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Abstract

We announce methods for e�cient management

of solvable matrix groups over �nite �elds. We

show that solvability and nilpotence can be tested in

polynomial-time. Such e�ciency seems unlikely for

membership-testing, which subsumes the discrete-log

problem. However, assuming that the primes in jGj
(other than the �eld characteristic) are polynomially-

bounded, membership-testing and many other computa-

tional problems are in polynomial time. These problems

include �nding stabilizers of vectors and of subspaces

and �nding centralizers and intersections of subgroups.

An application to solvable permutation groups puts the

problem of �nding normalizers of subgroups into poly-

nomial time. Some of the results carry over directly to

�nite matrix groups over algebraic number �elds; thus,

testing solvability is in polynomial time, as is testing

membership and �nding Sylow subgroups.

1 Introduction

Over the past 30 years, Computational Group Theory
has matured into a fertile and valuable discipline (see
[Le], [Ca], [At], [Sc]). Within it, the most developed
subdomain has been that of permutation groups, the

apparent reason being that a small set of generating
permutations can designate a very large group. How-
ever, that observation would be useless without meth-
ods for dealing e�ectively with the groups that one can
specify.
Such methods exist. Fundamental is a technique �rst

proposed by Sims in the 1960's (see, e.g., [Si]). Suppose
G � Sym(
), the group of all permutations of 
 =
f!1; : : : ; !ng. For 1 � i � n, let G(i) be the subgroup
of G that �xes each of !1; : : : ; !i�1 (G(1) = G). Then
f!1; : : : ; !mg is called a base for G if G(m+1) = 1. The
tower of subgroups

G = G(1) � G(2) � � � � � G(m+1) = 1

underlies almost all practical algorithms. However, to

make use of it, one needs to obtain generators for every
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G(i). Fortunately, there is a classical method of Schreier
(see [Ha]) that constructs generators for the subgroup
G(i+1) � G(i) given generators for G(i) together with
a complete set, Ti, of right coset representatives for
G(i+1) in G(i).

To appreciate the e�ectiveness of the tower, note,
for example, that testing membership in G = G(1) of a
permutation s reduces to testing membership in G(2) of
st�1, where t 2 T1 is uniquely determined by !t1 = !s1.

Critical to the implementations of this, and the myr-
iad practical procedures that utilize the tower, is that
the indices jG(i) :G(i+1)j are \small" (jG(i) :G(i+1)j �
n); for example, Schreier generation demands con-
sideration of the full Ti. This is also essential for
polynomial-time computation in permutation groups.
In fact, in 1980, Furst, Hopcroft and Luks [FHL]
showed that a variant of Sims's method runs in polyno-
mial time. That result inaugurated the now-substantial
polynomial-time library for permutation groups (see
[KL] for a summary).

In stark contrast to the permutation-group progress
is the underdeveloped status of computation for ma-
trix groups over �nite �elds. The matrix setting could
be more desirable and more natural for representing
and applying �nite groups. Unfortunately, there have
been almost no provably-e�cient methods for manag-
ing matrix groups. Indeed, there are signs that even
elementary problems may not have uniformly e�cient
procedures in this domain. Consider the basic problem
of testing membership. Even for 1 � 1 matrices, this
involves the discrete-log problem in �nite �elds, which
seems unlikely to have a polynomial-time solution (see,
e.g., [Bac]).

But, as we shall make clear, this discouraging ob-
servation does not close the door on all important in-
stances of membership-testing. In any case, it does not
fully account for the ine�ciency of commonly imple-
mented algorithms. A major bottleneck in the \stan-
dard" procedure for matrix-group membership is its di-
rect utilization of Sims's algorithm ([Bu], [Ca]), in ef-
fect dealing with the full matrix group GL(n; F ) as a
subgroup of the permutation group Sym(Fn). To be
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sure, one does not need to list this exponential-sized
permutation domain, and there is still a base of rea-
sonable size (a vector-space basis of Fn is a base for
any subgroup of GL(n; F )). Nevertheless, there is an
intrinsic blowup in the application of Sims's methods,
for the indices jG(i) :G(i+1)j can be exponential. This
can happen even for elementary-abelian 2-groups rep-
resented over the 2-element �eld GF (2). E.g., consider
the subgroup G < GL(n; 2) that �xes every vector in a
subspace of dimension n�1; assuming !1 is any vector
that is moved by G, we see that jG(1) :G(2)j = 2n�1.
This bottleneck is clearly unrelated to the discrete log
obstruction, for the only prime in jGj is 2.

We also demonstrate that not every important
problem demands membership-testing. To be sure,
membership-testing is so e�cient in the permutation-
group setting that one does not hesitate to call it. A
case in point: polynomial-time testing of permutation-
group solvability was touted in [FHL] as an immediate
consequence of Sims's methods (membership-testing
enables normal closures, therefore derived series). Nev-
ertheless, we now show that solvability and nilpotence
are polynomial-time testable for �nite matrix groups
(by which we mean something more than matrix groups
over �nite �elds - see below). By comparison, previous
methods for �nite matrix groups put testing solvabil-
ity and nilpotence in NP\ co-NP ([BS]) or in random
(Monte-Carlo) polynomial-time ([BCFLS]).

For issues that must involve membership-testing, one
can strive for a reduction to discrete logs, and we could
state some of our main results in that fashion. How-
ever, for the sake of ready exposition of the new tech-
niques, it is more convenient to introduce an additional
parameter into the timing. To wit, we develop a large
library of solvable-matrix-group problems which can be
solved in time that is polynomial in (n+log jF j+�(G)),
where �(G) is the largest prime in jGj other than the
characteristic of F . This includes: membership-testing;
�nding jGj; �nding the subgroup that stabilizes a vec-
tor or a subspace; �nding subgroup intersections; �nd-
ing centralizers; in fact, �nding the structural \building
blocks" of jGj.

