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Abstrat. We disuss aspets of omputation in permutation groups as-

suming polynomial time as a measure of eÆieny. Of partiular interest

are problems, suh as �nding the intersetion of two groups, that resemble

or generalize the problem of testing graph isomorphism. We also summarize

the instanes where the problems are known to be solvable in polynomial

time and indiate methods that aomplish this. As with graph isomor-

phism, the omputational omplexities of the general problems are open,

though we an demonstrate polynomial-time redutions and equivalenes

among them. A typial approah to suh issues is shown to involve an

NP-omplete problem. Several open questions are listed.

1. Introdution

Our fous is on polynomial-time omputability. Naturally, in employing so

broad a brush, we do not pretend to delineate the present pratial frontiers of

omputational group theory. Polynomial time is, on the other hand, a widely-

reognized standard of tratability as well as a robust model in whih to measure

and ompare eÆieny. But, we leave even that point to be defended, or disputed,

elsewhere. From our perspetive, polynomial time provides, independently, a

produtive and elegant domain in whih to study the struture of group-theoreti

omputation, while the group-theoreti setting provides insight into the struture

of unresolved issues in omputational omplexity. Furthermore, this interfae

with theoretial omputer siene motivates attrative problems for the group

theorist, a haunting example stemming from the failure of all e�orts to develop

a provably eÆient method for testing graph isomorphism. Thus, where the

state-of-knowledge about polynomial-time eÆieny does not onform to urrent
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140 E. M. LUKS

pereptions of \pratial" eÆieny, there lie the most tantalizing of the open

questions.

We disuss permutation groups G � Sym(
) that are input via generators.

It is reasonable to insist that the generating set is \small"; e.g., of ardinality

< j
j

2

. With this understanding, polynomial time \in the input" translates to

an O(j
j



) bound, for some onstant , on the number of steps required in the

worst-ase. In this paper, we are not onerned with optimizing the exponent

. Suh \low-level" omplexity matters are, of ourse, of great interest and are

loser to, even when not idential with, implementational onerns. Nevertheless,

these are, in the present ontext, extraneous issues and we gain more insight

into polynomial-time matters by ignoring them. Thus, we avoid spei�ation

and justi�ation of preise onstants in the exponents, favoring larity of the

polynomial-time status over optimization of time or spae requirements.

We sample not only what is in polynomial time but also a range of problems

that, to date, have not met this standard. Our onentration is on issues that

are motivated by graph-isomorphism testing. Suh issues inlude important and

standard group-theoreti problems, inluding the omputation of intersetions

of permutation groups, entralizers of elements and stabilizers of subsets. As

with graph isomorphism, these problems are not onsidered hard in pratie.

Nevertheless, no algorithm has been shown to require less than exponential time

in the worst ase. On the other hand, there seems some evidene that \deision"

versions of the problems are not NP-omplete. If that is the ase, then another

level of diÆulty (assuming P6=NP) is represented by the related problem of

�nding lexiographially least elements in double osets, for we show (the deision

version of) this one is NP-omplete.

On the positive side, we o�er various proofs of polynomial time. While there

is a large polynomial-time library (see [18℄), our emphasis again is on instanes

of the problems that are related to graph isomorphism and its group-theoreti

analogues. For most of the problems, there are eÆient proedures for solvable

groups.

Our disussion also brings out several open questions.

In Setion 3, we review basi polynomial-time tools for dealing with permuta-

tion groups. Consistent with omputational experiene, these eÆient tehniques

are rooted in methods of C.C. Sims. However, in Setion 4 we move on to some

problems for whih eÆieny has not been theoretially substantiated. Although

their omplexity is unknown, they an be shown to be polynomial-time equiv-

alent. The NP-hardness of the aforementioned lex-least problem is proved in

Setion 5. To better understand the diÆulty, we o�er two proofs. One of these

involves abelian groups with small orbits. In that ase, we an explain away the

diÆulty in terms of the hoie of linear orderings on the permutation domain.

To be preise, we go on, in Setion 6, to show that, with an ordering based upon

the orbit/imprimitivity-blok struture of the group, the lex-least problem is in
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polynomial time for groups with restrited nonyli omposition fators, thus

automatially inluding all solvable groups. This result, in turn, reovers in-

stanes where the graph-isomorphism-inspired problems are in polynomial time.

