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Computing the Fitting Subgroup and Solvable Radical of
Small-Base Permutation Groups in Nearly Linear Time

EUGENE M. LUKS AND AKOS SERESS

ABSTRACT. We present Monte Carlo algorithms for computing the centralizer
of a normal subgroup, the maximal normal p-group for primes p, the Fitting
subgroup, and the maximatl solvable normal subgroup in a permutation group
G = {S) acting on a set £2. The running time of the algorithins can be expressed
in the form O(n)S|log® |G|}, where n is the size of ). In particular, in the case
of small-base groups, when log |G| is polylogarithmic as a function of n, the

algorithms run in nearly linear, O(n logcl n) time. If the order of 7 is known
in advance, the algorithms can be upgraded to Las Vegas. The algorithms
have been implemented in GAP.

1. Introduction

A remarkable recent development in the field of permutation-group computa-
tion has been the construction of a library of algorithms that run in time
O(n|S|log® |G|), given G = (S) < S, (1), (2], 14], [5], (18], 18], [17], [18],
[19]. We consider such algorithms to be nearly linear, the terminology justified
by the following observation: if one is dealing with a family of groups G for which
log |G| = O(logc' n), the running time is O(n|S|log® n), which, up to only logarith-
mic factors, is a linear function of the input length n|S|. Indeed, such families of
groups are commonly encountered and are referred to as small-base groups. Impor-
tant classes of groups in the small-base category include all permutation represen-
tations of finite simple groups except the alternating groups. ‘

In addition to their guarantee of a fast asymptotic running time, nearly linear-
time algorithms appear to be well suited for implementation; in fact, many of them
are already implemented in the GAP system [16]). Hence, they achieve the long
sought goal of combining the theoretical and practical sides of permutation group
manipulation. :

The present paper describes some additions to the nearly linear-time library.
For a group G and a prime number p, we denote by O,(G) the largest normal
p-subgroup of G, by O (G) the largest solvable normal subgroup {solvable radical)
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of G, and by F(G) the largest nilpotent normal subgroup (Fitting subgroup) of G.
Our main result is

THEOREM 1.1. Given generators S for a permutation group G < S, and a
prime p, the subgroups O,{G), Ox(G), F(G) can be computed by o« Monte Carlo
algorithm in time O(n|S|log®|G|).

A randomized algorithm is called Monte Carlo if there is only a small probabil-
ity (prescribed by the user) that it returns a wrong answer. Doubling the running
time squares the error probability. In our case, an error can occur only at the ini-
tial sirong-generating-set computation (cf. Subsection 2.2). In particular, if |G| is
known in advance, in which case the correctness of the strong-generating-set con-
struction can be verified, then the algorithm indicated in Theorem 1.1 never returns
an incorrect answer. Hence, the algorithm is upgraded to Las Vegas: its output is
always correct and it runs in nearly linear expected running time.

Polynomial-time algorithms for constructing O,(G) were first given by Kan-
tor [9] and Neumann [14]. An alternative approach, and a construction of O (G),
was described by Luks in [11] (see also [12]). A critical point in the algorithm
presented here is based on the method of [11]. In particular, we employ a recur-
sive approach having constructed an action ¢ : G — S, with ker{i) an abelian
p—group, the nature of the kernel gnaranteeing that w(0,(G)) = Oy(9(G)). The
construction of ¢ can be carried out once we have any normal p-subgroup. (A sim-
ilar procedure for Oo, (G') makes use of any normal solvable subgroup.) This useful
normal subgroup is found as the normal closure of Cv(M) (ceniralizer of M in N)
for some successive terms M <t N in a composition series of G' and so we make use
of the nearly linear time construction of composition series by Beals and Seress [4].

Observe that this approach also requires the efficient construction of centralizers
of normal subgroups, which should be of independent interest.

THEOREM 1.2. Gliven generators S for the permutation groups N, G with N <
G, the centralizer Co(N) can be computed by a Monte Carlo algorithm in time
O(nlS]log® |G]).

The nearly linear constraint seems to prohibit standard methods for Cg(N),
e.g., in [10] this subgroup is realized as the kernel of an induced action on a set of
size O(n?). Instead, we compute the kernel G of an action of G on a set of size < n
and then the kernel of an action of G on a set of size < n. The second kernel is
Ce(N).