Lest the reader be concerned about the non-input pa-
rameter �(G) in the timing, we emphasize that these
results are new even for groups in which �(G) is ab-
solutely bounded, in fact, even for p-groups where p is
�xed. Furthermore, we indicate some natural and im-
portant applications in which �(G) is guaranteed to be
small.

For example, �(G) is small in various applications to
permutation group problems. Most notably, we now
�nd normalizers of subgroups of solvable permutation
groups in polynomial time. A previous polynomial-

time method extended only to nilpotent permutation
groups [KL]. Implemented procedures for permutation
groups (e.g., in the group-theory systems Cayley [Ca]
and GAP [Sc]) use backtracking methods that require
exponential time in the worst case.

There are also applications to permutation groups
that give new perspectives on problems that were pre-
viously known to be in polynomial time, but required
much deeper methods. An example is �nding the in-
tersection of subgroups of a solvable quotient G=K of
permutation groups (note, onlyG=K is hypothesized to
be solvable, G need not be). It was announced in [KL]
that this can be done in polynomial time. However, the
method required Kantor's algorithms for Sylow sub-
groups ([Ka1], [Ka2]) which make essential use of con-
sequences of the classi�cation of �nite simple groups
(so they have a 15000 page proof). We can now o�er a
self-contained, elementary approach to this and other
previously classi�cation-dependent problems.

Another application is to �nite groupsG < GL(n; F ),
where F is an algebraic number �eld. Babai, Beals
and Rockmore [BBR] have shown how to embed such
G in GL(n;Z). But then the natural homomorphism
Z! Zp, for any p > 2, faithfully embeds G in GL(n; p)
and �(G) � n + 1. Consequently, membership-testing
is in polynomial time for �nite solvable matrix groups
over algebraic number �elds. By earlier remarks, test-
ing whether a �nite matrix group is solvable or nilpo-
tent is also shown to be in polynomial time; indeed,
much deeper structural information is available (includ-
ing composition series and Sylow subgroups).

Our approach to membership-testing involves a top-
down decomposition of the group (quite unlike Sims's
method, wherein almost no deep knowledge of the
group, other than its order, is immediately needed or
revealed). This is reminiscent of methods used for
NC computation in permutation groups ([LM], [Lu2],
[BLS]). The common approach assumes we already
have a presentation hXjRi of some quotient G=H of
G, and the immediate goal is to get enough informa-
tion about H to produce some non-trivial presentation
of a quotient H=K, which, by standard means, then
yields a presentation of G=K, etc. Using the Schreier
method to get generators of H is out of the question
for jG :Hj can be exponential. However, \sifting" the
relations R produces \normal generators" of H, i.e.,
generators of a subgroup whose normal closure in G

is H. One then needs to construct a manageable rep-
resentation domain for some H=K, an operation that
may have to bootstrap from the group structure itself.

In order to maintain determinism, we do not pass
to irreducible actions, as �nding these presently re-
quires Las Vegas methods when F is large [R�o]. On
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the other hand, our procedures do exploit invariant
subspaces when these are available. In fact, we o�er
a divide-and-conquer paradigm for �nding important
subgroups, such as subspace-stabilizers, which relies
on both invariant subspaces and imprimitivity systems.
However, unlike their analogues in permutation-group
computation (orbits and imprimitivity blocks [Lu1]),
these are not easy to locate.

We summarize some of the main results in x3, with
samples of the methods in xx4-6. We propose issues for
further research in x7.

Finally, we emphasize that our goal is polynomial-
time computation. We leave for later investigation low-
level complexity issues and practical implementation,
worthy projects in which we invite participation.

2 Notation and Preliminaries

We refer to standard references (e.g., [Ha]) for termi-
nology not recalled here. G always denotes a �nite

group.

We write H � G ifH is a subgroup of G andH�G if
H is a normal subgroup, H < G and H< G indicating
strict inclusion. The index of H in G is jGj=jHj and is
denoted jG :Hj. For A � G, hAi is the subgroup gen-

erated by A, i.e., the smallest subgroup containing A.
The order of g 2 G is jhgij and denoted o(g).

For g; h 2 G, g�1hg is the conjugate of h by g and
is denoted hg. If A � G, the centralizer of A in G

is CG(A) = fg 2 G j 8a 2 A; ag = ag; CG(G) is also
called the center ofG and is denoted Z(G). The normal

closure of H in G is the smallest normal subgroup of G
that contains H and is denoted HG. The normalizer

of H in G is the largest subgroup of G in which H is
normal, i.e. fg 2 G j g�1Hg = Gg.

If g; h 2 G, [g; h] = g�1h�1gh (the commutator

of g and h). If S; T � G, [S; T ] denotes the sub-
group hf[s; t] j s 2 S; t 2 Tgi. The derived sub-
group of G is G0 = [G;G] and the derived series is
G � G0 � (G0)0 � � � �; G is said to be solvable if the
derived series terminates with 1. The lower central se-
ries of G is de�ned recursively by: L1(G) = G and
Li+1(G) = [G;Li(G)]; G is said to be nilpotent if the
lower central series terminates with 1; it is nilpotent

of class i if Li(G) > Li+1(G) = 1. Abelian groups
are nilpotent and nilpotent groups are solvable; neither
converse holds.

For a prime p, G is a p-group if jGj is a power of
p and G is a p0-group if gcd(jGj; p) = 1. A group is
nilpotent i� it is a direct product of p-groups. A Sylow

p-subgroup of G is a p-subgroup of maximal order; a
group is nilpotent i� it has a unique Sylow p-subgroup
for each p.

