
Stretching the Rubber Sheet: A Metaphor

for Viewing Large Layouts on Small Screens

Manojit Sarkar, Scott S. Snibbe, Oren Tversky, and
Steven P. Reiss

Department of Computer Science

Brown University

Providence, Rhode Island 02912

CS-93-39

September 1993

Stretching the Rubber Sheet: A Metaphor for Viewing

Large Layouts on Small Screens

Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss

Department of Computer Science

Brown University, Providence, RI 02912{1910 USA

fms,sss,ojt,sprg@cs.brown.edu

Abstract

We propose the metaphor of rubber sheet stretching for

viewing large and complex layouts within small display

areas. Imagine the original 2D layout on a rubber sheet.

Users can select and enlarge di�erent areas of the sheet

by holding and stretching it with a set of special tools

called handles. As the user stretches an area, a greater

level of detail is displayed there. The technique has some

additional desirable features such as areas speci�ed as

arbitrary closed polygons, multiple regions of interest,

and uniform scaling inside the stretched regions.

Keywords: Information Visualization, Graphical Vi-

sualization, Interface Metaphors, Interactive Systems

Introduction

Imagine working with a large and complex layout. Large

layouts, diagrams, illustrations, and pictures occur in

many areas of Computer Science, Engineering, Archi-

tecture, and Arts. Such a layout cannot be displayed

in full detail on a typical computer display. Since the

screen has a �xed resolution, scaling the entire layout

uniformly to �t into the available space does not allow

full detail to be shown. The most common solution pro-

vides a scrollable viewport. This shows full detail at

the region currently visible through the viewport, but

hides the rest of the layout. As a result, users often get

lost and feel deprived of context. In certain situations,

availability of adequate context may be crucial, or may

improve the usability of the application signi�cantly.

One common strategy to show detail and context in lay-

outs uses two separate views. One view contains an

0

overview of the entire layout. The details are usually

too small to be seen in this scale-reduced version. An-

other view shows a detailed view of a selected region.

The overview window may indicate the location of the

selected region within the entire layout by a small box

or a point. This simple technique is very e�ective in

many situations. It allows one to view the entire struc-

ture as well as the detail at the region of interest. It

is much easier to navigate in such a system. The tech-

nique, however, does not integrate detail and context in

a single view.

An alternative to the above strategy is to distort the

layout to display both detail and context in a single

view. A number of techniques relying on this strategy

have been invented in last few years. Generally these

techniques allow users to specify some information item

of current interest, show the speci�ed item in detail,

and provide context by displaying the remaining items

in successively less detail. In the following section we

review two such techniques.

Related Research

In 1986, Furnas proposed the concept of a Fisheye

Lens [4]. In photography, a �sheye lens is a very wide-

angle lens. It shows the nearby regions in great detail

while showing surrounding regions in successively less

detail. The software analog to a �sheye lens shows local

detail and global context in one view. In 1992, Sarkar

and Brown provided a concrete graphical interpretation

to Fisheye Views by building a prototype browser for 2D

layouts [7]. The browser allows a user to specify a focal

point in a layout. It then expands the focal region, and

correspondingly contracts the other regions. Users can

browse a layout by clicking and dragging. The system

keeps enlarging the regions near the foci in real time.

It animates the display smoothly as the user changes

focus.

A �sheye view allows visualization of a large layout in a

single view. It smoothly integrates detail and context.

1

Figure 1: A graph layout with 134 nodes and 338 links. The nodes represent major cities in the United States and

the links represent paths between neighboring cities.

Users are allowed to control the degree of distortion.

The technique however has several drawbacks. A focus

is always a point or a single information item; the system

cannot treat an arbitrary region or an arbitrary set of

information items as the focus. More importantly, users

are not allowed to control the amount of space allocated

to the focus. The system indirectly infers this from a

speci�ed distortion factor.

