end M

This concludes the de�nition of the syntax and semantics of SIL. In the next section,

we present the de�nition of a language for specifying drawings and, later, show how this

drawing language relates to SIL.

11



6 Drawing Language (DL)

We believe that visual representations of subsystem interconnections are more intuitive

and easier to understand. Hence, many developers prefer to view their architectural design

in a diagrammatic form. This section de�nes the syntax and semantics of a language,

called DL, for specifying drawings made up of annotated colored boxes and arrows. Other

examples of a drawing language are the Graph Exchange Format (GXF) [4] for visualizing

hierarchical graphs, and the Graph Description Language (GDL) [19] for visualizing graphs

in three dimensions.

6.1 Syntax of DL

In this section we describe the syntax of DL which comprises a collection of symbols and

a context{free grammar for constructing strings from these symbols.

6.1.1 Symbols

Following is the set of allowable symbols (Token) in DL. The plus symbol (+) denotes one

or more repetitions of an item, and the query symbol (?) denotes that an item is optional.

The other symbols are described in Section 5.1.1.

Token = Color j Id j Keyword j Real j Side

Color = black j white j blue j green
Keyword = box j boxcolor j contain j edgecolor j entry j exit j framecolor j height j

position j scale j side j target j titlecolor j width j x j xorigin j y j yorigin

Real = (+ j -)? (Digit)� (.)? (Digit)+ ((E j e) (+ j -)? (Digit)+)?

Side = bottom j left j right j top

The de�nitions for Id, Letter, and Digit are identical to those given for the symbols of

SIL in Section 5.1.1.

6.1.2 Grammar of DL

The context{free grammar of DL, with a start symbol S, is the following:

S ::= fboxDeclg

boxDecl ::=

box Id
xorigin Real yorigin Real

scale Real

boxcolor Color
titlecolor Color

fedgeDeclg

fcontainDeclg

end Id

12



edgeDecl ::=

edge

edgecolor Color

target Id

exit side Side position Real

entry side Side position Real

containDecl ::=

contain Id

x Real y Real

width Real height Real

framecolor Color

end Id

Next, we de�ne the semantics of DL.

6.2 Semantics of DL

In this section, we present a semantic theory for the drawing language, DL. The theory is

de�ned by a number of interrelated sets that represent boxes and edges with their positions

and other attributes.

6.2.1 Boxes in the Semantic Theory for DL

Boxes in the semantic theory for DL are de�ned as follows:

B = BoxId:Id � Xorigin:Real � Yorigin:Real � Scale:Real � BoxColor:Color �

TitleColor:Color

The attributes of a box b 2 B are meant to denote the following: b.BoxId is the unique

identi�er associated with the box; b.Xorigin and b.Yorigin denote the origin of b's coordinate

system (translations and other transformations on b may change the value of its origin);

b.Scale denotes the scale factor for enlarging or reducing the contents of b; b.BoxColor is

the color of b (one of black or blue); and, b.TitleColor is the color of the title of b.

6.2.2 Con�gurations

Each drawing con�guration K is a tuple:

K = (Box, Edge, Contain)

Where Box, Edge, and Contain are de�ned as follows:

13



Box � B

Edge � SrcBoxId:Id � EdgeColor:Color � DestBoxId:Id � ExitSide:Side �

ExitPos:Real � EntrySide:Side � EntryPos:Real

Contain � ParentBoxId:Id � BoxId:Id � X:Real � Y:Real � Width:Real �

Height:Real � FrameColor:Color

In this context, Id, Color, and Side are the sets de�ned by their corresponding regular

expressions given in Section 6.1.1. The set Real, used in this section, is not the set of all

string that represent the real numbers, but the actual set of real numbers.

The attributes of an edge e 2 Edge are meant to denote the following: e.SrcBoxId is

the unique identi�er of the box from which the edge exits; e.EdgeColor is the color of the

edge; e.DestBoxId is the unique identi�er of the box to which the edge enters; e.ExitSide

is the side of the source box from which the edge exits; e.ExitPos is the position of the side

of the box, given as a percentage of the side, from which the edge exits; e.EntrySide is the

side of the target box to which the edge enters; and e.EntryPos is the position of the side

of the box to which the edge enters.

The attributes of a contained box b 2 Contain are meant to denote the following:

b.ParentBoxId is the unique identi�er associated with the container box; b.BoxId is the

unique identi�er associated with the contained box; b.X and b.Y represent the bottom

left corner of the contained box in the coordinate system of the container; b.Width and

b.Height represent the width and height of the contained box in the coordinate system of

the container; and b.FrameColor represents the frame color of the contained box.