A group is called simple if it has no proper normal
subgroups. A composition series of G is a tower G =
H1 > H1 > � � � > Hm = 1 such that each quotient
Hi=Hi+1 is simple. Then G is solvable if the simple
groups in some (hence all) composition series are cyclic.

The group of all permutations of the set 
 is denoted
by Sym(
). One says that G acts on 
 if there is a
homomorphism G ! Sym(
). If G acts on 
, one
writes !g , respectively, �g, for the image of ! 2 
,
respectively, the image of � � 
, under g 2 G; then
G is said to be transitive if 
 = f!g j g 2 Gg for some
(therefore, all) ! 2 
. A subset � � 
 is said to be G-
invariant and G is said to stabilize � if �g = � for all
g 2 G. If G stabilizes �, we denote by G� the image of
G in Sym(�). For any � � 
, the pointwise stabilizer

of � in G is CG(�) = fg 2 G j �g = �; 8� 2 �g;
note that this is consistent with the centralizer notation
CG(H), with G acting via conjugacy. For G < Sym(
),
the set of �xed points of G is Fix(G) = f! 2 
 j !g =
!; 8g 2 Gg.

The standard vector space of n-tuples over a �eld
F is denoted Fn. In any vector space, Span(A) is
the linear span of the set A. For vector spaces V;W
over F , Hom(V;W ) is the space of linear transforma-
tions from V to W . The group of nonsingular linear
transformations of V is denoted GL(V ). Note that
GL(V ) < Sym(V ) and so the notation of the preceding
paragraph applies to subgroups of GL(V ). A group
G < GL(V ) is said to be reducible if there exists a
proper G-invariant subspace of V . An imprimitivity

system for G < GL(V ) is a collection, fW1; : : : ;Wmg,
of subspaces of V such that V = W1 � � � � �Wm and
G permutes the summands, acting transitively on that
m-element collection (thus. dim(Wi) = dim(V )=m).
The group of n � n matrices over the q-element �eld
GF (q) is denoted GL(n; q). It is often convenient to

indicate that G < GL(V ) = GL(n; q), where V is an
n-dimensional vector space, so that we have all param-
eters available for the discussion.

A matrix is called unipotent if its only eigenvalue is
1; a matrix group is called unipotent if it consists of
unipotent matrices. A matrix group is unipotent i� it
is simultaneously triangulable with all main diagonals
comprised of 1's. If the characteristic of F is p then a
subgroup of GL(n; F ) is unipotent i� it is a p-group.

We call an abelian matrix group A < GL(V ) uniform
if, for every integer m, Fix(Am) = f0g or V , where
Am = fam j a 2 Ag.

Implicit to timing analyses is the fact that strictly
decreasing sequences of subspaces (of Fn) or subgroups
(of GL(n; q)) have polynomial length (bounded by n or
log2 jGL(n; q)j < n2 log2 q, respectively).
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3 Main Results

Subgroups G � GL(n; F ) are input and output via
sets of generators. Furthermore, we make the overall
assumption that the input-generating-sets are not un-
reasonably large (e.g, for �nite F , it is warranted to
suppose that these are no larger than log jGL(n; F )j=
O(n2 log jF j)) so that we need not bother to incorporate
their size in the asymptotic timings. We also assume
reasonable encodings of �nite F so that \polynomial-
time," by itself, means polynomial in (n+ log jF j).

Theorem 3.1 Given G � GL(n; F ), where F is a �-

nite �eld, one can test in polynomial time whether G is

solvable and, if so, whether G is nilpotent.

If G is solvable one can also �nd, for each prime
p � nconstant, the p-part of jGj. If G is nilpotent, one
can �nd its (unique!) Sylow p-subgroup for each such
prime.

Theorem 3.2 Given a solvable G � GL(n; F ), where
F is a �nite �eld, let � denote the largest prime dividing

jGj other than the characteristic of F . The following

problems can be solved in time that is polynomial in

(n+ log jF j+ �).

(1) Find jGj.

(2) Given x 2 GL(n; F ), test whether x 2 G.

(3) Find a generator-relator presentation for G.

(4) Find a composition series in G.

(5) Given any vector v 2 Fn, �nd the subgroup of G

that �xes v.

(6) More generally, given any set A of vectors, �nd

the subgroup of G that stabilizes the set A (assum-

ing jAj is not large, otherwise we can express the

timing as a polynomial in n+ log jF j+ �+ jAj).

(7) Given any subspace W � Fn (via a spanning set),

�nd the subgroup of G that stabilizes W .

(8) Given any x 2 GL(n; F ), �nd CG(x), the central-

izer of x in G. Thus, given any (not necessarily

solvable) H � GL(n; F ), �nd CG(H).

(9) Given H;K � GL(n; F ), �nd H \K.

(10) For any prime p, �nd a Sylow p-subgroup of G.

An application of (7) leads to

Corollary 3.3 Given permutation groups H;G, with

H � G and G solvable, one can �nd the normalizer of

H in G in polynomial time.

More generally, the normalizer of H in G can be found
if H=K � G=K, where K � G, assuming only that
G=K is solvable.
Other applications to quotients of permutation

groups include �nding CA(B) and A \B when A;B <

G=K, with G=K solvable. These two are not new re-
sults for polynomial-time but previous methods [KL]
(which are still more generally applicable) used conse-
quences of the classi�cation of �nite simple groups.

Corollary 3.4 Given G < GL(n; F ), where F is an al-

gebraic number �eld, one can test whether G is a �nite

solvable or nilpotent group in polynomial time and, if

so, test membership in G.

One can also then �nd jGj, normalizers and centralizers
of subgroups, intersections of subgroups, composition
series and Sylow subgroups.