Other polynomial-time instanes are disussed in Setion 7, where it is seen that

the searh for subgroups is apparently made easier if the targeted subgroup is

normal. For instane, in Setions 7 and 8, we show that the ores of intersetions,

entralizers and set stabilizers an be found in polynomial time. In Setion 8, we

give samples of results of Kantor and Luks that indiate how the proedures, as

well as the open problems, are extended to quotients of permutation groups, the

theme being that, as far as polynomial time is onerned, the problems are no

harder when dealing with quotients. There is, however, remarkable additional

overhead in generalizing to quotient groups, for some problems that previously

had elementary solutions now seem to require muh deeper theory. In partiular,

the solutions make use of Sylow subgroups whih are aessible in polynomial

time only through results of Kantor that use onsequenes of the lassi�ation

of �nite simple groups. By ontrast, we present, in Setion 9, an approah to

�nding p-ores (maximal normal p-subgroups). While implemented solutions

to this problem typially use Sylow subgroups, we desribe an elementary, self-

ontained method that bypasses these. Some other related problems are listed in

Setion 10, none of whih are known to be in polynomial time. In fat, to date,

they seem to represent various levels of diÆulty, thereby opening up questions

even about the existene of polynomial-time redutions between the problems.

2. Notation and Preliminaries

Let G be a group. We write H � G, respetively H E G, to indiate H is a

subgroup of G, respetively a normal subgroup; H < G and H C G, respetively,

indiate strit inlusion. We say H is subnormal in G, denoted H CC G, if there

exist groups H

1

; :::; H

m

suh that H E H

1

E � � � E H

m

E G. If H � G, a right

(left) transversal for H in G is a omplete set of right (left) oset representatives

for H in G. A right (left) suboset of G is a oset Hx (xH) of a subgroup

H � G. For A � G, hAi denotes the subgroup generated by A. For g; h 2 G, let

h

g

= g

�1

hg, the onjugate of h by g, and let [g; h℄ = g

�1

h

�1

gh, the ommutator

of g and h. For A � G, A

g

= fa

g

j a 2 Ag; if H � G, the entralizer of A in

H is C

H

(A) = fh 2 H j a

h

= a; 8a 2 Ag; for a 2 G, C

H

(a) = C

H

(fag). For

subgroups H;K � G, the normalizer of H in K is N

K

(H) = fk 2 K j H

k

= Hg;

we let H

K

= h

S

k2K

H

k

i, this is the normal losure of H in hH;Ki, namely the

smallest normal subgroup of hH;Ki that ontains H . For H � G, the ore of H

in G is Core

G

(H) =

T

g2G

H

g

, it is the largest subgroup of H that is normalized

by G.

We denote by Sym(
) the symmetri group on the �nite set 
. Suppose G

ats on 
, that is, there is a homomorphism � : G ! Sym(
); if G � Sym(
),

� is understood to be the natural injetion. For ! 2 
, g 2 G, !

g

denotes the
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image of ! under �(g); for � � 
, �

g

= f!

g

j ! 2 �g; for ! 2 
, the orbit of !

is f!

g

j g 2 Gg and is denoted !

G

. For ! 2 
, G

!

denotes the subgroup �xing

!, namely fg 2 G j !

g

= !g; for � � 
, G

�

denotes the pointwise stabilizer

of �, namely

T

!2�

G

!

; if an ordering !

1

; : : : ; !

n

of 
 is understood, and �

i

=

f!

1

; : : : ; !

i�1

g then G

(i)

= G

�

i

(in partiular, G

(1)

= G and G

(n)

= 1). For

� � 
, the (set) stabilizer of � in G, denoted Stab

G

(�), is fg 2 G j �

g

= �g;

G stabilizes � if Stab

G

(�) = G. For a 2 Sym(
);� � 
, let a

�

denote the

indued funtion � ! �

a

, and for A � Sym(
), A

�

= fa

�

j a 2 Ag. In

partiular, if G � Sym(
) and G stabilizes � then G

�

� Sym(�). A subset

� � 
 is alled a blok for G if, for all g 2 G, either �

g

= � or �

g

\� = ;. We

say that G ats transitively on 
 if 
 onsists of a single orbit; G ats primitively

if it ats transitively and there is no blok � for G with 1 < j�j < j
j; G ats

regularly if it ats transitively and G

!