In 1991, Mackinlay, Robertson and Card developed a

technique called the Perspective Wall for viewing large

information bases ordered along a single dimension [6].

Typical examples of such informationare project records

ordered by chronology and directory entries ordered al-

phabetically. Because their lengths are much larger than

their widths, such structures result in 2D layouts of wide

aspect ratios. Their technique folds a 2D layout into a

3D wall. The wall has a panel in the center for view-

ing details, and two perspective panels on either side for

viewing context. The speci�ed item of interest is always

moved to the center panel where the user can view it in

detail.

Perspective Wall displays the entire layout in a single

view. It shows detail and preserves relative distances at

the focus and integrates the detail smoothly with the

rest of the layout. It also solves the problem of ine�-

cient utilization of screen space resulting from the wide

aspect ratios. The technique, however, can deal only

with information bases ordered along a single dimen-

sion. We have developed techniques similar in spirit to

the Perspective Wall for dealing with arbitrary 2D lay-

outs.

Desirable Features

After studying existing techniques and experimenting

with several layouts, we feel the following features are

very desirable for techniques that allow visualization of

large layouts within limited display areas. Our stretch-

ing technique o�ers all of these features to a reasonable

degree.

Allow exact speci�cation of focus: Users like to be

able to pick the exact items of interest. In the case of a

graphical layout, we would like to specify the size, shape

and location of focal regions. Ideally, the shape could be

any arbitrary closed region, such as a country's border.

Arbitrary convex polygonal regions provide reasonably

good approximations.

Provide uniform scaling at focus: Uniform scal-

ing preserves angles, proportionality in distances, and

parallelism between lines. Certain types of information

becomes useless if these properties are not preserved,

for example road maps, and
oor plans. For layouts

in which connectivity is the only important property,

Figure 2: A view of the layout in Figure 1 after it has been stretched orthogonally to view details at St. Louis and

Salt Lake City. The straight lines on the layout are the handles used to stretch the layout.

however, uniform scaling is not as important and may

arti�cially constrain the user. A good solution should

allow both uniform and non-uniform scaling of focus.

Show context: The display should preserve context

around the focus. It is desirable that the user can always

see the global structure of the layout.

Integrate focus and context: The level of detail

should be a smooth function of distance from the fo-

cus. This provides a smooth integration of the focus

and its context.

Allow precise space allocation: The user should be

able to directly control the amount of space allocated

to the focus. This allows the user to enlarge the focus

until the required level of detail is achieved.

Multiple foci: The user may want to simultaneously

view two or more distant regions of a layout, while pre-

serving the information between and surrounding them.

Therefore a complete visualization system should allow

multiple foci.

Preserve overall shape: Maintaining the overall

shape of the layout reduces the disorienting e�ect due

to the introduced distortion. Eades, Lai, Misue and

Sugiyama [3], mention three primary properties which

should be preserved by transformations in order to pre-

serve the user's \mental map" of the layout. The proper-

ties are orthogonal ordering , clusters and topology . Or-

thogonal ordering can be simply thought of as the \com-

pass direction" between two points. Consider points p

and q in a layout. If p is northeast of q in the undis-

torted view, the distorted view should preserve this rela-

tionship. Clustering requires that points which are close

together in the normal view should also be close together

in the distorted view. The topology requirement is that

the transformation from undistorted to distorted view

is a homeomorphism, in particular, the inside of each

closed continuous curve is mapped to the inside of a

closed continuous curve. These properties are more rig-

orously de�ned in the above paper.

Allow editing: It would be a signi�cant advantage to

be able to edit a region when it is enlarged. Many of the

problems with large layouts involve losing context not

only while viewing, but also while making changes to it.

It may be enough to provide editing capability only at

the focus, but it would be better to be able to edit the

entire layout in its distorted view.