4 Membership-Testing and Basics

Throughout this section, we assume that we are dealing
with solvable groups G = hSi < GL(n; q) = GL(V ) for
which �(G) is bounded by a �xed polynomial in the size
of the input. Alternately, the results can be rephrased,
replacing \polynomial-time" by \polynomial in jSj +
n+ log q + �(G)."
Assuming some reasonable encoding of the �nite �eld

F (e.g., as GF (q)[x]=(f(x)) for some irreducible f), it
is elementary to convert our setting to matrix groups
over the prime �eld GF (q) (blowing up matrix sizes
by a factor of degree(f)). Thus, we assume that G �
GL(n; q), where q is prime.

4.1 Overall Procedure

We construct, in a top-down fashion, a tower of normal
(in G) subgroups

G = H1 >H2 > � � � >Hm = 1

together with manageable representations �i : Hi !
Mi with Hi+1 = kernel(�i).
By \manageable" we mean essentially that Mi is a

type of group for which suitable machinery (testing
membership, �nding presentations) has already been
developed. For example, if Mi = Sym(
) then we can
appeal to standard permutation group machinery. The
idea is further exploited by resolving all critical issues
�rst with abelian groups (x4.4), after which Mi may
be an abelian matrix group. With such representa-
tions, membership-testing, for example, becomes a sift-
ing process (cf. [FHL]) through the tower: map a candi-
date x for membership in Hi by �i toMi (membership-
failure could be reported in the call to the function �i
which may not be de�ned on x); �nd an h 2 Hi such
that �i(h) = �i(x); test membership of xh�1 in Hi+1.
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\Top-down" in the tower construction has an alge-
braic as well as an algorithmic connotation. That is,
the group that we shall have constructed at any stage
is G=Hi. We shall not actually have generators for any
Hi until the entire procedure has run. Furthermore,
though we have indicated that we construct domains
in which to study the quotients Hi=Hi+1, we do not
necessarily have faithful representations (e.g., as per-
mutation groups or matrix groups) of the full quotients
G=Hi. However, there is a concrete way in which we
do have G=Hi in hand, namely via a generator-relator
presentation hXijRii (the computational aspect of this
is formalized in x4.2).

One particular advantage of the representation of
quotient groups via presentations is that the relations
provide, in a natural manner, precisely the needed ele-
ments of Hi with which to carry on. Corresponding to
the relations Ri is a set Ti � Hi such that Hi = hTiiG

and the constructive nature of the presentation (x4.2)
gives access to Ti.

The core of the method then is, using only Ti, which
still may not fully generate Hi, to construct the map
�i : Hi ! Mi. More precisely, �i is a function that
would be de�ned on any elements of Hi as they are
later encountered. The group Mi will also be acted on
by G and the map �i will be a G-map, that is �i(h

g) =
(�i(h))

g for all h 2 Hi. Thus, inMi, full generators for,
and a presentation of h�i(Ti)iG can be constructed. All
of this can be pulled back to Hi=kernel(�i).

Since �i is a G-map, kernel(�i)� G. We let Hi+1 =
kernel(�i) and use the presentations of G=Hi and
Hi=Hi+1 to form a presentation of G=Hi+1, thus step-
ping down the tower.

When the tower is exhausted, we have in hand a data
structure for membership-testing. But the procedure
has other important corollaries. An easy example is
that of �nding jGj. Assuming that, for the \manage-
able" Mi, �nding orders of subgroups is in polynomial-
time (this will be the case) then jGj =

Q
i
j�(Hi)j. Hav-

ing access to e�ective presentations in a class of groups
has other applications, including �nding the center of
a group (x4.6). In fact, we need centers in p-groups
within the procedure for solvable groups. Thus, we
�rst deal with nilpotent groups in x4.5.

4.2 Presentations

Our algorithmic formulation of presentations hXjRi for
quotients G=H must allow the passage back and forth
between words in the free group F(X) and elements of
G=H, which are viewed as liftings in G. Given that
ability and generators for G, one can construct T � H

such that H = hT iG. One can also build a presentation
for G=K given presentations for G=H and H=K. We

formalize these notions in this subsection.
For a set X, F(X) denotes the free group on X.

Thus, given any may � : X ! G, there is a unique
homomorphism �̂ : F(X) ! G extending �.
Let H � G. A constructive presentation of G mod

H (or, if H = 1, a constructive presentation of G) is a
4-tuple � = (X;�;  ;R) in which
X is a set; � : X ! G;  : G! F(X); R � F(X)
such that
g
�
�̂ (g)

�
�1

2 H for all g 2 G;

�̂�1(H) = hRiF(X).

For computational purposes, it is assumed that � =
(X;�;  ;R) is input or output by

(i) Specifying �(X) and R.

(ii) Giving a procedure for determining  (g), for any
g 2 G.

Remarks. (1) At the point of construction of  we do
not necessarily have complete knowledge of the group
G, perhaps not even a full generating set. It is only
assumed that one can determine the images under �̂;  
given elements of the respective domains.
(2) The procedure in (ii) does not need to output the

full word. It would su�ce to indicate a straight-line
program (each step designating a product or inverse of
predecessors) from X. Similarly, the words in R can
be given by straight-line programs.

Lemma 4.1 Given � = (X;�;  ;R) as above, hXjRi
is a generator-relator presentation of the group G=H,

with mutually-inverse isomorphisms F (X)=hRiF (X)
�

G=H naturally induced by �̂;  .

For g 2 G, we set Sift�(g) = g
�
�̂ (g)

�
�1
.

Lemma 4.2 If G = h�(X)i then H = h�̂(R)iG. More

generally, if G = hSi, then H = h�̂(R) [ Sift�(S)i
G.

The following lemma recalls, in our setting, a recipe
for gluing together presentations for G=H, H=K.

