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WHAT IS THE TYPICAL NILPOTENT LIE ALGEBRA?

Bugene M. Luke

1. Intreducticon

We must remark at the outset that we shall not attempt an
exact definition of 'typical' much less a precise answer to the
title question. Rather we shall describe some computer assisted
studies of what may be thought of as 'random samples’ of nilpo-
tent Lie algebras. The motivation for these efforts was evidence
that some counterexamples should, if they exist at all, be quite
abundant. In fact, it is suggested that the use of the computer
searches would have facilitated the answers to questions on the
existence of a number of interesting classes of algebras.
Actually, the answers, where they had already been found, had
required laborious hand computations and considerable time.

We discuss nilpotent Lie algebras (Section 4) and, separately,
the subclaas of metabelian Lie algebras {Section 3). In each
instance we describe a procedure which, in some sense, corresponds
to the choice of a random algebra. Since there does not appear
to be a natural probability measure to assign to these classes,
we are guided somewhat by intuition in establishing the sampling
process. We neither insist nor desire that all algebras be chesen
with equal likelihood, only that, theoretically, nore are specifi-
cally excluded. For this purpose, we describe certaln subvarie-
ties of the variety Lie(X) of Lie multiplications on a vector
space X (see, for example, [10]). These subvarieties cut across

all relevant isomorphism classes. However, unlike the full variety,
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their structure is suggestive of a selection procedure.

It is no surprise, in each instance, that the procedure
turns out to be prejudiced in favor of the points in Lie(X) which
give rise to the smallest derivation algebras, for having many
independent derivations is an algebraic condition on the coordi-
nates of the point. Indeed, this observation inspired both the
nilpotent and metabelian studies since, in each case, we wanted

to uncover algebras with 'few' derivationms.

2, Notations and Preliminaries

For a Lie algebra, L, we denote by Der(L) the derivation
algebra of L. If L has integral structure constants we often
consider the algebra, Lp’ obtained by passing to the finite field
ZP. Since the rank of the system of linear equations satisfied
by derivations cannot increase upon passage modulo p we have the

elementary but quite useful

Proposition 2.1. dim(Der(L)) < dim(Der(Lp)).

Typically, we need to compute bases of derivation algebras and
80 we restrict our attention to algebras with integral structure
constants. However, we still face computational difficulties
since the integral row reduction procedures are very slow and
they may lead to integer overflows on the computer. If we pass
to Z these problems are eliminated. Fortunately, it is often
the case that we can already find dim(Der(Lp)) independent de-
rivations of L, either by inspection of L itself or by pulling
back elements of Der(Lp). In such instances the proposition
assures that these derivations are a basis of Der(L).

All vector spaces and algebras are assumed to be finite
dimensional. Unless otherwise indicated V@ W, for subspaces
V, W of an algebra, shall denote the direct sum as vector spaces.
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3.
3.1 Computing Devivations

In this sectlon we describe a particularly effective alporithm

Metabelian Lie Algebras

for computing the derivations of metabelian Lie alpebras. It makes
strong use of the known structure of the derivation algebras and
allowa one co deal with larger algebras than would be otherwize
tractable.

if L is a metabelian Lie algebra {i.e., L3 =0) aed U s any
linear complement fn L of che derived algebra, then L = U@V where
Ve L2 o and the muleipltication in L is determined by the map
u: U A8 + ¥V guch that u(ula\ uz) - h‘l .uE]. Thers is an injec-
tion
Bom(0,¥) -5 Dercu)

in which 1(£){u) = f(u} for u e U and L{E}{(V) = 0. The image of
1 18 an abelian ideal in Der{L} over which Der{L) aplits. Namely