Again, if |G| is known in advance, then this algorithm can be upgraded to Las
Vegas.

‘ Implementatlons of the algorithms underlymg Theorems 1. 1 and 1.2 are avail-
able in the GAP [16] library.

2. Preliminaries

2.1. Group theory. For basic definitions and facts about groups and permu-
tation groups, we refer the reader to [8] and [22]. We summarize the notation and
terminology that we use.

For H,G < Sym(§2), {H®) denotes the G-closure of H and Cq(H) is the
centralizer of H in G. For H < G, G/H denotes the set of right cosets of H
in G; a transversel for H in G is a complete set of right coset representatives.
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The full symmetric group acting on the domain § is denoted by Sym(f2), while
Sn denotes the symmetric group of degree n.. We say that G acts on a set 2 if a
homomorphism ¢ : G — Sym(§2) is given, usually ¢ is clear in context; the action
is faithful if ker(p) = 1. If G acts on £ and w € €, we denote by w® the orbit of
w under G, namely {w? | g € G}; we say G acts transitively on Q if ) consists of
one orbit. I (7 acts transitively on {2, a nonempty subset A C Q is called a block of
imprimitivity for G if, for all g € G, A? = A or AYNA = 0. If B is a sequence of
points from §2, G denotes the pointwise stebilizer of B in G. A group G < Sym(f)
is called semiregular if G, = 1 for all w € §2; if G is semiregular and transitive, it
is called regular. For G < Sym(f2), we denote by fix(G) the set of fixed points of
G, namely, {w € 2 |Vg € G : w? =w}. If A C Q is-the union of orbits of some
G < Sym(f2), then we denote by G|a < Sym(A) the restriction of G to A. The
wreath product of G < Sym(f2) and H < Sym(A) is denoted by Gt H; we consider
its action on the disjoint union of |A| copies of 2 (see, e.g., [8, p. 81) for details).

2.2. Algorithmic concepts. It is assumed that permutation groups are input
and output via a list of generators.

In his pioneering work [20, 21], Sims introduced the notions of a base and
strong generating set as the fundamental data structures for computing with per-
mutation groups. A base for a permutation group G < Sym{Q)) of degree n is
a sequence B = (1, s, ..,Bu)} of points from Q such that Gg = 1. The point
stabilizer chain of (@ relative to B is the chain of subgroups

G=GW > >...> MM =1,

where G = Ga,..p:i.1)- The base B is called nonredundant if there is strict
inclusion G® > GG for all 1 < i < M. A strong generating set (SGS) for G
relative to B is a set S of generators of & with the property that

(SNEN =G, for1 <i <M +1.

With reference to some constant ¢, an (infinite) family G of permutation groups is
called a family of small-base groups if all G € G of degree n admit bases of size
O(log®n). Equivalently, log|G| = O(logc' n) for a constant ¢’ and each G € G of
degree n.

Let B = (B4, ..., Ba) be a base of the group G and let @ = G > G > ... >
GM+1) — 1 e the corresponding point stabilizer chain. Moreover, let R; denote a
transversal for G¢+Y in G, 1 < ¢ < M. Each g € G can be written uniquely in
the form g = rprar—1 -+ Tom1, ;i € R;. The process of factoring g in this form is
called sifting or stripping.

In practical computation, the transversals R; are not usually computed and
stored explicitly; rather, they are encoded in a Schreier-tree data structure. Suppose
that a base B and an SGS S for G relative to B are given. A Schreier-tree data
structure for G is a sequence of pairs (S;, T;) called Schreier trees, one for each base
point B;, 1 € ¢ < M, where T; is a directed labelled tree with all edges directed
toward the root 3;, and with edge labels selected from the set S; == SNGH c g,
The nodes of T; are the points of the orbit ¢ “) The labels satisfy the condition
that, for each directed edge from - to & with label k, 4" = 6. If 7 is a node of T3,
then the sequence of the edge labels along the path from - to B; in T; is a word
~ in the elements of S; such that the product of these permutations moves v to §;.
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"Thus each Schreier tree (S;, T;} defines inverses of the elements of a transversal for
GG+ jn GO,

The reason for storing the inverses of transversal elements is that the sifting
procedure uses these inverses. In some applications in the present paper, we need
to recover the transversal elements themselves. This can be done, for example, by
storing the inverses of the strong generators. Following the path from a node v
to the root B; in T;, and writing the inverses of the labels we encountered in the
opposite order, we get a word representing a permutation which moves fg; to +.