Lemma 4.3 Suppose that � = (X;�;  ;R) is a

constructive presentation of G mod H and �0 =
(X 0; �0;  0;R0) is a constructive presentation of H mod

K where K�G. Then �00 = (X00; �00;  00;R00) is a con-

structive presentation of G mod K where

X 00 = X _[X0 (disjoint union);

�00(x) =

�
�(x); for x 2 X
�0(x0); for x0 2 X0;

 00(g) =  0
�
Sift�(g)

�
 (g) for g 2 G;

R00 = fr
�
 0�̂(r)

�
�1

j r 2 Rg [ R0

[ f
�
(x0)x

�
�1
 0
�
�0(x0)�(x)

�
j x 2 X;x0 2 X0g.

If G = h�(X)i then G = h�00(X00)i. Thus, if we start
the tower method with a constructive presentation of
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G mod G for which G = h�(X)i, the condition persists
through each G mod Hi.

4.3 Use of Invariant Subspaces

We assume that we have H = hT iG, with H 6= 1 (i�
T 6� f1g) and that we seek some tractable representa-
tion � : H !M . At various points in our procedures,
we come into possession of a proper G-invariant sub-
space W < V . We can use that either to �nd � directly
or to recurse to a \smaller" problem.

We have induced actions �1 : G ! GL(W ), �2 :
G ! GL(V=W ). If, in either of these actions, H does
not act trivially then we can recursively consider the
problem for �i(G); �i(T ), which returns a representa-
tion �0 : �i(H)!M , whereupon we set �: = �0 � �i.
Suppose then that the actions of H on W and V=W

are both trivial. There is then a natural nontriv-
ial homomorphism � from H to (the additive group
of) Hom(V;W ) wherein �(h)(v) = vh � v for v 2 V

and h 2 H. There is also a natural action of G on
Hom(V;W ) such that fg(v) =

�
f(vg

�1

)
�g

for f 2
Hom(V;W ); v 2 V; g 2 G. With this action � is then a
G-map.

To determine �(H) = h�(T )iG we need only observe
that this is the smallest subspace of Hom(V;W ) con-
taining �(T ) and closed under the action of S. (Since
q is prime, �(H) is a vector space over q.)

It is an easy matter to write a constructive presenta-
tion for �(H). Membership-testing in �(H) is done via
linear algebra.

Remark. Here, as in other uses of homomorphisms,
the presence of a constructive membership test in �(H)
enables us to lift elements of �(H) back to H. This is
needed, for example, to lift the presentation of �(H) to
a presentation for H mod kernel(�).

We point out one useful source of invariant sub-
spaces. For any U � V ,W = Fix(hU iG) is G-invariant.
Furthermore, given G = hSi, we can �nd W as fol-

lows: W := Fix(U ); while 9s 2 S : W s 6= W

do W :=W \W s.

One application arises when hU iG is unipotent, for a
unipotent group has a nonzero �xed point.

We are also able to apply the idea to U for which
A = hU iG is abelian but not uniform. In such case, we
can �nd m such that 0 < Fix(Am) < V .

4.4 Abelian Groups

We consider the case of abelian G = hSi < GL(V ).

The hypothesis on �(G) enables us to determine o(g)
for any g 2 G. (Besides q the primes that can oc-
cur in jGj are less than �(G); and we have an upper
bound on the power to which they can occur, e.g.,

log2 jGL(n; q)j < n2 log2 q). Hence, by forming suit-
able powers, we can express g 2 G as a product of
elements of prime-power order. Doing this for each el-
ement of S and gathering the factors corresponding to
each prime p dividing jGj, we get generators for the
Sylow subgroups of G. Since G is the direct product
of these, it su�ces to show how to manage abelian p-
groups. (For membership-testing, one �rst factors the
candidate element.)
If G is q-group then it is unipotent and the reduction

of x4.3 handles everything.
We assume then that G is a p-group, with p 6= q.
Recall that, at a generic step in the tower, we have

H = hT iG. But, as G is abelian, this implies H = hT i.
It su�ces to give a procedure that constructs either

a proper G-invariant subspace (thus leading into x4.3)
or proof that H = hhi, together with a method for
expressing any k 2 H as a power of h. (A constructive
presentation � = (fxg; �;  ;R) could satisfy �(x) = h,
 (h) = x, R = fxo(h)g.)

Lemma 4.4 Let G = hSi < GL(V ) be an abelian

p-group with p 6= q and H = hT i � Z(G). Then,

in polynomial time, one can locate either a proper G-

invariant subspace or prove that H is cyclic and locate

a generator.

Proof: It su�ces to describe a polynomial-time proce-
dure which, given h; k 2 H, produces either a proper G-
invariant subspace or else z 2 H such that hh; ki = hzi.
Without loss of generality o(h) � o(k) � p. Let

h1 = ho(h)=p; k1 = ko(k)=p. If Fix(h1) 6= 0 then it is
a proper G-invariant subspace. Else, recall that the
abelian group hh1; k1i necessarily acts as a cyclic group
on an hh1; k1i-irreducible subspace V0, and so k1 nec-
essarily acts on V0 as hr1 for some 0 � r < p. Find r

such that Fix(h�r1 k1) 6= 0. If Fix(h�r1 k1) < V then it is
a proper G-invariant subspace, else k1 = hr1, in which
case set k0 = h�ro(h)=o(k)k. Recurse for (h; k0) (observ-
ing that hh; ki = hh; k0i but o(k0) � o(k)=p).

If H = hhi the procedure in the above proof can be
used to express any k 2 H as a power of h.