(3.1} Der{l) = D:rUIL) & 1 (Hom{u,¥))

in which we have denoted by ﬁeru{L) the pubalgebra of derivations
which stabilize U. Thus we only nesd to compute the elements

of Hom(U,U) which extend to derivativns of L. For this purpose,
we fix bases {ul'"z"'*'“m}' {vl‘ué""*“n} of U,V, respectively.
The multiplication p 1s represemted by n skew-symetric m * @
metrices, Ak - [A:j}, k=1,2,...,n, where

u(uir\. ll;j) = ﬁ A;tj\rki
We let A demote the linear spen of Al.A2.++,,A“. Let 7 ¢ Hom(U,U)
and suppose T 1% the matrix of T relative to [ui}. Then as noted
in |6, Proposition 4.7], t extends to a derivation of L if gad

only Lf A is stabilized by the map

{3.2) X+ TK + ¥x1°.
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The next step is to translate into some computable form the
condition that a subspace is stabilized. One procedure is to
choose a reasonable complement to A within the space, Sk, of

all m ¥ m skew-symmetric matrices and express the linear con-
dition that TAi + AiTt have no component within that complement.
For this purpose, we use the Killing form <,> of the natural
representation of gl(m), f.e., <X,Y> = tr(XY). We assume hence-
forth that the characteristic of the base field is different from
2. This assures, in particular, that the restriction of <,> to
Sk is non-degenerate. Let B denote the orthogonal complement

of A in Sk relative to <,>. Then, for A e A, TA + ATt ¢ A if

and only if <TA +_ATt, B> = 0. However, for A,B ¢ Sk,

<TA + AT",B> = tr(TAB) + tr(AT'B) = tr(TAB) + tr(BTA) = 2tr(TAB)=
2<T,AB>., Hence A is stabilized by the map (3.2) if and only if
<T,AB> = 0 for A ¢ A, B ¢ B. We have

Proposition 3.1 Suppose L, U, A, B=A' n Sk are as above. Then

(AB)l 1s a subalgebra of gl(m) isomorphic to DerU(L) (where L

denotes the orthogonal complement in gl(m) relative to <,>).

Thus, given structure constants (Al;j) of the metabelian Lie
algebra L, the computation of Der(L) involves two steps:

m
(I) Compute a basis 31’32’.“’3(2)—11 of B. This involves

solving a system of n homogeneous linear equations in
(;‘) unknowns (the coefficients being, e.g., the above-
diagonal entries of the Ai).

(11) Compute a basis of (span {AiBj})JL This involves

solving n((;l)-n) equations in m2 unknowns .

Note that a direct computation of Der(L) would require
solving a system of (m;-n) (mtn) equations in (url-n)2 variables.
Even 1f one restricts one's attention to DerU(L), the deriva-
tions stabilizing U and V, direct computation involves solving
a system with m2+n2 unknowns.
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3.2 The 'Typical' Metabelian Lie Algebras

Before indicating the method for drawing an element at
random from the urn of metabelian Lie algebras, it is useful
to discuss what we were hoping to find therein.

Suppose L = U@V, A, B are as in Section 3,1. Since tr(IAB
= tr(AB) = 0 for Ac A, B e B, (AB)’L always contains the identity
matrix, I. From thie, or directly, one sees that the identity
map of U extends to a derivation of L. In [6] and [7] the author
and G. Leger considered the class of metabelian Lie algebras in
which this derivation actually spans DetU(L). We shall say
that L = U@V is of type I(m,n), where m = dim(U), n = dim(V),
(or, simply, of type I if it is not necessary to explicate m,n)
if dim(DerU(L)) = 1. One of the reasons that such algebras
appeared to be of interest is that their holomorphs seem to for-
get the multiplication of the algebra. Recall that the holo-
morph, Hol(L), of a Lie algebra, L, is the semi~direct sum
Der(L) + L. It is shown in [6] that Hol(L) for L of type I takes
a remarkably simple form. In particular,

Proposition 2.2 (Leger-Luks [6, Section 4]). If L1 and L2 are
both of type I(m,n) then Hol(Ll) 2 Hol(Lz).

This proposition provided the key to the resolution of the
question of whether nilpotent Lie algebras are determined by
their holomorphs. The problem had been suggested in [11] where
it was shown that the free nilpotent algebras are so determined.
However, examples are exhibited in (7] of two metabelian Lie
algebras over Q of type 1(6,4) which are non-isomorphic even
under extensions of the base field. We shall return to this
point in Section 3.3.

Initially, instances of metabelian Lie algebras of type I
did not seem to be easy to find. In retrospect, the problem
was that, because of the difficulties of hand computation, we
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tended to try algebras whose etrucewte constants were too simple
and these did not exhibit the righe properties. In faet, it now
appears that truly arbircary choices of algebras would fnvari=
ably uncover examples of type . To elaborate, we consider what
may be called the variecies of metabelian Lie multiplications.