= 1 for any (all) ! 2 
.

We refer to Chapter 1 of [30℄ for elementary results in permutation groups

that are not spei�ally realled herein.

Unless otherwise indiated, we suppose n = j
j. It is useful to reall that an

inreasing hain of subgroups of Sym(
) has polynomially-bounded length; for

example, Lagrange's Theorem implies that the length annot exeed log

2

n! =

O(n logn) (in fat, a linear bound an be proved [1℄). Though not expliitly

stated, this is often essential to the veri�ation of polynomial running times. For

algorithmi purposes, unless indiated otherwise, it is assumed that subgroups

of Sym(
) are spei�ed (input or output) by generating sets.

A problem is said to be in polynomial time if it is solvable in O(m



) steps where

m is the size of a reasonable enoding of the input. In saying that a problem A is

polynomial-time reduible to a problem B, we mean that if B is in polynomial time

then A is in polynomial time. However, in the ase of redutions between two

deision problems, i.e., those with a \yes"/\no" answer, we always intend Karp

redutions, that is, there is a polynomial-time-omputable mapping of instanes

of A to instanes of B, so that \yes", \no" instanes map, respetively, to \yes",

\no" instanes. Two problems are polynomial-time equivalent (in either sense) if

there are redutions in both diretions. See, for example, [12℄, for elaboration of

these issues, inluding the need for Karp redutions, as well as formal de�nitions

of the lasses P, NP, and NP-Complete. Note that these partiular terms apply

only to deision problems.

3. Basi Polynomial-Time Tools

In this setion, we reall some elementary problems that are solvable in poly-

nomial time and that we need to referene later. The tehniques will be quite

familiar to most readers. Still, it is worth reviewing a few of these not only

to emphasize polynomial-time thinking, but also to distinguish these problems

from those in Setions 4 and 5, for whih presently implemented methods do not

meet our measure of eÆieny.
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We assume that G = hXi � Sym(
).

Some eÆient proedures follow a divide-and-onquer approah that exploits

the orbit and imprimitivity struture of the group. We observe that standard

omputations of orbits and imprimitivity bloks run in polynomial time.

(3.1) Given ! 2 
, �nd !

G

, the orbit of ! under G, and for eah  2 !

G

,

�nd g 2 G suh that !

g

=  .

A naive transitive losure algorithm involves, at worst, applying eah generator

to eah element of 
, for a worst-ase time of O(jX jn).

(3.2) If G ats transitively on 
, test whether G ats primitively and, if not,

�nd a non-trivial blok system.

For example, the (unique) smallest blok ontaining any given �; � 2 
 is the

omponent of � in the undireted graph (
; f�; �g

G

).

We often onatenate polynomial-time proedures, up to a polynomial number

in fat, to obtain, thereby, a polynomial-time proedure. To do so freely, however,

we must be sure that the size of the output of eah proedure is bounded by some

�xed polynomial in the size of the permutation domain. (Tehnially, the output

of a quadrati proedure ould use spae that is quadrati in its input size; the

onatenation of an unbounded number of suh proedures is prohibitive.) In

partiular, sine many proedures involve �nding generators for some targeted

subgroup, we need to exerise some ontrol on the sizes of generating sets. For

example, there is an polynomial-time proedure for

(3.3) Find a set of < n

2

generators for G.

The underlying logi for this is at the heart of Sims's methods [29℄. We review

the idea, from whih polynomial time is then a straightforward observation.

for i = 1 to n� 1 do

while 9 distint x; y 2 X \G

(i)

nG

(i+1)

suh that !

x

i

= !

y

i

do

replae suh a pair x; y by x; yx

�1

.

Disarding dupliates, the modi�ed X does not ontain distint elements of any

G

(i)

that lie in the same right oset of G

(i+1)

. Hene, the �nal X has size at

most

P

n�1

i=1

jG

(i)

: G

(i+1)

j �

P

n�1

i=1

(n� i+ 1) < n

2

.

Remark. Heneforth, we assume that all polynomial-time algorithms that

output generators for a subgroup return fewer than n

2

generators. We also

assume that jX j < n

2

.