4.5 Nilpotent Groups

Knowing now that abelian groups are manageable, we
turn to the case of nilpotent groups.
So, we assume we have nilpotent G = hSi < GL(V )

and H = hT iG.
We �rst observe that we can test whetherH is abelian

(it is not su�cient for the elements of T to commute).
One method involves the established membership-test
of x4.4: since H is abelian, we can �nd generators for it
(test whether hT i is closed under conjugacy by elements
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of S and, if not, �nd some new conjugate to add that
increases hT i). However, we o�er a more generally-
applicable test of commutativity of H.

In the following theorem, we do not assume either
solvability of G or restrictions on �(G).

Theorem 4.5 Given G = hSi < GL(V ) and T �
GL(V ). Let H = hT iG. In polynomial-time, one can

�nd (a basis of) Span(H), in fact, a basis consisting of

elements of H.

Proof: Span(H) is the smallest subspace of Hom(V; V )
that contains T and is closed under multiplication and
under conjugation by elements of S. In performing
these closures by multiplying and conjugating basis ele-
ments from each stage, it is easy to keep basis elements
at all stages in H.

Observe that H = hT iG is abelian i� Span(H) is
commutative i� a basis of Span(H) commutes. Hence
this is polynomial-time testable. Furthermore, if H
is not abelian, we �nd witnesses to the fact, namely,
h1; h2 2 H such that [h1; h2] 6= 1.

Thus, if H is not abelian, we can �nd h0 2 H n
Z(H). As each round puts us in a smaller term of
the lower central series of G, the following procedure
runs in polynomial-time: start with h0 2 H n Z(H);
while 9s 2 S : [h0; s] 62 Z(H) do replace h0 by such
[h0; s]. Note that we test whether [h0; s] is in Z(H) by
seeing whether it commutes with Span(H).

When we exit from the above while-loop we have h0 2
H n Z(H) but [h0; S] � Z(H) and the latter implies
[h0; G] � Z(H).

These conditions on h0 imply that the map � : H !
Z(H) such that �(h) = [h0; h] is nontrivial homo-
morphism and a G-map. As the image group is of a
manageable class (abelian), we take one step down the
tower.

4.6 Finding Kernels, Centers

Before proceeding to the more general class of solvable
groups, we indicate an application of the procedure.

Assume that we have a class C of groups such that
for matrix groups G in C, the problems of membership-
testing and �nding-constructive-presentations are in
polynomial-time. We assume that the C is closed under
taking of subgroups and homomorphic images.

Given G = hSi < GL(V ) = GL(n; q) with G 2 C and

T � GL(V ), we can test whether T � G and, if so, we
can �nd hT iG (adding conjugates until the subgroup is
normal). Normal closures have numerous applications
but we are particularly interested in the following.

Suppose we are also given a representation � : G !
GL(W ) (say by specifying �(S)), where W is a vector

space over GF (q) . Then we can determine a construc-
tive presentation for �(G) and therefore for G mod
kernel(�). Using Lemma 4.2, we derive T � G such
that kernel(�) = hT iG, whence we �nd generators for
the normal closure kernel(�).

We can then apply this result to obtain CG(H) for
H = hT i � G since CG(H) is the kernel of the induced
action (by conjugacy) of G on Span(H).

In particular, �nding Z(G) is in polynomial time.

Remark. We shall ultimately be able to �nd CG(T )
for solvable G < GL(V ) (with polynomially bounded
�(G)) and arbitrary T � GL(V ) (see x6.4)

4.7 Solvable Groups

We turn �nally to solvable groups. Again, we have
G = hSi and H = hT iG. Note that, if H is abelian, we

are done by x4.4.

There is one problem reduction that is worth sin-
gling out �rst. Suppose that 1 < A < GL(V ) with
A abelian and normalized by G. Then, if q divides
jAj, A has a unipotent part whose �xed points yield a
proper G-invariant subspace. If, on the other hand, A
is a q0-group then dim(Span(A)) � n (since A would be
diagonalizable over an algebraic extension of GF (q)).
Thus, if we also had 1 < CH(A) < H, we could recur-
sively consider the naturally-induced representations,
via conjugacy, of G;H on Span(A) (a \smaller" prob-
lem as the image of H is isomorphic to H=CH(A)).

It is easy to �nd abelian A < H with AG = A: let
1 6= h 2 H; while hhiG is nonabelian do replace h
by a nontrivial element of [hhiG; hhiG]. The number of
loop iterations is bounded by the length of the derived
series of H, so that we emerge with an abelian A =
hhiG. Unfortunately, this may not su�ce for a problem
reduction as above, for it could be that A is a q0-group
and is centralized by H (CH (A) = H).

Consider, instead, the induced conjugacy-action of

G on Span(H) and �nd U � H such that A = hU iG

acts as a nontrivial abelian group on Span(H). Thus,
A 6� Z(H) but [A;A] � Z(H).

IfA is itself abelian, then it serves the aforementioned
purpose as it is not centralized byH. If A is nonabelian
then it is class-2 nilpotent, for [A;A] � Z(A), so we can
�nd full generators. Then, for some prime p, the Sylow
p-subgroup, B, of A is a class-2 nilpotent p-group. (We
can �nd B by extracting the p-parts of the generators of
A.) We may assume p 6= q, else Fix(B) is a proper G-
invariant subspace. As B is nilpotent, we may assume
that we have a full set of generators. As an invariant of
a loop to follow, we extract the following relevant data:

(�) B is a class-2 nilpotent p-group, normalized by G,
and 1 < CH (B) < H.
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Before proceeding with the algorithm, we make some
observations about uniform (abelian) groups.

Lemma 4.6 Suppose Z < GL(V ) is uniform. Let

fWigi2I be the maximal Z-invariant subspaces on

which Z acts as a cyclic group. Then V =
L

i2I
Wi.