2.3. Some nearly linear-time algorithms. In this subsection, we describe
some nearly lincar-time algorithms used in our procedures. The fundamental result
is that bases and strong generating sets can be computed.

THEOREM 2.1. (Babai, Cooperman, Finkelstein, Seress (1)) Given a permu-
tation group G < S,, a nonredundant base B and an SGS for G relative to B
can be computed by a Monte Carlo algorithm in nearly linear time. The Schreier-
tree data structure computed by the algorithm supports membership testing in G in
O(nlog|G|) time.

For fast sifting, it is crucial that the depths of trees in the Schreier-tree data
structure are small. In fact, the algorithm in {1] constructs Schreier trees such that
the sum of depths is O(log|G]). We call a Schreier-tree data structure shallow if
the depth of each iree is at most 2log|G|. A shallow Schreier-tree data structure
supports membership testing in nearly linear time.

Lemma 2.2 in [1] states that, given G = (S} < Sym(f2) and & € €, group
elements gy, ..., gx can be computed in deterministic time O{n|S| log? |@)) for some
k < log |G| such that the orbits o and af9r--9%) gre equal, and the breadth-first-
search tree for a®, using the group elements g1, ..., 9k, 91 o ...,g[l, has depth at
‘most 2k < 2log|G|. This implies that given a nonredundant base B = (fi, s O01)
and an SGS S relative to B for a group G, we can replace S in nearly linear
deterministic time by another SGS T relative to B with |T| < 2Mlog|G| such
that the Schreier-iree data structure obtained from T is shallow. Therefore, we
can assume that all Schreier-tree data structures computed in our algorithms are
shallow.

The method for constructing an SGS can be applied to a wide variety of tasks.
In particular the following are straightforward consequences of Theorem 2.1.

LEMMA 2.2. The following problems can be solved in nearly linear Monte Cerlo
time.
(i) Given G < Sym(2) and an action v : G — Sym(A), find the kernel of . In
particular, the pointwise stabilizer of a block system on ) can be computed.
(ii) Given G < Sym(Q2) and A C Q, find the pointwise stebilizer G 4.
(iii) Given H < G < Sym(Q), find the normal closure {(HS).
(iv) Given G < Sym(Q), find the derived series of G.

For g € G, the g-image of a base of G uniquely determines g. It is also possible
to reconstruct g from the image of the base.

LEMMA 2.3. Let § be an SGS for G < Sym(§2) relative to B and let ¢ denote
the sum of depths of Schreier trees coding the coset representative sets elong the
point stabilizer chain of G. Then, given an injection f : B — Q, it is possible to
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find a permutation g € G with B9 = f, or determine that no such element of G
exists, in O(t|Q}}) deterministic time.

There is no polynomial time algorithm known for computing the intersection
of two permutation groups (see, e.g., [12]). However, generalizing a method from
linear algebra for computing the intersection of subspaces, Cooperman, Finkelstein,
and Luks [6] describe an algorithm which reduces the computation of {(H®) NG
for H,G < Sym(Q,) to the computation of a pointwise stabilizer in a permutation
action of an appropriate group containing H and ¢. Combining with Theorem 2.1
- and Lemma 2.2(ii), we obtain the following.

THEOREM 2.4. Given G,H < Sym(Q), | = n, the group {HEY N G can
be computed in O(nlog®(|[{H®)||G])) Monte Carlo time. In particular, if H is
normalized by G, then H NG can be computed.

In [10], Luks described a polynomial-time method for computing composition
series in permutation groups. There is a nearly linear version of this result.

THEOREM 2.5. (Beals, Seress [4]) Given G = (S) < S,,, a composition series of
G can be computed in Monte Carlo time O(n|S|log® |G|}. As in [10], the procedure
also yields permutotion representations of degree at most n for the composition
factors of G.