It is often the ase that a subgroup H of our given G is spei�ed only by

some testable ondition, i.e., there is a polynomial-time proedure whih, for any

g 2 G, determines whether g 2 H . (The subgroups G

(i)

serve as examples.) In

suh ase, we say that H is (polynomial-time) reognizable.
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(3.4) Find generators for a polynomial-time-reognizable subgroup H for whih

jG : H j = O(n



) and determine jG : H j.

A right transversal T for H in G and a set Y of Shreier generators [14℄ of H

are both onstruted in:

T := f1g; Y := ;; Q := f1g

while Q 6= ; do

remove q from Q;

for all x 2 X do

if 9t 2 T : qxt

�1

2 H then add suh qxt

�1

to Y

else add qx to T and to Q.

Thus, T has been onstruted by a transitive losure method, having right mul-

tiplied every element of T by all generators of G to see if this produes any new

osets. In the end, TX � hY iT , so that G = hY iT , whene hY i = H .

The running time is O(jG : H j

2

n



0

+

00

), where O(n



0

) is the time for a mem-

bership-test in H and 

00

is an absolute onstant, so that an upper bound is

O(n

2+

0

+

00

).

Remarks. It is often the ase thatH-reognizability also involves some natural

interpretation of the osets, obviating the searh through all t 2 T to �nd whether

some qxt

�1

2 H ; this ould eliminate as muh as + 

0

from the exponent in the

timing. The prototypial example is H = G

(2)

, wherein T is keyed by the orbit

of !

1

.

It is assumed that the bound jG : H j = O(n



), for some onstant , is known,

though the method an also be interpreted as testing this bound in polynomial

time; if the proedure takes longer than the predited number of steps, the bound

does not hold.

Applying (3.4) iteratively yields a polynomial-time solution to

(3.5) Find generators for a subgroup H given that H = H

m

� H

m�1

� � � � �

H

0

= G where the H

i

are eah polynomial-time-reognizable and jH

i

: H

i+1

j =

O(n



) for 0 � i < m.

In partiular, as eah G

(i)

is polynomial-time reognizable, we an solve in

polynomial time

(3.6) Given any � � 
, �nd generators for G

�

(the pointwise stabilizer

of �).

Sine jGj =

Q

n�1

i=1

jG

(i)

: G

(i+1)

j, we an, in polynomial time,

(3.7) Find jGj.

Noting that x 2 G i� jGj = jhG; xij, we have a polynomial-time algorithm for

membership-testing:

(3.8) Given x 2 Sym(
), test whether x 2 G.
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Remarks. We should emphasize that we are not reommending this indiret

approah to membership-testing in pratie. We are only reminding the reader of

a partiular logial interonnetion of these problems, through whih polynomial

time is made lear.

The observation that Sims's methods run in polynomial time was made by

Furst, Hoproft and Luks [11℄.

More generally we refer later to a polynomial-time proedure for

(3.9) Given  

1

; : : : ;  

m

2 
, with m � n = j
j, test whether 9x 2 G suh

that !

x

i

=  

i

, for 1 � i � m, and, if so, �nd (the suboset of) all suh x.

By (3.1), we an �nd y 2 G suh that !

y

1

=  

1

, if any suh y exists. Reursively

�nd the suboset Hz of G

!

1

mapping !

i

7!  

y

�1

i

, for 2 � i � m; return Hzy.

(Note that the single reursive all involves a permutation group on at most n�1

letters.)

As an immediate onsequene of (3.8), we have a polynomial-time algorithm

for

(3.10) Given H = hY i � Sym(
), test whether H � G.

I.e., test Y � G.

Several appliations require normal losures.

(3.11) Given H = hY i � Sym(
), �nd H

G

.

To get generators,

�

Y of H

G

: initialize

�

Y = Y ; while there exist x 2 X; y 2

�

Y

suh that y

x

62 h

�

Y i, add suh y

x

to

�

Y .

Remark. We remind the reader that we use (from now on impliitly) the

polynomial onstraint on the length of any inreasing hain of subgroups of

Sym(
).

As the derived group G

0

is the normal losure in G of h[x; y℄ j x; y 2 Xi, we

have a polynomial-time proedure for

(3.12) Find the derived series G � G

0

� (G

0

)

0

� � � � . Hene, test whether G

is solvable.