Stretching Techniques

We experimented with two techniques. Both techniques

use the same metaphor of rubber sheet stretching, but

employ di�erent shapes of handles and di�erent styles

Figure 3: Another view of the layout in Figure 1 after it has been stretched with two rectangular handles shown

around St. Louis and Salt Lake City. Compare this with Figure 2.

of stretching. The �rst technique allows only orthogo-

nal stretching by long horizontal and vertical bar han-

dles which span the entire layout. The second tech-

nique employs polygonal handles, and allows selection

and stretching of polygonal regions. We have decided to

describe both techniques, concentrating mostly on the

later, because each has its own merits, and neither is

subsumed by the other. Readers can �nd more detailed

description of the former technique in [8].

Orthogonal Stretching

Figures 1 and 2 together illustrate the orthogonal

stretching technique. Figure 1 shows a large graph lay-

out with 134 nodes and 338 links. The nodes represent

the major US cities, and the links represent the routes

connecting the cities. Figure 2 shows a stretched ver-

sion of this layout. It shows four horizontal and four

vertical lines placed on top of the layout. These lines

are the handles used to stretch the screen. These are

called bar handles (to contrast them with the polygonal

handles described in the following section). As a bar

handle is placed on the screen and pulled, the screen

expands on one side and contracts on the other. The

system automatically scales up the layout uniformly in

the expanded region, and scales it down uniformly in the

contracted region. The regions are also shaded to re
ect

their stretch factors. In the resulting view the user can

clearly read the information associated with St. Louis

and Salt Lake City.

Each region of the screen is surrounded by four handles,

two horizontal, and two vertical. Associated with each

such region are a horizontal stretch factor and a vertical

stretch factor . The horizontal stretch factor is the ratio

of the stretched width to the original width of the region;

vertical stretch factor is de�ned similarly. Each point in

the region is mapped to a stretched point by scaling

operations using the stretch factors as scale factors.

The technique provides clamps to preserve and view

multiple enlarged regions. A horizontal handle and a

vertical handle can be clamped together at their inter-

secting point. Conceptually, clamping can be thought

of as driving a nail through the handles for the pur-

pose of joining them. Figure 2 shows four clamps at

the four handle-intersections around St. Louis. These

clamps cordon o� the region containing St. Louis pre-

venting further expansion or contraction.

Orthogonal stretching allows users to pick a rectangular

region and to allocate space to it interactively. It allows

multiple foci, provides uniform scaling at foci, preserves

orthogonal ordering of points, and allows editing.

Some undesirable features of orthogonal stretching are

also apparent in Figure 2. For example, there is no way

p

r =
P . L

||L|| 2

d =
P . perpendicular(L)

||L ||

L

L’

P

P’

d

r L

r L’

|| ||

||||

d

source layout destination layout

p’

Figure 4: Mapping source point p to destination point p0 using the single vector-pair (L;L0)

to enlarge a single region without a�ecting an entire

row or column of regions. In Figure 2, the node labeled

Thunder Bay was also enlarged in the horizontal direc-

tion although we intended to enlarge only St. Louis. The

technique also doesn't enlarge the regions near the fo-

cus automatically. The nearby regions are left just as

small as the remote regions. This is because the tech-

nique scales all the regions outside the focus uniformly.

It is possible to enlarge the nearby regions by placing

additional handles. But it would be better to have it

done automatically. A big disadvantage of orthogonal

stretching is that there are discontinuities in the scale

factor at the region boundaries. As a result it fails to in-

tegrate the individual regions smoothly into a coherent

layout. We have developed the technique described in

the following sections to overcome some of these prob-

lems.

Polygonal Stretching

This technique allows the user to specify a polygonal

region as focus. User can specify the region either by

explicitly drawing a polygon, or by specifying a set of

information items. In the latter case the system can

generate a rectangle by computing the bounding box or

a convex polygon by computing the convex hull. The

polygon acts as the handle for stretching. Enlarging the

polygon enlarges the region inside it. The system scales

the part of the layout inside the handle, and adjusts the

rest of the layout to integrate it smoothly with the en-

larged portion. Figure 3 shows the result. It shows a

version of the graph layout in Figure 1 stretched with

two rectangular handles. Compare this �gure with Fig-

ure 2.