REMARK 2.6. The composition series constructions of [10] and (4] are depen-
dent upon the classification of finite simple groups (specifically, they cite “Schreier’s
Conjecture”). However, while the use of a composition series simplifies both our
exposition and the present implementation in GAP, the main results of this pa-
per can be achieved without this device (see Remark 5.4). Alternately, Beals (3]
has shown that one can avoid classification dependence in the construction of a
compositicn series.

3. Centralizer of a normal subgroup

The purpose of this section is to prove Theorem 1.2. The problem is reduced
to the transitive case. For N normal in a transitive G, Cg(N) is constructed in
two main stages. An action of G is constructed with a kernel G (Lemuna 3.4) and
then an action of G is constructed with kernel Co(N) (Lemma 3.6).

We start by recalling some well-known facts about centralizers of subgroups in
the full symmetric group.

First we consider the case of transitive G. Thus, let G < Sym(?) be transitive
and fix a € 0. Observe that Gg = G, for all g € fix(G,), since G, < Gg by the
definition of fix(G4) and the transitivity of G implies that |Gq| = |Gg| (in general,
the index of G, in G is the size of the orbit of @). Then the following holds.

LEMMA 3.1. Suppose G < Sym(S) is transitive and « € ). Then C’sym(g)(G)
is semiregular and fix(Go) is an orbit of Cgymn)(G).

Given # € fix(G,), we can construct the (unique) ¢ = (o, 8) € Caym(a)(G).
such that o® = B. For this, given arbitrary v € Q, +° is determined as follows.
Take ¢ € G such that a9 = . Then

,rC = af® =% = ﬁg_ (31)

This construction is independent of the choice {g) of representative of the coset of
G carrying a to 7, since if o9t = a9 then g1g; ' € G4 = G and so f9 = 9.
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Hence, given a transversal of G/G,, encoded in a shallow Schreier tree, ¢ can be
computed in nearly linear time.

By semiregularity, Csym(n)(G) = (U} for any U C Cgymn)(G) such that
o) = fix(G,). Thus, to construct such U, start with U =  and while there
is some # € fix(G,) \ af"}, add the corresponding c(cx, 8) to U. As each such aug-
mentation of U at least doubles joa{U}|, we have to apply the construction above for
at most log | Csymin) (G)} < logn points 8 € fix(Gy). Therefore, Csym(n)(G) can be
compuied in nearly linear time as well.

Next, we treat the case of intransitive G < Sym(£2). Since Cgym(n)(G) nor-
malizes G, it permutes the orbits of . We say that two orbits Aq, Ag of G are
equivalent, denoted A, = Ay, if there is a bijection ¢ : Ay — Ag such that for all
g€ G and 6 € A,

§9% = 699, (3.2)

Clearly, = is an equivalence relation. Also, it is clear that if ¢ € Cgym(){G) maps
Aj to Ag, then the restriction c|a, is a bijection satisfying (3.2). Conversely, if ¢
is a bijection satisfying (3.2) then p induces an involution ¢ of Cgym(n)(G) such
that @|a, = ¢la,, Pla, = ¢ *|a,, and @ fixes pointwise £\ (A U A,). Moreover,
if Ay = Ay then Csym(a){Gla,) = Csym(a.)(Gla,). From these observations, we
obtain the following. ‘

LEMMA 3.2. LetCy,...,C: be the =-equivalence classes of orbits of G, |C;| = ki,
and, for each i, choose a representative I'; € C;. Then
t

CS)’m(ﬂ) (G) = H(C"Sym(l"g) (Gll‘“— ).l Sk, )

i=1

If @, 8 € Q with G, = Gp, then the orbits of a and f are equivalent (a well-
defined bijection ¢ : of — B satisfying (3.2) is given by (a9)% = B9, for all
g € G). By the above,

LEMMA 3.3. Let Ay, Ay be orbits of G of the same size, « € A;. Then Ay
A, if and only if Ao N1ix(G,) # 0.

If o is the first base point of G then, using the set of fixed points of G, and
a shallow Schreier tree coding the transversal for G mod G,, we can compute
the orbits equivalent to the orbit of @ and bijections between them in nearly linear
time. Equivalence among other orbits can be determined by applying a base change
algorithm to obtain a base starting with a point in the targeted orbit. However,
if G has a lot of inequivalent orbits (but of the same size, so equivalence must be
tested), then such computation of Csym()(G) may require ©(n?) time even for
small-base inputs.