To ompute the lower entral series of G, let L

1

(G) = G = hXi; then if

L

i

= hX

i

i, L

i+1

(G) = h[x; y℄ j x;2 X; y 2 X

i

i

G

. Thus we have a polynomial-

time proedure for

(3.13) Find the lower entral series of G. Hene, test whether G is nilpo-

tent.
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An alternative polynomial-time nilpotene test is to hek that G is a diret

produt of p-groups: For eah x 2 X and eah prime p dividing jGj, let hx

p

i

be the Sylow p-subgroup of hxi; for example, x

p

= x

m

where jGj = mp

k

with

(m; p) = 1 (suh large powers of x are omputable by \repeated squaring" triks,

though an even faster approah ould be to ompute the power in eah yle of

x, �rst reduing m modulo the yle length). Letting G

p

= hx

p

j x 2 Xi, verify

that jG

p

j is a power of p for eah p and that the generators of G

p

ommute with

the generators of G

q

for p 6= q.

4. Not Known to be in Polynomial Time

There is general agreement that, by all measures, the problems in the preed-

ing setion have eÆient solutions. We turn now to some whih seem to have

satisfatory implementations but for whih all known algorithms have exponen-

tial worst-ase omplexity. Were there no other reason for looking at them,

these would be of theoretial interest beause of their relation to the graph-

isomorphism problem:

Problem. GRAPH ISOMORPHISM (GRAPH-ISO)

Input: Graphs G

1

= (V

1

; E

1

), G

2

= (V

2

; E

2

).

Question: Are G

1

;G

2

isomorphi?

It is generally felt that GRAPH-ISO is not a hard problem in pratie (see,

e.g., [23℄ for an implemented proedure that many have found satisfatory).

Nevertheless, although the problem has been extensively studied, nothing lose

to polynomial time has been proved. Indeed, there is no known approah that

has proved to be subexponential (say, for example, in O(n

log



n

) time) in the worst

ase. (See remarks at the end of Setion 6). On the other hand, there is evidene

that GRAPH-ISO is not NP-omplete, otherwise there would be a ollapse of

the \polynomial-time hierarhy" [13℄. Indeed, from the earliest expositions of

NP-ompleteness (e.g., see disussion in [12℄), there has been speulation that

GRAPH-ISO may be one of the few lassial deision problems that is neither

in polynomial time nor NP-omplete.

We reall polynomial-time redutions of GRAPH-ISO to permutation-group

problems. To introdue the groups, we onsider

Problem. GRAPH AUTOMORPHISM-GROUP (GRAPH-AUTO)

Input: Graph G = (V;E).

Find: Generators for Aut(G), the automorphism group of G.

The following is well known.

Proposition 4.1. GRAPH-ISO and GRAPH-AUTO are polynomial-time

equivalent problems.

Proof. To redue GRAPH-ISO to GRAPH-AUTO, we �rst note that it suf-

�es to onsider the GRAPH-ISO ase where the graphs G

1

;G

2

are onneted,
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for, in general, one may test all pairs of onneted omponents. Given onneted

G

1

= (V

1

; E

1

);G

2

= (V

2

; E

2

), form the disjoint union G = (V

1

_

[V

2

; E

1

_

[E

2

) and

suppose Aut(G) = hXi. Then G

1

�

=

G

2

i� 9x 2 X : V

x

1

= V

2

.

We turn to the reverse redution. For this, we �rst observe that GRAPH-ISO

would enable us to solve

Problem. RESTRICTED GRAPH AUTOMORPHISM

(RES-GRAPH-AUTO)

Input: Graph G = (V;E) and, for some m � jV j;

sequenes v

1

; v

2

; : : : ; v

m

and w

1

; w

2

; : : : ; w

m

of distint verties in V .

Question: Is there some g 2 Aut(G) suh that v

g

i

= w

i

, for 1 � i � m?

Reduing RES-GRAPH-AUTO to GRAPH-ISO: Attahing distinguishable

\gadgets" to the v

i

forming a graph G

1

and similar gadgets to the respetive

w

i

forming a graph G

2

, RES-GRAPH-ISO redues to testing isomorphism of the

modi�ed G

1

, G

2

. A suitable gadget at v

i

, respetively w

i

, ould be a new yle

of length jV j+ i through the vertex.