The algorithm for transforming a source layout to a

stretched layout (henceforth called destination layout)

is based on a technique used by Beier and Neely for

image transformation [1]. A single pair of vectors, one

corresponding to the source layout and another corre-

sponding to the destination layout, de�nes a mapping

between the two layouts. This can be extended to multi-

ple pairs of vectors by weighting the pairs based on their

length and distance from the source points. We generate

vector pairs from the handles, and use the multiple-pair

algorithm to transform our layouts. First we review the

single-pair algorithm.

Mapping with Single Vector-Pair

Figure 4 illustrates the technique for mapping a source

point p to a destination point p0 using a single pair of

vectors (L;L0). The box on the left represents the source

layout, and the box on the right represents the destina-

tion. The vectors L and L0 have been placed in their

respective layouts. The vector P in the source is the

vector from the tail of L to p. The vector P0 is de�ned

similarly. We derive P0 using the following equation:

P0 =
P � L

kLk
2
L0 +

P � perpendicular(L)

kLk

perpendicular(L0)

kL0k

where the function perpendicular(L) returns a vector

which is of the same magnitude as L, but perpendicu-

lar to L. (There are two perpendicular vectors, at angles

+90o and �90o. Either of them can be used as long as it

is used consistently throughout.) The fraction r = P�L
kLk

2

is the length of the projection of P on L normalized by

the length of L. The fraction d =
P�perpendicular(L)

kLk

is the unnormalized length of the projection of P on

perpendicular(L).

It is possible to translate and rotate points using a single

pair of vectors. All the transformations expressible by a

single pair of vectors are a�ne, but not all a�ne trans-

formations are expressible. Scaling is possible along the

direction of the vectors, but it is not possible to specify

uniform scaling and shearing. At least two pairs of vec-

tors are required to specify uniform scaling. Mapping

source vectors

destination vectors

source rectangular handle

destination rectangular handle

Figure 5: The source and destination of a rectangle han-

dle, and its corresponding vector-pairs

with multiple pairs of vectors is discussed next.

Mapping with Multiple Vector-Pairs

Our system allows multiple handles to be used simul-

taneously, and each handle may contribute more than

one pair of vectors. We therefore need the multiple-pair

algorithm to transform our layout.

Suppose we want to map p to p0 with n pairs of vec-

tors (Li;Li
0); i = 1; 2; : : :; n. A pair (Li;Li

0), for some

i, contributes a displacement of (Pi
0 � P) to p. The

combined displacement for p is computed by taking a

weighted sum of these displacements, and dividing by

the sum of the weights. The weight of the pair (Li;Li
0)

depends on the length of Li and the distance of p from

Li according to the following function:

P0 = P+

Pn

i=1
kLik

a

(distance(p;Li))
b (Pi

0 �P)

Pn

i=1
kLik

a

(distance(p;Li))
b

where distance(p;Li) returns the distance from p to

Li. The fraction
kLik

a

(distance(p;Li))
b is the weight of the

pair (Li;Li
0), where a and b are two constants. When

distance(p;Li) = 0 for some i, we use only the displace-

ment contributed by (Li;Li
0), and ignore the contribu-

tions of the others.

Implementing Polygonal Handles

A polygonal handle with k sides is implemented by k

pairs of vectors. Each side of the initial polygon con-

tributes a source vector, while each side of the stretched

polygon contributes a destination vector. The length

and the direction of the vector are derived from the

length and the slope of the side respectively. Figure 5

shows how rectangular handles are implemented. A cir-

cular handle is approximated by a sixteen sided polygon.