We assume vecrcor spaceas U,V are fixed and set L = U V.
Denote by Meta(l,V) the variety of skew multiplications p on
L €or whieh w(L,L)=V¥ and p(V,L) = O. PFor such p, the corres—
ponding algebea, L 15 a mecabelian Li¢ algebra ang Lz' L’l2 & VE
{we do mot insisg zhe inclesion be an equality). Hheu the
spaces do not requite specification; we denote Meta(l,V) by
Meta{m,n) where m = dim(U}, o = dim{¥). MNote rhar Meba{#,V)
may be ddemtified with Hom\U A9, V) snd so Metm(m,n) 8 an affine
gpace of dimension {;}ﬂ.

By equatioo {3.1}, 1f o & Meta(m,n) then I iz not of type
Ilwm,n} if and omly if the Jdimension of Dﬂr{L ) exceeds L+ }n.

Since that is an slgebraic comdition om ¥, we have

Propogfcion 3.3. Suppose the base field is iufinite. If the
clasa of algebras of cype I{m,n} is non-empcy chen {y ¢ Hata(m.n]|
Lu ls of type T} L& Zariski-open and dense in Meta{m.n).

The propogition suggests, in effecc, chae if algebras of
type 1 exist, then they are almost all that exisc. Thus dome
randon pampling of elemencs of Meta(l,V) ought to elther rveveal
their existence or provide strong evidence for their nom-exisc=
ence. The compater isplemgntation of this admittedly imprecise
wacion wag irresistible,

Wow, Propositien 3.3 also guarautesze the existence and
dens;ty of ratiomally defined algebras of cype 1 iF they sver
appéar inm characteristdic 0. Hence we may, with confidence,
reutrict our attenclon to algebras with integral sfruckure con-

ttants a (see Section 3.1). Of course, it {3 wot immediately

13
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apparent how to select random integers. Furthermore, we know
that if they get too large, or even if they are small but m and
n are large, the row-reduction might "blow up". With this in
mind, we agree in advance that we shall be passing to Zp after
generating the algebra and hope that the remarks of Section 2
can be used to determine Der(L). Indeed Proposition 2.1 and
equation (3.1) yield

Proposition 3.4. Suppose L is a metabelian Lie algebra with

integral structure constants. Then, if Lp is of type I, so is L.

One expects further, that if p is very large, Lp is likely to be
of type I when L is. Thus, although ZP is finite and so the
probability of success each time 1s no longer 1, if algebras of
type T exist tgen we still ought to find them. Hence, we pick

our "random” A,
ij

This procedure was used to search for examples employing

from the urn: {0,1,...p-1}.

several primes up to 46337. (That limit was imposed to guarantee
that integral computations such as rs + t would not result in
numbers exceeding the single precision ceiling of 231). Before

reporting the result we remark that we already kuew:

Proposition 2.5 [6, Theorem 4.9], There are no algebras of

type I(m,n) unless

m=5 and 4 <n<é6
or
m2 6 and 3 <n < (2)-3.

The computer search has suggested:

Algebras of type I(m,n) do exist for (m,n) as above with
the exception of (6,3) and (6,12). (Values of m up to 15
were tried).

We remark that, although we have not succeeded in proving that
algebras of type 1(6,3) and I1(6,12) do not exist, the computer
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has glven us sowe confidence In ehe conjecture.

3.3 The Abundances of Nonlsoserphic Metabelion Lie Algebras With
Isomorphic Holomoephs '

It ig werth noting that the very exlscence uf algebras of
type I(m,n) ¢ould have suEficed to sstablish che existence of
nonisomorphic metabalian Lie algebras with laomorphic holomorphs.
For, by Propositions 3.1, 3.3, if metabelfan Lie alpebras were
detersingd by their holomocphs then the lsomogphism clase of amy
algebra of type 1(m,n} iz dence in Metaf{m,n). However, une sees
that, [or mose U,V, the isomorphist class of any @ ¢ Meta(y,V) =
Hom (UAR, ¥}, L.e., the orbit of u under the actiomn of