Reduing GRAPH-AUTO to RES-GRAPH-AUTO: Repeated appliation of

a proedure for the deision problem RES-GRAPH-AUTO failitates the atual

onstrution of a suitable g; for, having reeived a \yes", we go on to �nd a

possible v

g

m+1

(using a RES-GRAPH-AUTO proedure to test all andidates)

then v

g

m+2

, et. Note this will have used O(jV j

2

) alls to RES-GRAPH-AUTO.

In this fashion, O(jV j

3

) appliations of RES-GRAPH-AUTO determine the

orbit of v

1

under Aut(G) and a right transversal for Aut(G)

(2)

(the stabilizer of

v

1

) in Aut(G). Similarly, we get transversals for eah Aut(G)

(i+1)

in Aut(G)

(i)

.

The union of suh transversals generate Aut(G). Thus, GRAPH-AUTO has been

reovered from O(jV j

4

) appliations of GRAPH-ISO (to graphs of polynomial

size O(jV j

2

)).

Observing then that GRAPH-AUTO is the problem that we would have to

solve, we onsider the natural ation of G = Sym(V ) on the set of unordered

pairs in V , and see that Aut(G) is preisely the subgroup that stabilizes E. With

this in mind, we de�ne the problem

Problem. SET-STABILIZER (STAB)

Input: G � Sym(
);� � 
.

Find: Stab

G

(�) = fg 2 G j �

g

= �g.

Thus, the above argument showed

Proposition 4.2. GRAPH-ISO is polynomial-time reduible to STAB.

There are two other important formulations of STAB. Consider

Problem. INTERSECTION (INTER)

Input: G;H � Sym(
).

Find: G \H.
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Problem. CENTRALIZER (CENT)

Input: G � Sym(
); x 2 Sym(
).

Find: The entralizer, C

G

(x), of x in G.

Proposition 4.3. The problems STAB, INTER and CENT are polynomial-

time equivalent.

Proof. Suppose we are given an instane (G;
;�) of STAB. To redue this

to INTER or CENT, let G at in the diagonal on the disjoint union

b


 = 


1

_

[


2

of two opies of 
 (i.e., (!

i

)

g

= !

g

i

, 8! 2 
, i = 1; 2, 8g 2 G, where !

i

denotes

the 


i

opy of ! 2 
). Let x be the involution in Sym(

b


) spei�ed by: (!

i

)

x

= !

i

if ! 62 � and (!

i

)

x

= !

3�i

if ! 2 �. Then Stab

G

(�) = G \G

x

= C

G

(x).

We indiate redutions in the other diretion. For INTERS: let G�H at on


 � 
 in the natural way, and set � = f(!; !) j ! 2 
g; then Stab

G�H

(�) =

f(g; g)jg 2 G\Hg. FOR CENT: g 2 G ommutes with x i� g, ating diagonally

on 
� 
, stabilizes f(!; !

x

) j ! 2 
g.

Remarks. In a panel disussion at the DIMACS workshop that gave rise to

these Proeedings, the sentiment was generally expressed that STAB, INTER

and CENT are \not hard in pratie." Thus one should ask:

Question 1. Are STAB (or INTER or CENT) in polynomial time? Are

there even subexponential methods?

Of ourse, aÆrmative answers would arry over to GRAPH-ISO. Until suh

time as this is resolved, implemented methods that rely on general proedures

for STAB, INTER or CENT annot be proved eÆient. In partiular, they must

be exluded from the polynomial-time toolkit.

We emphasize \general" in the last paragraph, for it is entirely plausible that

the problems an often be solved eÆiently. The hallenge that we put forth,

therefore, is to bak this up with theory.

Question 2. For what lasses of inputs do implemented proedures, or mod-

i�ations thereof, for STAB, INTER or CENT, have polynomial (or subexpo-

nential) worst ase performane?

If the question seems vague, we welome reformulation, even to the exlusion

of polynomial time as a targeted riterion. Assuming there is an aknowledged

lass of \interesting" groups, what an you guarantee about the running time

over that lass? A pro�ered system should be able to promise eÆieny beyond

the observation that a proedure took S seonds for group G on mahine M .

At �rst glane, the sentiment that STAB, et., are \not hard in pratie,"

seems entirely onsistent with feelings about GRAPH-ISO. However, in the latter

ase, one an provide some theoretial justi�ation, sine there are well-de�ned
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and aepted notions of random graphs, with respet to whih naive isomorphism-

testing proedures are provably fast on average (e.g., [5℄). Can one do the same

for groups?