The complete DL speci�cation of the example in Section 3.2 can be described as the

following con�guration:

Box = f
(MAIN, 0, 0, 1, white, black), (DEMO, 0, 0, 1, white, black), (LIB, 0, 0, 1, white, black),

(stackDemo, 0, 0, 1, blue, white), (stack, 0, 0, 1, blue, white), (node, 0, 0, 1, blue, white)g

Edge = f
(DEMO, black, stack, right, .5, left, .5) (stackDemo, blue, stack, right, .5, left, .5)

(stack, blue, node, bottom, .5, top, .5)g

Contain = f
(MAIN, DEMO, 10, 15, 20, 25, black), (DEMO, stackDemo, 10, 20, 10, 10, green),

(MAIN, LIB, 30, 12, 25, 30, black), (LIB, stack, 10, 25, 10, 10, green),

(LIB, node, 20, 10, 10, 10, black)g

A mapping from DL speci�cations into these sets is described later on in Section 6.2.4.

The de�nitions given thus far describe the objects but say nothing about the semantic

constraints imposed upon them.

6.2.3 Semantic Constraints

Not all drawing con�gurations are well formed. This section de�nes constraints that govern

whether a particular drawing is well formed or not. We de�ne the following auxiliary

functions:

14



corner, inside: Real � Real � Box ! Boolean

enclose, overlap, contain, edge: Box � Box ! Boolean

The corner function returns true if and only if (x, y) is one of the corners of box a:

corner (x, y, a) � 9 t � ((t 2 Contain) ^ (t.BoxId = a.BoxId) ^

(x = t.X ^ y = t.Y) _ (x = t.X + t.Width ^ y = t.Y) _

(x = t.X ^ y = t.Y + t.Height) _ (x = t.X + t.Width ^ y = t.Y + t.Height))

The inside function, in a con�guration K, returns true if and only if (x, y) lies within box a:

inside (x, y, a) � 9 t � ((t 2 Contain) ^ (t.BoxId = a.BoxId) ^

(t.X < x < t.X + t.Width) ^ (t.Y < y < t.Y + t.Height))

The enclose function returns true if and only if boxes a and b have no overlapping boundaries:

enclose (a, b) � 8 x, y � corner (x, y, b) )

inside (x * a.Scale + a.Xorigin, y * a.Scale + a.Yorigin, a)

The overlap function returns true if and only if boxes a and b contain common points:

overlap (a, b) � 9 x, y � inside (x, y, a) ^ inside (x, y, b)

The contain function returns true if and only if box a directly contains box b:

contain (a, b) � 9 C � (C 2 Contain) ^ (C.ParentBoxId = a.BoxId) ^ (C.BoxId = b.BoxId)

The edge function returns true if and only if there is an edge between boxes a and b:

edge (a, b) � 9 E � (E 2 Edge) ^ (E.SrcBoxId = a.BoxId) ^ (E.DestBoxId = b.BoxId)

Constraints on drawings

Each child box must be enclosed by its parent box:

contain (a, b) ) enclose (a, b)

The boundaries of sibling boxes cannot overlap:

contain (a, b) ^ contain (a, c) ) : overlap (b, c)

A box cannot directly or indirectly contain itself; that is, Contain is acyclic:

contain (a, b) ) : (a = b)

A box cannot be contained in more than one distinct boxes:

contain (a1, b) ^ contain (a2, b) ) (a1 = a2)

Constraints for referential integrity

If a contains b, then both a and b must be boxes:

contain (a, b) ) (a 2 Box) ^ (b 2 Box)

If there is an edge between a and b, then both a and b must be boxes:

edge (a, b) ) (a 2 Box) ^ (b 2 Box)

15



Having de�ned both the syntax and semantics of DL, we now describe how to map the

syntactic structures of DL to their corresponding objects in the DL semantic theory.

6.2.4 Mapping the Syntax of DL to Objects in the Semantic Theory

Below, we show which objects in a DL speci�cation are mapped to which objects in the

semantic theory.

Syntax Semantic Theory

box B (B,

xorigin XOR yorigin YOR XOR, YOR,

scale SC SC,

boxcolor BC BC,

titlecolor TC TC) 2 Box

edge (B,

edgecolor EC EC,

target Bi Bi,

exit side XS position XPOS XS, XPOS

entry side ES position EPOS ES, EPOS) 2 Edge
...

...

contain Bj (B, Bj

x X y Y X, Y

height H width W H, W,

framecolor FC FC) 2 Contain

end Bj

...
...

end B

The next section describes how the SIL and DL can be used in concert for specifying

and visualizing architectural designs.

7 Mapping Between SIL and DL

This section presents a syntactic mapping between SIL and DL. This mapping forms the

basis for the automatic translation, described in section 8, between speci�cations written

in either of the two languages. The syntactic mapping from a SIL to a DL speci�cation

is, in general, 1{to{many because SIL speci�cations have no layout or color information.

The mapping assigns default values to �elds with no counterpart in the other language.

