
GASE: Visualizing Software Evolution-in-the-Large

Ric Holt and Jason Y. Pak

Computer Systems Research Institute

University of Toronto

Toronto, Ontario, Canada

fholt,pakg@cs.toronto.edu

Abstract

Large and long lived software systems, some-
times called legacy systems, must evolve if they
are to remain useful. Too often, it is di�cult to
control or to understand this evolution. This pa-
per presents an approach to visualizing software
structural change. A visualization tool, called
GASE (Graphical Analyzer for Software Evolu-
tion), has been used to elucidate the architec-
tural changes in a sequence of eleven revisions
of an eighty thousand line industrial software
system.

1 Introduction

A considerable amount of research on \program-
ming in the large" [1] has focused on the study
of software architecture [4, 8]. However, not
much research has concentrated on understand-
ing changes (evolution) of software architecture
[2]. Since large software systems inevitably
evolve over time, and tend to deteriorate struc-
turally [5], we need better means of visualizing
this kind of change.

This paper presents the GASE (Graphical

Analyzer for Software Evolution) tool. This
tool inputs descriptions of successive versions of
a legacy software system and produces diagrams
that highlight architectural changes.

This paper is organized as follows. First we
describe the organization of the GASE tool.
Next we describe our scheme for using colors
to highlight architectural change. Then we de-

scribe an experiment in which we use GASE to
visualize changes in the architecture of a large
industrial software system. We �rst show how a
single version of the software can be viewed and
then give diagrams that contrast two quite simi-
lar and two quite di�erent pairs of versions. We
conclude by giving observations from our expe-
rience in using GASE to analyse this industrial
software system.

2 Organization of GASE

The GASE tool consists of four major phases:
an Extractor, an Analyzer, a Mapper and a
Viewer (see Figure 1). This organization, as
well as much of GASE's actual code, is based
on Landscape software [9, 6].

The Extractor parses the source code for tar-
get system that is to be analyzed, and deter-
mines the relevant \facts" about that system.
These facts typically include the set of modules
and subsystems in the target system as well as
relations such as \calls" or \includes" among
these. Since we are only interested in the large
scale structure of the target system, we ignore
lower level entities such as statements and vari-
ables.

The Analyzer consumes the Extractor's out-
put for one or more versions of the system.
In the common case, the Analyzer inputs facts
about the parts of two versions of a system; let
us call these two versions V1 and V2. From a
graph theory point of view, the parts are either
nodes (modules or subsystems) or edges (rela-
tions such as \call"). Each part is agged as (a)

1



&%
'$
Source

Code

?
Extractor Analyzer Mapper Viewer

&%
'$
View

- - -

?

Figure 1: Organization of the GASE Tool

unique to V1 (eliminated in V2), (b) common to
V1 and V2, or (c) unique to V2 (did not exist
in V1).

The Mapper translates the agged facts into
a corresponding colored diagram, using boxes
for nodes and arrows for edges. This transla-
tion includes laying out the boxes in a way that
attempts to minimize edge crossings [10].

The Viewer provides a convenient graphical
user interface that is used interactively to select
versions and version pairs to be inspected. The
Viewer uses colors to highlight changes from ver-
sion to version. The Viewer supports a rich set
of navigational and querying facilities includ-
ing zooming, panning, opening and exploding
of (sub)views [6].

3 Pair-Di�erence Coloring

GASE uses color to show changes in architec-
tural structure. It uses red to represent recent
change, grey for intermediate status, and blue

for older change. In accordance with accepted
graphics practice, we use red for \hotter" or re-
cent activity and blue for \colder" or older ac-
tivity.

In this paper, we will present a scheme for
contrasting pairs of versions, in which we use
only three shades (red, grey and blue), but in
principle the scheme can be extended to n ver-
sions displayed by a \spectrum" of shades run-
ning from red through grey to blue [7].

Blue
(dotted)

Module 1 Module 2
Grey

(dashed)

Grey

(dashed)
Module 3 Module 4

Red
(solid)

? ?