To �nd these unique Wi when Z is a p-group: by
repeated application of Lemma 4.4, �nd W for which
ZW is cyclic; �nd K = CZ(W ) (x4.6) and set W1 =
Fix(K); decompose V = W1 � V 0 with a Z-invariant
V 0 (since Z is a q0-group such decomposition exists -
�nding it is linear algebra); recursively decompose V .

Lemma 4.7 Suppose B < GL(V ) is class-2 nilpotent

and Z(B) is cyclic and uniform. Then jB :Z(B)j � n2.

In fact, one shows that distinct coset representatives
are linearly independent.

(LOOP) We pick up with B satisfying (�).
We may assume [H;Z(B)] = 1, else we can utilize

the induced actions of G;H on Span(Z(B)) (Z(B) is
computable, x4.6).
We may assume Z(B) is uniform, else Fix(Z(B)p

r

)
is a proper G-invariant subspace for some r.

With Z = Z(B), decompose V = W1 � � � � � Wr

as in Lemma 4.6 (so Z(B)Wi is cyclic). Since Wi =
Fix(CZ(B)(Wi)) and [H;CZ(B)(Wi)] = 1, Wi is H-
invariant.

If, for any i, the inclusionZ(B)Wi � Z(BWi ) is strict:
replace B by the strictly larger BW1 �� � ��BWr acting
naturally on W1 � � � � �Wr and goto (LOOP) (noting
that (�) still holds as CH (newB) = CH(oldB)).

Thus, we may assume that all Z(BWi ) are cyclic and
uniform, so that jBWi :Z(BWi )j � dim(Wi)

2. Set 
 =
BW1=Z(BW1 ) _[ � � � _[BWr=Z(BWr ) (disjoint union), so
j
j � n2. There is a natural action � : G! Sym(
). If
�(H) 6= 1, then we have our nontrivial representation
in which to test membership and �nd a presentation.

Otherwise H acts trivially on 
 which implies
[H;B] � Z(B) and so H acts on B as an abelian
p-group. Consider the induced conjugacy-action � :
G ! GL(Span(B)). Then �(H) is a nontrivial (since
CH(B) < H) abelian p-group and we appeal to x4.4.

5 Testing solvability and nilpotence

We focus on the limited task of testing nilpotence and
solvability, for which we can discard the x4 restrictions
on �(G). However, the developments of x4 remain rel-
evant.

As before, we may assume q is prime.
Testing nilpotence is almost immediate. The criti-

cal observation is that, for q 6= p > n, the Sylow p-
subgroups of GL(n; q) are necessarily abelian. Let �

be the set of primes � n together with q. Then we can
express jGL(n; q)j = ab where a only involves primes
in � and b involves no primes in �.
Given a nilpotence candidate G = hSi, let Sa = fsb j

s 2 Sg, Sb = fsa j s 2 Sg. Then G is nilpotent i�:
hSai is nilpotent and [S; Sb] = 1. Furthermore, if hSai
is nilpotent then it involves only primes in � so that
�(hSai) � n.

For general solvability, we show, if G is solvable, that
we are still able to \construct" a normal tower

G = H1 >H2 > � � � >Hm

together with manageable representations �i : Hi !
Mi, withMi known solvable, for i < m. But, in general,
we shall not have Hm = 1. Nevertheless, Hm will be of
a special form for which solvability is readily testable.
In a sense the groups in the tower will not be completely
constructed since we may never have full generators,
though we shall have generators for Hi=Hm.
Suppose the tower is constructed down to H, i.e.,

we have a presentation for G=H, which is known to be
solvable, and we can express H = hT iG.
We consider a class of groups H for which solvability

is directly testable, i.e., without �nding presentations,
etc. We say H is q-triangulable if the transformations
in H can be simultaneously triangulated over the alge-
braic closure of GF (q). Clearly q-triangulable groups
are solvable. Given T we can test whether H = hT iG

is q-triangulable as follows: if H is abelian then out-
put \yes" else �nd 1 6= u 2 [H;H]; if U = huiG is
not a q-group (unipotent) then output \no" else let
W := Fix(U ); recursively test the action of H on W

and V=W ; if both calls respond \yes" then output \yes"
else output \no".
Thus, with each newH, we perform the above test. If

the answer is \yes", we announce G is solvable. Else we
follow the procedure of x4.7. If we arrive at an invariant
subspace W , we recurse on W if the action of H on W
is not q-triangulable else we recurse on V=W .

We must observe also that if the procedure goes
through without �nding an invariant subspace, then
this round will succeed just as before for no \large"
primes will appear in the induced representations. In-
deed, we note that: in a representation � : G !
GL(Span(A)) for an abelian q0-group A, �(�(G)) � n;
and the p corresponding to the class-2 nilpotent p-group
B cannot exceed n.

6 Other Computational Problems

We have space herein to make only cursory comments
about methods for the remaining problems in Theo-
rem 3.2. Again we hypothesize that �(G) is polynomi-
ally bounded.
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6.1 An Algorithmic Paradigm

We indicate a divide-and-conquer paradigm for dealing
with solvable matrix groups. Critical to this is

Theorem 6.1 Given G = hSi � GL(n; q) = GL(V ),
with G solvable. In polynomial-time one can �nd at

least one of the following.

1. A proper G-invariant subspace W < V .

2. H � G and an imprimitivity system V = W1 �
� � ��Wm for H with jG :Hj< mc0 (c0 is an easily

computable constant).

3. A � G such that A is abelian and jG :Aj �
max(12; n).

The proof involves some deeper (than x4) use of the
structure of solvable matrix groups and will appear in
a full version of this paper.

Theorem 6.1 o�ers an analogue to the divide-
and-conquer (orbits, imprimitivity blocks) for solv-

able permutation groups that solves such prob-
lems as �nding-set-stabilizers, �nding-intersections and
�nding-centralizers ([Lu1]). It also incorporates the
permutation-group machinery (in case 2).
The typical situation to which it applies involves a

problem that requires computing a subcoset of G. In
particular, the problem should have the following char-
acteristics.