We turn now to the computation of centralizers of normal subgroups. If NG <
Sym(£2) then Csyma)(NN) is normalized by G so Ca{N} = Cgym)(N) NG is
computable by Lemmas 3.1-3.3 and Theorem 2.4. However, as mentioned in the
previous paragraph, Csym,a)(/V) may not computable in nearly linear time and/or
it may not be a small-base group even if G is. Hence we have to follow a different
tack.

Let B be a nonredundant base for G, {¥1, ¥s, ..., ¥, } the set of orbits of G that
have non-empty intersections with B, ¥ := [J* | ¥;, and G*, N* the restrictions of

ol
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G, N to ¥, respectively. Since ¥ contains a base for G, G acts faithfully on ¥ and
G = G*. Any element of G* can be uniquely extended to an element of G; moreover,
by Lemma 2.3, the extension can be computed in nearly linear time, provided that
the coset representatives along the point stabilizer chain corresponding to B are
stored in a shallow Schreier-tree data structure. Hence it is enough to compute
Ce+(N*).

Clearly, Cg- (N*) is contained in

m
K= H Carlo, (N w;)s

i=1

K is normalized by G*, and |K| < |G|™ < |G'°8ICl. Hence, by Theorem 2.4,
Cg- (N*) is computable in nearly linear time as Cg- (N*) = KNG*, and we reduced
the computation of Cc(IN) to the computation of the groups Cge|y, (N”|e,)- So it
suffices to solve the following problem.

Given a transitive G = {S) < Sym(Q?) end N <G, (3.3)
compute Cg(N) in O(n|S|1og® |G|) time.

Note that, although G is transitive in (3.3), N may have many orbits. Thus,
|Csym(a)(IV)| may be too large in comparison to |G|, and so we still cannot apply
Theorem 2.4 for computing Csym(q)(&¥) N G in nearly linear time. Instead, we
proceed via an algorithm based on the following Lemmas 3.4-3.6.

LEMMA 3.4. (i) Leta € be fized, and let A= fix(No). Then A is a block
of imprimitivity for G. .
(i) Let B be the block system consisting of the G-images of A and let G be the
kernel of the G-action on B. Then Cg(N) < G.

PrOOF. (i) By Lemmas 3.1, 3.2, and 3.3, 4 is an orbit of Csym(a)(IN). Since
G normalizes Csym(a){IV), the result follows. .

(ii) The blocks in B are the orbits of Csym(q) (V) so, in particular, are stabilized
by Cg(N). O

LEMMA 3.5. Let Ay, Aa,...,Ap be the orbits of N which have nonempty in-
tersection with A and let A = Ule A;. Then A is a block of imprimitivity for
G.

PrROOF. Observe that A is the union of the N-images of A. Hence, in the G-
action on BB, {A,, Aa, ..., Ay} is an orbit of N, and therefore a block for G. Hence,

Uf=1 A;.- is a block for the G-action on 2. O

Next, choose ¢ € ANA,; for 1 < ¢ < k. Since A is a block of imprimitivity
for (3, we can take G-images A%, ..., A% of A which partition Q. Recall that by
Lemma 3.3, {A;, Ay, ..., Ax} is an equivalence class of N-orbits. Hence the set of
images T :={af’ :1<i<k1<j< m} define a system of representatives of
all N-orbits with the property that two N-orbits are equivalent if and only if their
representatives are in the same orbit of Cgym(a) (V)
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LEMMA 3.6. (i) For each g € G, there exists a unique ¢y € Csym(e)(N)
such that gc;* fizes T pointwise.
(i) The mapping v : G — Sym(Q) defined by v : g gey' is a group homo-
morphism.
(iii) Cu(N) is the kernel of the homomorphism (.