�
�
�
���

Figure 2: The Part-Di�erence Coloring Scheme

Figure 2 gives a simple example in which ver-
sion V1 of system has evolved to version V2.
Since the diagrams given here are not rendered
in color, we are using solid lines for red, dashed
lines for grey, dotted lines for blue. Blue (dot-
ted) parts (boxes and arrows) exist in V1 but
were deleted in V2. Grey (dashed) parts are
common to both V1 and V2. Red (solid) parts
did not exist in V1, and were added in V2. We
call this the Pair-Di�erence coloring scheme
because, for a pair of versions, it highlights the
parts that are either common among or unique
to the versions.

In Figure 2, Module 1 and edge (1,3) are blue
(dotted), meaning they existed in V1 but were
deleted in V2. Modules 2 and 3 and edge (2,3)
are grey (dashed), meaning they exist in both
V1 and V2. Module 4 and edge (2,4) are red
(solid), meaning that they did not exist in V1,
and were created in V2.

4 An Experiment with In-

dustrial Software

We were fortunate to have access to the architec-
tural facts (subsystems and relations) for a se-
quence of eleven versions, which we will call V1
to V11, of an industrial software system [3]. The
system is a commercial con�guration manage-
ment system, which is used by software develop-

2



STSCOMS

SWBASE SWUTILS

STSAPPL

?

XXXXXXXXXXXXXXz

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

�

?

6

Figure 3: Version 1 of the Industrial System

ers to keep track of their software artifacts. The
system, developed over a period of four years,
is written in the C programming language. A
typical release contains roughly 80,000 lines of
code.

4.1 Viewing a Single Version

Figure 3 shows the �rst version, V1, of the in-
dustrial system. The �gure shows that the sys-
tem consists of four subsystems, connected by
static dependency relations. The relations cor-
respond to calls or accesses to global variables.

Since only one version is shown, we do not need
to use colors (or dashes and dots). Each sub-
system is shown \closed" meaning that its con-
tents are not shown. GASE provides the user
with GUI facilities to \open" each subsystem
to reveal its contained modules along with their
interdependencies.

4.2 Contrasting Two Similar Ver-

sions

Figure 4 is a GASE screen dump showing both
versions V1 and V2 of the industrial system. In
this �gure, all subsystems are \open", so we can

Figure 4: Versions 1 and 2 Showing Common
Dependencies

Figure 5: Versions 1 and 2 Showing New De-
pendencies

3



Figure 6: Versions 10 and 11 Showing Old De-
pendencies

see the modules within them.

If we had colors available, the �gure would use
red, grey and blue to show new, common and
deleted parts. It turns out that from version V1
to V2, the subsystem structure remained con-
stant and no modules were deleted, but some
modules were created. As a result, some mod-
ules (the new ones) should be shown in red and
the rest in grey. Instead of using color, we use
two �gures to selectively show common edges
(in Figure 4) and new edges (in Figure 5). As
can be seen, most edges are common (Figure 4),
and a fewer number are new (Figure 5).

From Figures 4 and 5, it is easy to see that
the architectural structures of V1 and V2 are
quite similar, and it is easy to see the new de-
pendencies.

4.3 Viewing a Major Architec-

tural Change

From Figure 4, we can directly observe that the
high level structure, at the level of subsystems,
of the industrial system did not change from ver-
sion V1 to V2. From using GASE, we observed
that the high level structure remained constant
until V11. GASE views contrasting V10 and
V11 (Figures 6 and 7) show that there is a sig-
ni�cant change. Figures 6 and 7 show �ve sub-
sets instead of the previous four. Careful inspec-

Figure 7: Versions 10 and 11 Showing New De-
pendencies

tion suggests that one subsystem, SWBASE,
was split into parts called SWBASE (again) and
OSIF.

In discussions with the developers of the in-
dustrial system we learned that in V11 they re-
structured their system to isolate the operat-
ing system interface in a new subsystem called
OSIF. The GASE diagrams neatly portray this
evolution. Figure 6 contrasts V10 and V11 by
showing the deleted (blue) dependencies while
Figure 7 shows the added (red) dependencies.
(In a sense these �gures show too many changed
dependencies in that a dependency is agged as
changed if it occurs in a new subsystem, even
though it still connects the same modules.)