The syntactic mapping from a DL speci�cation to a SIL one is many{to{1. Below is the

mapping between a SIL subsystem and its corresponding DL box:

16



SIL DL

subsystem S box S

xorigin 0 yorigin 0

scale 0

boxcolor white

titlecolor black

import I1, � � � edge

edgecolor black

target I1
exit side 0 position 0

entry side 0 position 0

export E1, � � �
...

contain E1, � � � contain E1

x 0 y 0

width 0 height 0
framecolor green

end E1

...

end S end S

Note that, when SIL source is mapped to DL source, exported items are represented

in DL by green frame colors. This requires that the contain clause in DL corresponds to

an export clause in SIL and that the contain clause in DL has the framecolor green clause.

Other usage of colors are: black edges depict imports, black frames depict entities that are

not exported, and white boxes depict subsystems. The mapping between a SIL module

and its corresponding DL box is similar:

SIL DL

module M box M

xorigin 0 yorigin 0

scale 0

boxcolor blue

titlecolor white

use U1, � � � edge

edgecolor blue

target U1

exit side 0 position 0

entry side 0 position 0
...

end M end M

17



Note that blue edges are used to depict the use relation, and blue boxes are used to

depict modules. Having given the de�nitions of the syntax and semantics of SIL and

DL, as well as a mapping for translating between speci�cations written in either of these

languages, we next present an overview of the prototype implementation to support these

languages.

8 Overview of Prototype Implementation

Our decision to separate the syntax of the languages from their semantics is re
ected in the

structure of our prototype implementation shown in Figure 3. The three major components

of the implementation are:

1. Editors: Any text editor can be used to create and modify the textual SIL and DL

speci�cations. For DL speci�cations, however, users will probably prefer to use our

visual editor that directly edits a diagram and saves it as the corresponding textual

DL speci�cation.

2. Translators: The Star system [9] acts as a translator between SIL and DL. Star has

parsers and source code generators for both languages and can translate a speci�ca-

tion written in one language into an equivalent speci�cation of the other language.

The translations between the SIL and DL speci�cations are based on the mapping de-

scribed in Section 7. The main di�erence between this mapping and the implemented

mapping is that Star uses the Sugiyama [17] graph layout algorithm to automatically

add positioning information to translations from SIL to DL speci�cations. For the

Star system to perform these translations, the speci�cations must be syntactically

correct. The Star parsers can also translate SIL or DL speci�cations into a set of

Prolog facts that can be used for verifying the semantic constraints. This translation

is simple; for example, if A contains B in a SIL or DL speci�cation, the generated

Prolog fact is contain('A', 'B').

3. Theorem Provers: A Prolog interpreter is used as a theorem prover7 that veri�es

the semantic constraints of both SIL and DL speci�cations. The constraints of both

languages are speci�ed using Prolog rules. SIL and DL speci�cations are translated

into a set of Prolog facts by the Star system.

This implementation framework suits our experimental purposes because it comprises

easily replaced modular components. We wanted to be able to adjust the syntax and

semantics of our languages without changing the tools very much. Hence, we chose to

loosely integrate simple tools using the Star system. For example, changing the semantics of

the SIL language requires only changes to the respective Prolog rules. Moreover, adjusting

the syntax of SIL only implies updating a single module in the Star system.

The modular implementation framework, however, may not be practical in a non{

academic setting because of the overhead associated with the translations. A production

7In another paper [9], we showed how other interpreters | such as the one in the ConceptBase Knowl-

edge Representation Management System [8] | can be used instead of Prolog.

18



 Text
Editor

Visual
Editor

STAR

   Prolog
Interpreter

SIL 
spec.

Prolog
  SIL
 model

 DL 
spec.

Prolog
   DL
 model

Prolog
  SIL
 theory

Prolog
  SIL
 theory

 parse/
generate

 parse/
generate

generate generate

read/write read/write read/write

read

readread

read

Editors

Translators

Theorem
Provers

Figure 3: Implementation Overview: Boxes represent tools, cylinders represent persis-

tent speci�cations, and arrows represent the relationships between tools and speci�cations.

quality version might integrate the components more tightly; it might merge SIL and DL

into a single language, and would probably check the semantic constraints directly, rather

than using a general interpreter such as Prolog.

9 Conclusions and Future Research

In this paper, we described a framework for formally de�ning languages for specifying and

visualizing architectural designs. We explained how this framework was used to de�ne the

syntax and semantics of languages for specifying designs (SIL) and drawings (DL). Sub-

sequently, we described the relationship between SIL and DL speci�cations by de�ning a

syntactic mapping from one to another. Finally, we described our prototype implementa-

tion based on this framework.

We hope that this research will lead to languages and tools for architectural design that

will be used with the same degree of con�dence that conventional programming languages

and compilers are used. From a speci�cation point of view, this research shows that

specifying architectural designs can be done both easily and unambiguously. From an

implementation point of view, it shows that visually displaying and manipulating such

designs as well as checking for their syntactic and semantic consistency can be done both

mechanically and correctly.