PROOF. (i) Recall that by Lemma 3.2,
Csym(e) (V) = H( Coym(a®) (V] 52:) 1Sk). (3.4)

Since & fixes the blocks in B, g fixes A% for 1 < j < m. There are k N-orbits in A%
and g permutes them; this permutation, regarded as an element of S, must also
be induced by c, in the wreath product in the 5*! term of (3.4). Since ¢ fixes the
G-images of A and Coyme Asj)(N | Asg) acts transitively on A% NAY, for 1 <4 < k,
1 < j £ m, we can also choose ¢g to fix I' pointwise; since Cy ym( As,)(N | Ag,) is
semiregular, this choice is also uniquely determined.

(if) Observe that for g,k € G, ge; he,' = gh{c;*)Pe;!. Here (¢, 1)"c:,: €
Csym(@) (N) and gh(c, 1)"ch1 fixes I' pointwise so, from the unicity of ¢gp, ¢ gh =
(1) e’

(iii) Ca (NN} is the kernel of the homomorphism ¢ since ¢(g) =1 if and only if
g = ¢€g, le. g € GNCgymn){N) =Ce(N). O

Summarizing, the algorithm for computing C'z(N) is the following.

procedure CNSinT(G, N) [[Centralizer of Normal Subgroup in Transitive Group]]
INPUT: N,G < Sym(2), N 4 G, G transitive on §.
CUTPUT: Cu(N).
Step 1. Compute a base B and an SGS relative to B for G. Compute an
SGS relative to B for N.
Step 2. Let o be the first point of B. Compute A4 := fix{N,).

Step 3. Compute the block system B consisting of the G-images of A, and
' @G, the kernel of the G-action on 3.

Step 4. Compute those N-orbits Ay, ..., Aj, which have nonempty intersec-
tion with A, and compute A = ULI A;. For 1l < i <k, pick
o; € ANA;.

Step 5. Compute G-images A9, ..., A% which partition Q. Compute I' :=
{of :1<i<k1<j<m}

Step 6. For each generator g of G, compute g € Csym(n)(N) such that
ge, ' fixes T' pointwise.

Step 7. Compute and output the kernel of the homomorphism ¢ : G —
Sym(Q) defined by ¢ : g+ g
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procedure CNS(G, N) [|Centralizer of Normal Subgroupl]

INPUT: N,G < Sym(f), N < G.
OUTPUT: Cg(N).
Step 1. Construct a nonredundant base B for G.
Step 2. Let {¥,,..., Ux} be the G-orbits having nonempty intersection with
B. Let ¥:= 5, ¥
for1<i<kdo
compute K; := CNSinT(Gly,, Nig,).

k
Step 3. Compute C* := [] KiNGly.

i=1
Step 4. Extend the generators of C*, considered as restrictions of elements
of G, to act on £2.
Qutput the extensions.

4, Quotients with small permutation degree

For iterative processes such as computing the upper central series, it would be
useful to construct permutation representations of quotient groups. However, as
shown by Neumann [14], theve are examples of G < Sp, N <G such that G /N has
no faithful permutation representation on less than 27/4 points. On the positive
side, it is proven by Easdown, Praeger [7], and Luks [11, 12] that if N is abelian
then there exists a homomorphism ¢ : G — Sy such that N < ker(yp) and, in
a sense, ker(p) is not too big. Also, as observed in [L1], ¢ can be constructed
efficiently. We describe that construction in this section. In the next section, we
shall apply it in the proof of Theorem 1.1.

THEOREM 4.1, Let G < Sym(Q), || = n and let N 9G be abelian. Then there
ezists a homomorphism ¢ : G — Sy, such that N < ker(y) and the prime divisors
of |N| and | kex(p)| are the same. In particular, if N is a p-group then ker(t) is
an abelian p-group; moreover, if N is elementary abelian then ker(¢} is elementary
abelian. Given generators for G and N, ¢ can be constructed in deterministic linear
time.

ProoOF. Let Ay, ..., A be the orbits of N, 2 = U:F:l A;. Lemma 3.1 implies
that a transitive abelian group is regular, so N acts regularly on each set A;. In
particular, N|a, has |A;| elements. Let ; denote the set of permutations in N lAa
and let X = Ule 3. Clearly, |X] = n. We shall define an action of G on X,
satisfying the conclusion of the theorem.