G = GLIU)} = GLLV)

cannot get that big. We assume, for the momen:t, that the base
Field is algehraically closed and of charscteriseic O, Then,
since the stabilicy group of & corresponding co o f{equivalently
{z e AutELm)I o) = U}) has dimension = diﬁ(herU{L}),

Eroposition 3.6, The dimension of the orbit of u is

@i 1? + (s ©F - dim(er, L)),
We remark that his propesition was suggested by results im
{4, eapecially Sectdon 7] where an equivalent formulaclon of
varieilies of metabelian Lie alpebras 1s presenced.
The proposition implies, in particular, that the isemorphizm
class of any u ¢ Metafm.,n) 1lies In a subveriety of dimension

gmz + nz = 1, Thus, by Proposiclon 3.3,

Copoilary 3.7. Suppose m2 + nz -1l = {';}n. Then, 1f cheve
exisc algebras of eype I{m,n}, there exist infinitely many non-
isomorphic algebras in Meta(w.,n) with the same holomorph.

How Lt 1z Lurther noted in [4, Theorem 7.8) thar, Ear the
values of {(m,n) given &n our Propositiom 3.5, the inequality of
che corollacy holds except when (w.n) = (5,4} or £5,6). One

interpretation, then, of this discussion Ls that: For many
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values of (m,n), if Zwo elements of Meta(m,n) are chosen at

random then

(1) With probability 1, they are nonisomorphic.
(11) With probability 1, their holomorphs are isomorphic.

In other words, holomorphs are particularly ineffective invariants

for metabelian Lie algebras.

We remark, finally, that in the exceptional cases (5,4) and
(5,6) algebras of type I(m,n) do exist. Two examples of algebras
of type 1(5,4) were given in [6, Section 4] which we originally
had hoped were nonisomorphic (they are monisomorphic over Q).

It is interesting that, although we have been unable to exhibit
the actual isomorphism, the fact that both have dense orbits
implies that they are necessarily isomorphic over C.

3.4 An Answer to a Question on the Existence of Dense Orbits

We conclude the discussion of metabelian Lie algebras with
a computer-inspired answer to a question of Gauger (see [4,
remark {1) on page 326]).

In the setting of the present paper, the question is whether
the existence of an element y whose orbit under GL(U) x GL(V)
is dense in Meta(U,V) implies that the total number of orbits
(i.e., isomorphism classes) is finite. A search for a counter-
example was inspired by the result [4, Theorem 7.10} that there
are an infinite number of isomorphism classes of algebras in
Meta(m,2) for m2 8. Can one, nevertheless, be dense?

Noting Proposition 3.6, we search for an element of Meta(U,V)
= Meta(m,2) with dim(DerU(L)) = m2 + 22 - (2)2 =m+ 4. Again,
a "random" choice ought to find such an element, if it exists.
For m = 8, the search was futile, but for m = 9, the computer
found one every time., With this assurance, we went on to look

for one with 'simple' structure constants. Yor example, the
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following w & Hom(l A UV} works:

ufu1 M.Iz) u{u3 hu.,‘.’J - ufus » uﬁ.'l = uluy A ua]' =y

u(ul A ug} = ”‘“z A uij = uiuﬁ ) u?j - ufuﬁ A us) v v,

with u{ui nuj) = for £ < §, otherwisse,

4. Wilporent Lie Algsbras
4.1 Generating 'Random' Algebras

We indicate, in this sectlonh, Che provedure for gewsration
of nilpotent Lie algebras. HRecall first that a nilpocent Lie
alpebra, T, of dimenslion v has a central composition zeries

LeWy=¥y

of ideals V., i.e., dim ¥, = n-4 and [Vi,L] c ¥ 44 Then Lfvi+l
1g & central extension of LSV 4 by 4 one-dizensiomal idesl and so
it is determined by L!VI and an wlement of Eszfvij, that is, a
Z=gocyla with trivial coefficientsa.