(i) Given a G-invariant subspace W < V , the prob-
lem can be solved in a polynomial number of steps to-
gether with recursive calls to induced problems on W
and on V=W .
(ii) The problem is in polynomial time for abelian

groups.

The general procedure in cases 2 and 3 involves writ-
ing G as union of cosets of the respective subgroups,
splitting into subproblems accordingly. The case 2 sit-
uation works much like the method of [Lu1,x3], �nding
a minimal block system in the action on fW1; : : : ;Wmg
then splitting the group into cosets of the stabilizer of
the blocks. The polynomial timing ultimately depends
on the polynomial bound on the size of primitive solv-
able permutation groups [P�a]. (The constant c0 is re-
lated to that same bound.)
In the next two subsections we indicate two applica-

tions of this paradigm.

6.2 Vector Stabilizer

We address Theorem 3.2(5). To accommodate recur-
sive calls to subspaces and decomposition into cosets,
we consider a generalization.
A function f : G ! V is called a crossed homo-

morphism if f(xy) = f(x)y + f(y) for x; y 2 G. It

is assumed that a procedure is given for computing f .
(Although, given a constructive membership-test in G,
it su�ces to de�ne f on the generators. We can also
verify that such a speci�cation de�nes a crossed ho-
momorphism but that is not essential to the present
application.) Consider the problem:

Given: f as above and v 2 V .
Find: fg 2 G j f(g) = vg.

In particular, CG(v) is the solution to vg � v = 0 and
g 7! vg � v is a crossed homomorphism.
Observe that the solution to f(g) = v is either ; or a

right coset of the subgroup fg 2 G j f(g) = 0g.
Suppose that W < V is G-invariant. Then, re-

cursively working in V=W (i.e., modulo W ) we solve
f(g) = v. If nonempty the solution is Hy. Since

f(H) � W and f(hy) = v i� f(h) = (v � f(y))y
�1

, we

recursively solve the resulting problem in W . (When
solving the \local" problem in some W , we make sure,
in the resulting coset Hz, that H contains CG(W ), the
kernel of the action).
Suppose G is abelian. We �rst verify that v 2

W = Span(f(G)) = (Span(f(S))G , while computing
a basis of W consisting of elements of the form f(x),

with x 2 G. Since G is abelian, f(g) = v implies
f(x)g = f(x) + vx � v for all x 2 G. It is a construc-
tive membership to �nd such a g (if one exists) and
then the set of all solutions to the latter equation is
Hg where H = CG(W ). Finally, for h 2 H, f(hg) = v

i� f(h) = v � f(g), and solving this is linear algebra
(as H acts trivially on W ).

6.3 Subspace Stabilizer

The algorithm for Theorem 3.2(7) also uses the
paradigm. For example, we point out how invariant
subspaces can be utilized. First of all we need the fol-
lowing generalization of the problem:

Given: Subspaces W1;W2 < V .

Find: fg 2 G jW g

1 = W2g.

Suppose that W < V is G-invariant. Recursively let
Hy = fg 2 G j (W1 \W )g = (W2 \W )g (unless the
subanswer is ;). Then H stabilizes W1 \W . We seek

fh 2 H j W h
1 = W3g where W3 = W

y
�1

2 . Recursively

working in V=W (i.e., modulo W ) we solve W1
h

= W3

for Jz (unless ;). We still seek fj 2 J j W j

1 = W4g

where W4 =W z
�1

3 , but we know that J stabilizes both
A = W1 +W = W4 +W and B = W1 \W =W4 \W .
For i = 1; 4, let Ei 2Hom(A/B,A/B) be the projection
map onto Wi=B (A=B = Wi=B �W=B). Then for j 2
J , W j

1 = W4 i� Ej

1 = E4. The latter is solved in x6.2
(viewing the J action on the space Hom(A=B;A=B)).
We omit the solution in the abelian G case (it can be

reduced to dealing with idempotents as in the end of
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last paragraph).

6.4 Miscellany

We briey comment on some other problems in x3.

It is easy to keep track of a composition series (The-
orem 3.2(4)) in running the basic algorithm of x4.

The method for Theorem 3.2(6) goes beyond the
paradigm of x6.1 as an additional divide-and-conquer
is used on the set. It is analogous to Miller's general-
ization [Mil] of set-stabilizer to hypergraph stabilizer.

For Theorem 3.2(8), CG(x) is the stabilizer of the
\vector" x in Hom(V; V ).

To �nd H\K (Theorem 3.2(9)), observe that, in the
action of H�K on V �V , the centralizer of the linear
transformation mapping (v; w) 7! (w; v) is f(h; h) j h 2
H \Kg.
Finding Sylow subgroups (Theorem 3.2(10)) follows

the basic methods of Kantor [Ka1] (see also [Ma]), given
the machinery developed in x4.

Corollary 3.3 involves reduction to subspace sta-
bilizer problems and constructive Frattini arguments
([KL], [Ma]).

7 Open Questions

The ideas of x4 can be reorganized around reductions to
�nding-irreducible-subspaces and �nding-discrete-logs
(i.e., solving �x = � in �nite �elds). We ask whether
such a reduction can be made for other classes of matrix
groups. For arbitrary matrix groups?

From another point of view, we ask whether
membership-testing in matrix groups is polynomial in
input+�(G). Considering the result of [BBR], this
would put membership-testing for �nite matrix groups
over algebraic number �elds into polynomial time.
(Finiteness of G is essential. Babai [Bab] has observed
that, as a consequence of a result of Mihailova [Mih],
testing membership in 4 � 4 integral matrix groups is
undecidable.)
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