Given g € G and g; € ¥;, we define af € T as follows. Since N <G, G permutes
the orbits of N; suppose that A? = A;. Take any z € N with z|a, = 0y, and let
of := x9|a,. This mapping is well-defined since, if z|a, = y|a, for some z,y € N,

1
then z9)a, = 3%|a,. It is also clear that this construction defines a homomorphism

@ : G — Sym(X).

Now N < ker(p), since N fixes its own orbits and commutes with N la,-
Conversely, if g € ker(p) then g fixes the orbits of N and g{a, centralizes N |A,-
Since the regular subgroup N|a, is self-centralizing in Sym({A;), we conclude that
dla, € Nla,. Hence the transitive constituents of N and ker(y) are the same,
implying the required relations between the prime factors and exponents.
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To see the algorithmic feasibility of the construction, let us fix a representative
8; € A; in each orbit of N, and build a (breadth-first-search) Schreier tree T; with
root §; for N mod Np,. In this tree, contrary to the usual Schreier-tree construc-
tions, we direct the edges away from the root. Identifying the trivial permutation
in %; with &;, the elements of %; naturally correspond to the elements of A;, If
o; € X; corresponds to v € A; then, in order to compute o7, it is sufficient to
determine the image of §; under the permutation zf, where z., is the product of
edge labels in 7; along the path from §; to 4. The path from 6; to v may have

¥
length ©(|A;]}, so computing one image §;” may require &(|A;]) time. However,

g 3
if  is the parent of -y in T; and 6;-5'5 has already been computed, then 6;-5" can be
obtained in constant time. Thus, the entire image X7 can be constructed in O(|A;|)
fime. O

5. Computing O,(G), Ox(G), and F(G)

In this section, we prove Theorem 1.1. We shall refer to O (G) as the radical
of G and O,(G) as the p-core of G. Note tha, since two solvable normal subgroups
generate a solvable normal subgroup, there is a unique maximal solvable normal
subgroup in . Similarly, G has a unique maximal normal p-subgroup. By the
same argument, we see that Ox(G) and O,(G) are characteristic in G. Since the
Fitting subgroup is the direct product of the p-cores, where p runs through the
O(log|G|) prime divisors of |G, it is enough to construct O,(G) and O (G).

Theorem 4.1 was the key to the polynomial-time algorithins for computing
O (G) and O,{(Q) in [11]. We use the basic idea from [11] with some changes
to achieve the nearly linear running time. The subgroups O,(G) and O, (G) are
computed similarly, so we handle both of them simultaneously. We shall describe
the construction of the radical, indicating the necessary changes for the construction
of p-cores in double brackets [[...]).

First, let us consider the special case when GG has a maximal normal subgroup
N with Ox(N) = 1 [JO,(N) = 1]}. This condition restricts severely the radical and
p-core of (3.

LEMMA 5.1. Suppoese thalt N G is a mazimal normal subgroup end O (N) =
1 [[Op(N) = 1]]. If G/N is not cyclic [[not cyclic of order p], then Ox{G) =1
[0x(G) = 1]].

PrOOF. Since the radical [[p-core]) of G intersects N trivially, it must centralize
N. In particular, if the radical [[p-core]] of G is non-trivial then Cg(N) has non-
trivial radical [[p-core]). If Ce(N} < N then its radical [[p-core]] is trivial. If
Co(N) £ N then G == NCg(N) and C(N)/Z(N) = G/N, so C(N) could have
non-trivial radical ([p-core]] only if G/N is cyclic [[is cyelic of order p]]. O

LEMMA 5.2. (i) Suppose that NG is a mazimal normal subgroup, O(N) =
1, and G/N is cyclic. Then Ouo(G) = Cg(N).
(i) Suppose that N <G is a mazimal normal subgroup, Op(N) =1, and |G/N| =
p. Then Op(G) # 1 if and only if C¢(N) is abelian and p||Ca(N)|.