I e IV =
]

With the sbove in wind, we suppose now that

V2 ﬂ-vn:"v“__l c ... cvﬂ

is a fixed tower of vectar spaces wvith dim vi e — 1., Bet L = WQ
and denoce by Nilp{l) the vsriety of Lie mulcipiicacions u on L
for which u{Vl,L} < ?i+l'
in Nilp(V¥) i accomplished by choosing, for epch {, & multipli~
cation on Lf?i+1 which exrends that pravicusly determined on
Lfvi. Theae multiplications are determined by succesaive

Dur selectlon of an arbitrary poing

choices of 2-cocycles. Thus, at each stage, we chooge & 'randoa’
aolutien ¢o the aystem of linear homopenesus squations determined
by the cocycle condition. This is done by vow-reducing the

sygiem and assigning randoms valuea to the free vartables., (When

working over the integers, it may be necessary to mutiply the
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solution by an appropriate least common denominator to clear the
fractions in the bound variables).

Note that the selection, by chance, of a coboundary would
result in L/Vi+1 = (x)ﬂ)L/Vi (algebra direct sum) and we do not
specifically exclude the possiblity. However, it is known that,
for N nilpotent of dimension > 2, HZ(N) ¥ 0 (see e.g., [1]) and
so, if the base field is infinite, the selection of coboundaries
ought to occur with probabiiity 0. Indeed, except in the case
of small finite fields, coboundaries were never chosen, with
the result that the nilpotent L always had two generators. To
study, realistically,'the nilpotent algebras with

dim(L/1?) = ¢ > 2
one may specify the first r cocycle selections to be O,

We further comment that there are undoubtedly many other
important classes of algebras against which our procedure is
biased. For example, in dimensions > 7 we never seemed to find
algebras of maximal nilpotency index, dim L. However, even
though such multiplications form aﬁ open set in Nilp(V), the
result is not very surprising for there is evidence that these
lie in components of relatively small dimensions (see [12,
Introduction]).

Remark. We observe that the generation procedure can be gen—
eralized to select super-solvable algebras, i.e,, those having
composition series with one-dimensional quotients. The only
difference is that one does not assume the successive extensions
are central., Thus, given K = L/Vi, we first choose a random one~
dimensional representation, p, of K, that is, an element of
(K/Kz)*, and then a random element of ZZ(K,p).

4,2 Characteristically Nilpotent Lie Algebras

As in the metabelian case, we had some idea of the pro-
perties to expect in the typical nilpotent algebra although
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the situation is not quite so clear cut.

Now in [5], Jacobson showed that over a field of character-
istic 0, if a Lie algebra has a nonsingular derivation then it
is necessarily nilpotent. He then asked whether, in fact, every
nilpotent Lie algebra actually has a nonsingular derivation.

Quite to the contrary, it was found

Proposition 4.1 (Dixmier-Lister [2]). There exists an 8-
dimensional nilpotent Lie algebra with only nilpotent derivations.

Dixmier and Lister called algebras with this property
characteristically nilpotent and they remarked that the study
of these "might prove more tractable” than that of the larger
class of general nilpotent Lie algebras. The object of our
computer search was to see how large the subclass was. 1In
fact, because the typical algebra should have the fewest der-
ivations we expected to get characteristically nilpotent alge-
bras very often, at least in dimensions 2 7. (Morosov's classi-
fication (9] demonstrates that no characteristically nilpotent
Lie algebras exist in characteristic 0 through dimension 6. On
the other hand there is one of dimension 7 [3]). To be sure
having few derivations is not the same as having only nilpotent
derivations but there is evidence of some correlation between
the two properties. For example, any linear transformation of
L mapping L to L2 n Center (L) and L2 to 0 is a nilpotent derivation.
Indeed, Dixmier and Lister showed that the outer derivation alge-
bra of their example is already spanned by the images of such
derivations. This inspires their remark that the algebra "has
as few other derivations as possible." In a sense, the metabelian
situation lends further evidence. Of course, metabelian Lie
algebras cannot quite be characteristically nilpotent since, by
3. 0, Der(L) inherits a derivation which
induces the identity map on L/L2. However, by Proposition 3.3,

virtue of the relation L

the 'typical' metabelian Lie algebra comes as close to character-
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istic nilpotence as it cen get.