5 Observations

In our experiment we made a number of obser-
vations, some of which we had not expected.

The most gratifying was that the signi�cant
restructuring from V10 to V11 was immediately
obvious from the GASE views, and correlated
with the developers' description of this archi-
tectural change.

Another observation was that most changes
occurred at a low level (among modules) and
not at a high level (among subsystems). This
phenomena suggests a \software rule" that pre-

4



dicts that the rate of change is proportional to
structural depth. Of course our simple exper-
iment simply hints at the existence of such a
\rule". (It may be that metrics researchers may
want to try to validate this rule by tabulating
rates of architectural change versus depth.) The
interesting part from our point of view is that
GASE views of successive versions immediately
made clear that this particular industrial system
follows this rule.

Another observation was that the indus-
trial system consistently grew and almost never
shrank. This phenomena was immediately ob-
vious from the GASE views because boxes were
commonly red (new) but almost never blue
(deleted).

A �nal observation was made by a developer,
who noticed from looking at a view containing
V11 that the OSIF subsystem depends upon
another subsystem. To him, this was an un-
expected and unintended dependency, because
OSIF was intended to be a reusable subsystem,
independent of other subsystems.

6 Conclusions

We developed the GASE tool to explore an ap-
proach to visualizing software evolution. This
approach uses colors to contrast new, common
and deleted parts of a software system. With
this scheme, the developer can easily see struc-
tural change that might otherwise be di�cult to
discern.

We tried out GASE on an 80,000 line indus-
trial system that had a history of 11 versions.
GASE views of this history made possible a
number of observations about the industrial sys-
tem. These observations included the following.
The industrial system underwent only one ma-
jor restructuring, which was immediately obvi-
ous from GASE views. The views made clear
(a) that the system changed mostly at low lev-
els and (b) that it grew but rarely shrank. The
GASE view following the major architectural
change revealed a dependency that the devel-
oper had not intended.

From our experience using the GASE tool, we

feel that this approach has considerable promise
for helping developers understand and control
architectural change.

References

[1] DeRemer, Frank and Kron, Hans H., \Pro-

gramming in the Large Versus Programming in

the Small", IEEE Trans. on Software Engineer-

ing, Vol. SE-2 No. 2, June 1976.

[2] Eick, S.G., Ste�en, J.L., Summer, E.E. Jr.,

\Seesoft { a tool for visualizing line oriented

software statistics", IEEE Trans. on Software

Engineering, Vol. 18, Nov 1992, pp. 957-968.

[3] Farah, J., Private correspondance, Dec 22,

1995.

[4] Garlan, David and Shaw, Mary, \An Intro-

duction to Software Architecture", Advances

in Software Engineering and Knowledge Engi-

neering, World Scienti�c Publishing Company,

Vol 1, 1993.

[5] Lehman, M.M. and Belady, L., \Program Evo-

lution. Process of Software Change", London:

Academic Press, 1985.

[6] Holt, R.C. and Mancoridis, S., \A framework

for Specifying and Visualizing Architectural

Designs", Tech. Report #300, Computer Sys-

tems Research Institute, University of Toronto,

1994.

[7] Pak, J.Y., \Towards Visualizing the Evolution

of Software Architecture", Master's thesis, De-

partment of Computer Science, University of

Toronto, 1996.

[8] Perry, D.E. and Wolf A. L., \Foundations for

the Study of Software Architecture", ACM SIG-

SOFT, Software Engineering Notes, Vol. 17 No.

4, Oct 1992, pp. 40-52

[9] Penny, D.A. \The Software Landscape: A

Visual Formalism for Programming-in-the-

Large", Ph.D. Thesis, Department of Com-

puter Science, University of Toronto, 1992.

[10] Sugiyama, K., Tagawa, S. and Toda, M.,

\Methods for Visual Understanding of Hierar-

chical Systems", IEEE Trans. on Systems, Man

and Cybernetics, Vol. SMC-11, No. 2, 1991, pp.

109-125

5