PROOF. (i) Since Oo(G) NN < Oxo{N) = 1, we know O (F) < Cg(N).
Suppose Ca(N) # 1. Since Co(N) NN = Z(N) < Ox(N) = 1, it follows
from the maximality of N that G = Cg(N)N. Thus, G/N = Ce(N)N/N =
Ce(N)/(Ce(N)NN) = Cg(N}, so that Cg{N) is cyclic. Hence, C:(N) < On{G).
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(ii) If Ca(NV) is abelian and p||Ce(N)| then the Sylow p-subgroup of Ca(N) is
a non-trivial normal p-subgroup of G, so that O,(G) # 1. Suppose, conversely, that
0,(G) # 1. Since Op(G)NN < Op(N) = 1, we know Oy(G) < Cg(N); in particular,
Ce(N) £ N, so that G = Cg(N)N. In this case, Ce(N)/Z(N) = G/N = Cp, so
p||Ca(N)|; furthermore, Ci(N) = (Z(NN), g) for any g € Ce(N) \ Z(N). But then
Ci(IN) is abelian since g commutes with N and therefore with Z(N). O

We shall also need the following simple observation.

LEMMA 5.3. Suppose that I < H, with H subnormal in G and with L solvable
[[L ap-group]l. Then (LS is solvable [[{L°)} is a p-group]].

PROOF. Let H G Gy <---<aGy = G. Prove by induction on i that (LG") -
is solvable [[p-group]|. O

Now we are ready to describe the construction of Ou(G) ([Op(G)]-

First, we produce some non-trivial solvable [[p—group|] H < G provided G has
a non-trivial radical [[p-core]] (so that failure guarantees that the radical [[p-core])
is trivial). For this, we compute a composition series 1 = Ny N2 <1+ - ANV, = G.
Then we find the smallest index i such that N; has a non-trivial radical [[p-core]|
as follows. Suppose that Owo(N:) = 1 [[O0p(W;) = 1]]. If Ny /N; is not cyclic
[[not cyclic of order p] then, by Lemma 5.1, we conclude that Oeo(Niy1) = 1
[{Op(Nix1) = 1]). Otherwise, we compute Cy,,, (N;), using the method of Section 3.
If Ci,,, (N:) = 1 [[Cv,,, (IV;) not abelian with p||Cl;,, (N:)]]] then, by Lemma 5.2,
Ooo(Niy1) = 1 {{0p(Ni31) = 1]). Otherwise, set L := Ch,,, (N;) # 1 [[L := any
non-trivial p-subgroup of Cy,,, (IV;), e.g., take any generator g with plorder(g) and

set L 1= (gPrder(e)}/p)]]. By Lemma 5.3, H = (L€) is a solvable normal subgroup
[normal p-group}| of G.

By taking the last non-trivial term in the derived series of H, we produce a
non-trivial abelian normal subgroup [[abelian normal p—subgroup]] N of G. With
respect to this N, we compute the homomorphism ¢ : G — §,, described in Theo-
rem 4.1.

Finally, we recursively compute M = Ouo(0(G)) [[M = Op{w(G))]]. Since
ker{y) is abelian [[an abelian p-group)], ¢~ (M) is Oo(G) [[Op(G)]]. The inverse
image, @~ (M), is generated by ker(p) together with liftings of the generators of
M, the liftings obtained, say, via Lemma 2.3.

(Note that the composition-series computation need not be repeated for ¢(G).
We have 1 = p(N1) dp(Nz) < - - Qp(Np) = ¢(G), with @(Niy1)/p(Ni) & Nija [N;
or p(Nit1}/p(N:) = 1.)

This completes the description of the algorithm, proving Theorem 1.1. 00

REMARK 5.4. As mentioned in Remark 2.6, the use of composition factors
‘can be avoided. In [11, 12], it is shown that one can make use of any proper
normal subgroup N in a recursive construction of a suitable / as above. Namely,
recursively seek a solvable [[a p-group]] L such that 1 < L Q N. If this succeeds,
set H := (LF). Otherwise similarly scek a solvable [[a p-group]] L such that 1 <
L <4 Cg(N). A second failure implies Oo(G) = 1 [[0p(G) = 1]|. Critical now to
the nearly-linear timing is the observation that the second recursive call needs to
be made only when Oe(N) = 1 [[0p(G) = 1]] in which case |N||Ce(N)| < |G|
[[IN],|Ca(N)lp < |Glp, where [X|, denotes the p-part of | X[]]. Finally, one shows,
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under the assumption that Oy (G) # 1, one can get by with relatively elementary
(in particular, not dependent on the simple groups classification) portions of the
methods of [10].
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