Mapping Algorithms

We use a set four vectors to de�ne a border for our

layouts. Each side of the border contributes a pair of

vectors. The source and the destination vector within

each pair are identical. This implies that the destination

border coincides with the source border. If the border

vectors are given enough weight, no portion of the des-

tination layout will go outside the border.

Mapping Points

The algorithm to map a source point p to a destination

point is shown below as the procedure mapPoint(). If p

falls in a region enclosed by a handle, it is mapped by

the enclosing handle alone. This ensures that the part

of the layout inside a handle are not a�ected by other

handles. Each handle class is responsible for implement-

ing its own mapPoint() method. The rectangular and

the circular handles scale the region inside themselves,

so their mapPoint() methods perform a linear scale op-

eration.

The algorithm enhances the weight of the border by a

factor approximately equal to the number of handles

kHk to prevent the destination layout from going out

of the border. This however does not provide a guar-

antee. An extremely high degree of stretching may still

cause the layout to go outside the border. This prob-

lem is solved by recomputing the world-to-window map

as explained later in the algorithm for transforming the

entire layout.

proc mapPoint(Point p, HandleSet border, HandleSet H,

Float a, Float b)

begin

foreach (h 2 H) do

if (h.encloses(p))

return h.mapPoint(p; a; b);

endif

endfor

dispSum = (0; 0);

weightSum = 0;

H.contribute(p; a; b; disp; weight);

dispSum = dispSum + disp �weight;

weightSum = weightSum +weight;

border.contribute(p; a; b; disp; weight);

dispSum = dispSum + disp �weight � (1 + kHk);

weightSum = weightSum +weight �(1 + kHk);

return (p + dispSum
weightSum

);

endproc

Mapping Handles

We allow the simultaneous presence of multiple handles.

Stretching one handle doesn't alter the size of the other

handles, but it may cause the other handles to move.

Such incremental displacements of the other handles due

to the stretching of the currently selected handle are

computed by the procedure mapHandle() shown below.

Each handle saves its last most recently used destination

vectors. When a handle is stretched, its current destina-

tion vectors and last most recently used destination vec-

tors are used to compute the incremental displacements.

The method contributeIncrement() computes the contri-

bution of the stretched handle towards the incremental

displacements. The algorithm computes the displace-

ment of the center of each of the other handles and

translate the handles by the computed displacements.

If a handle lacks a well de�ned center, we can compute

the displacement of each of its vertices and use the av-

erage of these displacements as the displacement for the

entire handle.

proc mapHandles (HandleSet border, HandleSet H,

StretchedHandle s, Float a, Float b)

begin

foreach (h 2 H) do

if (h 6= s)

dispSum = (0; 0);

weightSum = 0;

s.contributeIncrement(h.center, a; b; disp; weight);

dispSum = dispSum + disp �weight;

weightSum = weightSum +weight;

border.contribute(h.center, a; b; disp; weight);

dispSum = dispSum + disp �weight � (1 + kHk);

weightSum = weightSum +weight � (1 + kHk);

h:translate (dispSum

weightSum
);

endif

endfor

endproc

Mapping Entire Layout

The entire layout is mapped by transforming each of its

nodes and links. Nodes and links compute their trans-

formations by mapping the required number of source

points by using themapPoint() procedure. For example,

in our current implementation a rectangular node maps

itself by mapping points at its northwest and southeast

corners.

A layout is speci�ed in world coordinates, and we main-

tain the usual world-to-window map in a canvas object

to render the layout on a window. The bounding box

of the layout constitutes the world. The variable c of

type Canvas in the procedure mapLayout() below main-

tains the world-to-window map. Straight forward ap-

plication of the multiple-vector-pair algorithm does not

guarantee that the bounding box of the entire layout

will remain constant in size. In fact under a high de-

gree of stretching the bounding box of the transformed

layout may become signi�cantly larger. It may also be-

come smaller if handles are used to contract the layout.