Thus motivated, we generaced nilpotent Lis algebras according
e the procedure in Section 6.1 and cosputed their devivation
algebras. The size of the algebras was limdted (we went to dimen-
slon 15} by the need to solve squations in (dim L}z unknewts for
the derivations. We Found A

The algabras of dimemaion = 8§ wers alumps charaoterdstieally
uilpatent.

(We comment on the dimension 7 case in Sectiom 4.4).

There wae no difflculty in werifying the anfilpotenve of all
derivations since the computed basis of the derivation algebea
wvas alweys strictly rrlangular with respect to the given basis
t+1,.aa.xn3 i a hasis of Vij of
L. PFor coaputational convenilence, once again, most of che alge=

{i.e., {xlp Hzfuu-pxn} Whlﬂrﬂ [x

bras wete generated over large finite fields., However, lrv was
reasonable, having confidence now in thetiy abundance, Lo ssek
characteristic 0 examples on the computer. Although we had to
take care now to plck enly *small' soluclons to the cocycle
equations, we often succeadsd. We prescot hers oue of the
computer generated examples: L hds basis {xl’ xl.e‘..xaf and
multiplicetion determined by

[xyexy] = %y = x, + %5 + %,
[xlwnsl - xﬁ 4 x5 - x6 - 17 - Ixa

Exl'“dl il P + g

[xysxgl = %, + %y

[xl 3 x& ]1

[31m17] = -1z,
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[xy,x3] = x5 = 2x, + x4

[xz,x4] = —3x6 - Zx7 + Xg

[xZ,xsl = xc +x,
[x,,x,] = -2xg

[xz,x7} = 2x8

[x3,x4] = Xg + Xy = 3x8

[x3’x5] = x8

with [xi,xj] = 0, for i < j, otherwise. To verify characteristic
nilpotence, it was not necessary to solve the system of deriva-
tion equations (in 64 variables) over Z. We found that dim(Der(LS))
= 10. It sufficed then to exhibit 10 independent and strictly tri-~
angular derivations of L. One sees easily that any linear trans-
formation t: (xl,xz) -+ (x6,x7,x8) extends to a derivation, ;, of

L with ;(XB) = [xl,t(xz)] - [xz,T(xl)] and ;YL3) = 0 (Note that
(x6,x7,x8) 1is the transporter of L to Center(L)). The space of
these is 6~dimensional and intersects the 7-dimensional space of
inner derivations in a 3-dimensional subspace. Therefore

dim (Der(L)) = 10 and L is characteristically nilpotent.

Note that, in one sense, the above 'typical' algebra does
not have as 'few' outer derivations as the Dixmier-Lister example
since the images of central derivations (i.e., derivations mapping
to Center(L)) do not already span the outer derivation algebra.
However, the Dixmier-Lister example has a derived algebra of co-
dimension 4 and, as we already remarked, our random searches
never produce such an example. This inspired a computer search
amongst those algebras with dim(L) = 8 and dim(L/Lz) = 4; and
this time the images of the central derivations did span the

outexr derivation algebras.
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4,3 Characteristically Rilpotent Derived Algebras

Dixmier and Lister also showed that their example answered
inm the negative the stronger guegtion of vhecher every nilpoteat
Lie algebra was a derived algebra of some [de algebta, They then
asked whether a characteriacically ailpetent Lie algubra can
ever be a derived algebra. With some effort we were able (ace
[B]} to constrwet by hand an LE-dimensional algebra with a lé-
dimengfional characteristically nilpotaent derived algebra. How=
evar, it seemed natural recently to ask the computer the quescion.

Again generating random examples, we Eound
he algebras of dimenston = 13 alvays had characterigtisily
ntlpobent derived alyebras,

Here foo, ir was possible to find exasmples in characteristic 0.
In fact, the followlng algebra iz en extension of the example in

Saction 4.2. The algebra, L, has basis {xl.xz,....xn} ana

meltiplication
R R T e T T I TR BT

;[xl,xgi - hﬁ + xs - KT Xy - 21:E * 2::,9 + 2::.1;i
[xyomgd = =xg = wg + Xy = Ay * Ryp = By " Ky F Ky
Iepamgl = %o + xgb mg + xy 0 #x;y - Ixyy + 2y