We are currently working on using the framework to de�ne languages for specifying and

19



visualizing more general architectural designs that also accommodate object orientation,

reuse libraries, con�guration management, and data 
ow. In addition, we intend to extend

the framework to permit algebraic manipulations of the objects in the semantic theory.

We also plan to implement tightly integrated tools to support our languages. These tools

will eventually be incorporated into the Object{Oriented Turing (OOT) [10] programming

environment and used by developers and students at our university.

References

[1] Booch, G. Object{Oriented Design with Applications. Benjamin/Cummings Pub-

lishing Company Inc., Redwood City, California, 1991.

[2] Cooprider, L. W. The Representation of Families of Software Systems. Tech. Rep.

CMU{CS{79{116, Computer Science Department CMU, April 1979.

[3] DeRemer, F., and Kron, H. H. Programming{in{the{Large Versus

Programming{in{the{Small. IEEE Transactions on Software Engineering 2, 2 (June

1976), 80{86.

[4] Eigler, F. C. GXF: A Graph Exchange Format. In Declarative Database Visual-

ization: Recent Papers from the Hy+/GraphLog Project, A. Mendelzon, Ed. Technical

report CSRI{285, University of Toronto, July 1993, pp. 91{107.

[5] Garlan, D., and Shaw, M. Architectures for Software Systems. In tutorial given

at ACM SIGSOFT '93: Symposium on the Foundations of Software Engineering (Los

Angeles, California, December 1993).

[6] Holt, R. C., Penny, D. A., and Mancoridis, S. Multicolour Programming

and Metamorphic Programming: Object Oriented Programming{in{the{Large. In

Proceedings of the 1992 IBM CASCON Conference (November 1992), pp. 43{58.

[7] Jackson, M. Principles of Program Design. Academic Press, New York, New York,

1975.

[8] Jarke, M. ConceptBase V3.0 User Manual. Tech. Rep. MIP{9106, Universitat

Passau, March 1991.

[9] Mancoridis, S., Holt, R. C., and Godfrey, M. W. A Program Understanding

Environment Based on the \Star" Approach to Tool Integration. In Proceedings of

the Twenty{Second ACM Computer Science Conference (March 1994), pp. 60{65.

[10] Mancoridis, S., Holt, R. C., and Penny, D. A. A \Curriculum{Cycle" Environ-

ment for Teaching Programming. In Proceedings of the Twenty{Fourth ACM SIGCSE

Technical Symposium on Computer Science Education (February 1993), pp. 15{19.

[11] Penny, D. A. The Software Landscape: A Visual Formalism for Programming{

in{the{Large. PhD thesis, Department of Computer Science, University of Toronto,

1992.

20



[12] Penny, D. A., Holt, R. C., and Godfrey, M. W. Formal Speci�cation in

Metamorphic Programming. In S. Prehn and W. J. Toetenel (eds.), VDM '91: Formal

Software Development Methods, Proceedings of the 4th International Symposium of

VDM Europe (October 1991), Springer{Verlag Lecture Notes in Computer Science

no. 551.

[13] Perry, D. E., and Wolf, A. L. Foundations for the Study of Software Architec-

tures. Software Engineering Notes 17, 4 (October 1992), 40{49.

[14] Ryman, A., Lamb, D. A., and Jain, N. Theories and Models in Software Design.

Tech. Rep. TR 74.081, IBM Canada Lab, October 1991.

[15] Schwanke, R. W., Altucher, R. Z., and Platoff, M. A. Discovering, Vi-

sualizing, and Controlling Software Structure. In Proceedings of the Fifth Interna-

tional Workshop on Software Speci�cation and Design (Pittsburgh, Pennsylvania, May

1989), pp. 147{150.

[16] Spivey, J. M. The Z Notation: A Reference Manual (2nd ed.). Prentice Hall

International, 1992.

[17] Sugiyama, K., Tagawa, S., and Toda, M. Methods for Visual Understanding of

Hierarchical System Structures. IEEE Transactions on Systems, Man, and Cybernetics

11, 2 (February 1981), 109{125.

[18] Tichy, W. F. Software DevelopmentControl Based on System Structure Description.

Tech. Rep. CMU{CS{80{120, Computer Science Department CMU, January 1980.

[19] Ware, C., Hui, D., and Franck, G. Visualizing Object Oriented Software in

Three Dimensions. In Proceedings of the 1993 IBM CASCON Conference (October

1993), pp. 612{620.

[20] Yourdon, E., and Constantine, L. L. Structured Design: Fundamentals of a

Discipline of Computer Program and System Design. Prentice Hall, Englewood Cli�s,

New Jersey, 1985.

21