In procedure mapLayout(), the method transform() in-

vokes the straightforward multiple-vector-pair mapping

algorithm. The resulting bounding box of the layout

becomes the new world for the canvas. Users however

prefer that the size of the handles remain una�ected by

the change in the world-to-window map. We therefore

scale back the handles to their previous size. Scaling ne-

cessitates reapplication of the transform() method, and

so on. This process is repeated till the size of bounding

box is within acceptable range.

proc mapLayout(HandleSet border, HandleSet H,

Float a, Float b, Layout l, Canvas c)

begin

repeat

l.transform(border, H, a, b);

if (l.bbox > c.world or l.bbox � c.world)

sizeOkay := false;

s1 := c.scale;

c.setWorld(l.bbox);

s2 := c.scale;

foreach (h 2 H) do

h:scale(s1
s2
);

endfor

else

sizeOkay := true

endif

until(sizeOkay = true)

endProc

Inverse Mapping

Providing editing in the destination layouts necessitates

mapping destination points to source points. Our trans-

formation technique does not have a general inverse

mapping. We implemented inverse mapping function for

regions inside rectangular and circular handles. Since

these handles map the source points inside them by scale

operations, we can compute the corresponding source

point for a given destination point by a scale operation.

We use this technique to allow editing in the focus re-

gions.

Placing new handles on the destination layout also re-

quires us to infer its corresponding source positions to

derive the source vectors. In this case, users pick a set of

information items in the destination layout. Since both

source and destination position and size of the informa-

tion items are known, the system computes the bound-

ing box (convex hull) of the selected items to generate

a rectangle (polygon) handle.

Figure 6: An outline of United States and some major highway routes. Small circles indicate cities.

Structured Layouts

Hierarchical abstraction is a useful technique for man-

aging and navigating through large volumes of informa-

tion [2]. It clusters related information nodes, and cre-

ates abstract higher level nodes to represent each cluster.

These higher level nodes are again clustered together to

create further higher level nodes.

We have integrated techniques of hierarchical decompo-

sition and stretching for viewing structured layouts. A

hierarchy can be represented by a tree. The root node

of the tree contains the most abstract information, and

leaf nodes contain the most concrete information. The

children of a node constitute the cluster represented by

that node.

The stretching allows the user to control the amount

of space allocated to any information node. Each node

computes the amount of detail displayed within itself.

The amount of detail is a function of the available space.

An internal node displays its children if there is su�cient

space to do so; otherwise it displays itself. Figures 6

and 7 demonstrate the e�ectiveness of this technique.

Figure 6 shows an outline of United States, and some

major highways. Associated with each state, such as

Colorado and Alabama, is an invisible bounding box

node. The children nodes of these bounding box nodes

are the city and highway information nodes. As the

user stretches the states of Colorado and Alabama,more

space gets allocated to the bounding boxes associated

them. The city names and highway numbers can now

be displayed. The highway routes have been drawn into

the state outlines using this technique with our own pro-

totype editor based on stretching.

We classify internal nodes into two categories, AND

nodes and OR nodes. An AND node displays its chil-

dren if all of its children can be displayed. An OR node

displays its children if at least one of its children can be

displayed. An OR node is useful when a user is inter-

ested in viewing a node in detail, but there is not enough

space in the window to display all of its siblings.

The algorithm for computing detail starts at the root of

each hierarchy. Each parent node decides if it is neces-

sary for its children to compute their detail. If a parent

node doesn't have enough space to be present in the

view, it is automatically inferred that its children are

not present in the view. This recursive top-down al-

gorithm requires the minimum number of mapPoint()

operations to transform a layout.

Speed of Transformations

Our focus in this paper is in viewing large and com-

plex layouts. It is therefore particularly important to

examine the speed of our algorithms in order to evalu-

ate the potential for real time response and for allowing

Figure 7: Stretched view of the outline of United States as in Figure 6. It now shows the city names and highway

numbers in Colorado and Alabama.

animation between transitions.