[xl,xﬁi = Xy + 519 - me !'“11 + Sﬁxu - 2860x%

13
hl*x]‘] - -2'::3 - Z:Q‘ - %y + Xy < 2312

[3pemg) = xg + %y * Xy * Xy

[xysmgl = myy + dupy + 19824

%[xl.xm] = qu + ir.u + lml:!
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[ 'illi - "5‘: - 5% 19
[2p%y1 = ~15%14
(Roomgl = =k = Zxg + xg g = Mg ¥ uy) I,y YKy,

ﬁﬁzsxﬁl = dw - Ixg + Ky * Zug = Sx Iil = 9y 4+

2441 Xqyq

[“3'151 - xﬁ A ’ET - xg + 311 - 2113

Exz.xﬁ] = -Zi + 52# - wx, + by #* 213: 9?803

11 13
[x2.37] = 2wy o+ oxyg + gy - X9 = gy

+ %, . +

[kyrxg] = = %0+ %)y + x5 - Ixyq

{xz.xgﬁ e T zﬂxlz - 1anx13

[xg.m o] = =40z, + 435x,,

[2g0%,) = 105,

[xgum,1 = w + 5y - Jug = Img # Dyt Gxy, ¥ 149x,
Il?ﬂilj

[33.351 = mg b omy ¥ xgn - Iy - Shey, + BiT6x .

[xajxﬁ! = -Zig &+ Kig ~ 51112 + 3372K13

[23,1?] = ng - 2;10 = llixn2 - lﬂé&xla

Ezaﬁxa] e + lﬂilz = 95x13

[xj,uql = 5“12 + 55213

1 = 250x

LIRS 13
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[x&,xsl - hg = Xy ¥ 5113 + ?6:(‘12 - 2047x, .
[ayemg] = %)y = 43wy, + 1847x,,
[ﬁ&.ﬁ?] i-"mn * 4&:12 - ﬁ?xn
[!ﬁ'xB] = -‘125.:13
[xﬁ,xgl - = ?5-;:13
Exs,xﬁl = 5:‘12 - 129&:13
[155-37] - Q{Rlz o g.'lﬂ‘;ltls
[!5:1!&] - - 753‘13
!16:3?1 = 1-50313
with ,Exi.nj] = for 1 ¢ {, ocherwise. Agesin, making uae of
Proposicion 2.1, we detecained chag diu(mfﬁ.g}} = 2} and then
managed ro fdentify 27 Independenc, atricely criangular elements

of Dar (I.'z} .

4.4 The Hilpotent Lie Algebras of Dimension 7

The compucer never found a characteristically nilpotent
Lie algebra of dimensioa 7 even though 4. Favre [3] had shown
that one exlsts. However, llks Favee's emampla the generated
algebras did have depivetion algebras of dimension 10, One
gsuspecte then that there sre "characterietically nilpotent points™
wirhin che open et of moitlplications ylelding minimal derivation
alpgebyas but guch points do not thewselves Fore am open Bset.
Furthersore, this zoggescs that 1t ought to be possible to deform
the characteriscically nilpocent exanple Eo nom—charactoristi~
cally nilpotent onea. Indeed, we find the following family, I..t.
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of nilpotent Lie algebras on the 7~dimension space with basis
{xl,xz,...,x7}: The multiplication in Lt is given by

for 2 <1 <6

[epoxgd = x4

[x3,x4] = X,

(x,x,1 = x¢ + tx,

[34,x2] = x, + tx,

[xs,xz} = (t+l) X,

[xi,xj] =0 for 1 +'3 > 7,

The algebra L0 is Favre's example which is characteristically

nilpotent. However, in general, Lt has the derivation Gt where

_ 2
Gt(xl) 4t Xy + 2x2

. 2 ;
Gt(xz) 8t x, + (6t+2)x3 - (5t+1)x4

- 2 -
Gt(x3) 12¢ Xy + (6t+2)x4 (5c+1)xS

- 2 -
St(x4) = 16t x, + (4t+2)x5 (5t+3)x6
_ 2
at(xs) = 20t Xq + (2::+2)x6 - (5t+5)x7
5 (x,) = 2462
t\g 6

2
Gt(x7) 28t7x,.
Thus Lt is not characteristically nilpotent for t # 0.
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