The entire transformation process has two stages, han-

dle mapping and layout mapping. Let m and n be the

number of handles, and the number of points which need

to be mapped in order to map the layout respectively.

Almost always m is very small compared to n. There-

fore mapping handles takes a negligible portion of the

total time required for one complete transformation.

In case of orthogonal stretching, the complexity of lay-

out mapping is O(n) simple scale operations. But in the

case of stretching with polygonal handles, layout map-

ping takes approximately O(nmk) single-vector-pair

mapping operations for each iteration in the mapLay-

out() procedure, where k is the average number of

vector-pairs per handle. We have veri�ed experimen-

tally that it is rarely necessary to perform more than

one iteration.

Our prototype viewer is implemented with C++, X,

andMotif. It runs on SparcStation-10/41GX with 32Mb

mainmemory and no special graphics hardware. During

our informal study, we observed that our viewer provides

real-time response for graph layouts of up to few hun-

dred nodes and a similar number of links. As expected,

viewing based orthogonal stretching is somewhat faster

than that based on polygonal stretching.

Evaluation of Techniques

We believe stretching has several advantages over the

existing techniques. It has an intuitive interface. It

can respond in real-time which facilitates smooth an-

imation during transitions between views. Stretching

with polygonal handles provides focal regions of arbi-

trary polygonal shapes. It also provides very smooth

integration of focus and context. On the other hand,

orthogonal stretching preserves orthogonal ordering of

points, a property not shared by polygonal stretching.

Both techniques allow multiple regions of interest, and

provide uniform-scaling at foci to preserve important

spatial properties for viewing maps,
oor plans and

other spatially sensitive layouts. Precise editing within

foci is also achieved by both.

Figure 8 provides a contrast between polygonal stretch-

ing and orthogonal stretching. Polygonal stretching re-

lies on the strategy of combining contributions from

many handles. This strategy produces good results

when the inter-handle distances are relatively large and

degrees of stretching relatively low. The middle view of

Figure 8 shows what happens when the degree of stretch-

ing is moderately high, and the distances between the

border handles and the rectangle handle are moderately

low. The nodes 1,5 and 8,5 have become extremely

small. Further stretching of the rectangle handle will

reduce their sizes to zero, and may eventually cause

Figure 8: A symmetric layout, its view stretched with

a rectangle handle and its view stretched with four bar

handles. Orthogonal stretching can stretch to any de-

gree without destroying order and symmetry.

their nodes to change relative orders along X and Y

dimensions. Our prototype however does not allow the

user to stretch handles to a degree which may cause any

node size to become zero. Contrast this with the lower

most view in the same Figure. It shows that orthogonal

stretching does not have such anomalous behavior, the

user can stretch node 5,5 to any degree without destroy-

ing the orthogonal ordering of the points.

Figure 8 also illustrates how orthogonal stretching can

preserve symmetry in certain layouts, no matter how

much stretching is applied. This suggests that orthog-

onal stretching may be very appropriate for layouts

with nodes arranged in rows and columns such as in

Spread Sheets,
oor plans, and circuit layouts. Orthog-

onal stretching also has a general inverse mapping func-

tion which allows unrestricted editing capability. These

properties make orthogonal stretching the more robust

of the two techniques.

Future Work

Even though orthogonal stretching is more robust,

polygonal stretching provides smoother integration of

detail and context. It would be nice to be able to �nd a

technique which is both robust, and provides smooth in-

tegration. Considering only one dimension, the problem

can be stated as follows: �nd a shape-preserving higher

order continuous curve passing through 4 + 2(n � 1)

arbitrary points, and having arbitrary derivatives at

2 + 2(n � 1) arbitrary points, where n � 1. Here n is

the number of polygonal handles, and we assume there

is at least one handle on the screen. The values of

the derivatives provide the scale factors at the handle

boundaries. Figure 9 illustrates the problem for a sin-

gle handle. Piece-wise curves such splines as discussed

in [5] are not appropriate here because change in two

control points and derivatives at two points of a spline

(corresponding to a change in position and size of one

handle) a�ects the spline only locally. We need a global

change in the curve for global space adjustments and

achieve smooth integration of the entire layout.

Orthogonal stretching achieves such global adjustment.

It e�ectively uses piece-wise linear curves (line seg-

ments) with discontinuities at join points. Each region

is therefore uniformly scaled with discontinuities at the

region boundaries. This discontinuous curve is however

monotone, and therefore preserves order of points.

As another important improvement to our technique, we

would like to allow overlapping handles, so that users

can enlarge a region which is itself inside another en-

larged region. Currently, polygonal handles are not al-

lowed to overlap with each other.

?

initial handle
st

re
tc

he
d

ha
nd

le

Figure 9: Mapping source layout to destination lay-

out entails determination of smooth curve through given

points and having given derivatives at given points.

Finally, we would like to perform user studies to deter-

mine if these techniques indeed result in improved user

performance. The studies could be performed with a

MacDraw like drawing program, giving the users spe-

ci�c goals for creating and editing drawings, as well as

locating various features within the drawing.

Conclusions

We believe that stretching can �nd several possible real

world applications. As mentioned earlier, this technique

lends itself well to visualizing architectural plans and ge-

ographic maps. Figure 7, where we stretched Colorado

and Alabama to look at the cities and highways, demon-

strates one possible scenario. Further zooming might

eventually lead one to one's own street and home. Infor-

mation kiosks, navigation systems, VLSI circuit design

tools may all �nd applications for this technique.

Acknowledgements

The authors would like to thank the UIST'93 review-

ers for suggesting many improvements to the techni-

cal aspects as well as the presentation of this paper.

Support for this research was provided by NSF grants

CCR9111507 and CCR9113226, by ARPA order 8225

and by ONR grant N00014-91-J-4052.

References

[1] Thaddeus Beier, and Shawn Neely. Feature-based

image metamorphosis. Proc. ACM SIGGRAPH,

Published as Computer Graphics, vol. 26, no. 2, pp.

35|41, 1992.

[2] Stuart K. Card, George G. Robertson, and Jock D.

Mackinlay. The Information Visualizer, an informa-

tion workspace. Proc. ACM SIGCHI Conf. on Hu-

man Factors in Computing Systems, pp. 189|194,

1991.

[3] Peter Eades, Wei Lai, Kazuo Misue, and Kozo

Sugiyama. Preserving the mental map of a dia-

gram. Research Report IIAS|RR|91|16E, In-

ternational Institute for Advanced Study of Social

Information Science, Fujitsu Laboratories Limited,

1991.

[4] George W. Furnas. Generalized �sheye views. Proc.

ACM SIGCHI Conf. on Human Factors in Comput-

ing Systems, pp. 16|23, 1986.

[5] T. N. T. Goodman, and K. Unsworth. Shape-

preserving interpolation by parametrically de�ned

curves. SIAM J. Numerical Analysis, vol. 25, no.

6, pp. 1453|1465, December, 1988.

[6] Jock D. Mackinlay, George G. Robertson, and Stuart

K. Card. The perspective wall: Detail and context

smoothly integrated. Proc. ACM SIGCHI Conf. on

Human Factors in Computing Systems, pp. 173|

179, 1991.

[7] Manojit Sarkar, and Marc H. Brown. Graphical

Fisheye Views of Graphs. Proc. ACM SIGCHI Conf.

on Human Factors in Computing Systems, pp. 83|

91, 1992.

[8] Manojit Sarkar, and Steven P. Reiss. Manipulating

Screen Space with StretchTools: Visualizing Large

Structure on Small Screen. Technical Report CS|

92|42, Department of Computer Science, Brown

University, Providence, RI 02912, USA, 1992.