Question 3. What is the average running time of implemented proedures

for STAB, et.?

We leave open the hoie of probability distributions from whih to approah

this problem. A uniform distribution over all permutation groups is just one

possibility. One ould also look at onjugay lasses (in Sym(
)) or even iso-

morphism lasses. One should, as well, look at this problem for restrited lasses

of groups.

In Setions 6 and 7, we do give examples of proedures for STAB, INTER,

CENT that are provably in polynomial time for spei�ed input lasses, inluding,

for example, solvable groups.

The similarity of these problems to GRAPH-ISO arries over to analogues of

the GRAPH-AUTO/GRAPH-ISO relationship. Namely, there is, in eah ase,

an equivalent deision problem in NP. Essentially, these may be obtained by

substituting osets for (one or both of) the groups in the problem and asking

whether the targeted set is nonempty. E.g., orresponding to INTER, we ask

whether Gx \H 6= ;. Then, with minor reformulations, we obtain the following

problems orresponding, respetively, to STAB, INTER, CENT.

Problem. SET-TRANPORTER (TRANS)

Input: G � Sym(
); �

1

;�

2

� 
.

Question: Is there some g 2 G suh that �

g

1

= �

2

?

Problem. DOUBLE-COSET EQUALITY (DC-EQ)

Input: G;H � Sym(
); x

1

; x

2

2 Sym(
).

Question: Does Gx

1

H = Gx

2

H?

Problem. CONJUGACY OF ELEMENTS (CONJ-ELT)

Input: G � Sym(
); x

1

; x

2

2 Sym(
).

Question: Is there some g 2 G suh that x

g

1

= x

2

?

Note, we inlude \ELEMENTS" in the title spei�ally to distinguish from the

orresponding question of onjugay of groups (see Setion 10.2).

We have the following analogue of Proposition 4.1.

Proposition 4.4. STAB is equivalent to eah of the problems TRANS, DC-

EQ and CONJ-ELT.

Proof. We outline this for the equivalene STAB � TRANS. (One an also

get CENT � CONJ-ELT and INTER � DC-EQ by establishing TRANS �

CONJ-ELT � DC-EQ the way one established STAB � CENT � INTER. Note
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that DC-EQ is trivially restated as testing non-emptiness of an intersetion of a

group H

x

�1

1

and a oset Gx

2

x

�1

1

.)

Reduing TRANS to STAB: Given an instane (G;�

1

;�

2

) of TRANS, on-

sider the wreath produt

^

G = G o Z

2

ating on the disjoint union 


_

[
 of two

opies of 
 and let

^

� = �

1

_

[�

2

, in whih �

i

is onsidered as lying in the ith opy

of 
. Then the answer to TRANS is aÆrmative i� some generator of Stab

^

G

(

^

�)

swithes �

1

and �

2

.

For a reverse redution, we onsider the following analogue of RES-AUTO:

Problem. RESTRICTED SET STABILIZER (RES-STAB)

Input: G � Sym(
);� � 
; sequenes !

1

; : : : ; !

m

and  

1

; : : : ;  

m

in 
.

Question: Is there some g 2 Stab

G

(�) suh that !

g

i

=  

i

for 1 � i � m.

Reduing RES-STAB to TRANS: Find, using (3.9), the suboset Hy of G

onsisting of elements mapping !

i

7!  

i

for 1 � i � m; apply TRANS to

(H;�;�

y

�1

).

Reduing STAB to RES-STAB: This proeeds exatly as the redution of

GRAPH-AUTO to RES-GRAPH-AUTO.

Remark. Extending the analogy to GRAPH-ISO, Babai and Moran [8℄ have

shown that TRANS (therefore DC-EQ and CONJ-ELT) ould be NP-omplete

only if the polynomial-time hierarhy ollapses to �

p

2

= �

p

2

. Thus, even if

GRAPH-ISO were to be resolved via other methods (there is a legion of suf-

ferers from the \Graph-Isomorphism Disease", see [28℄ for traditional attaks)

suh group-theoreti problems would very possibly remain as outstanding andi-

dates for membership in a omplexity lass stritly between P and NP-Complete.

There is also the possibility of an aÆrmative answer to the following open ques-

tion:

Question 4. Is DC-EQ (equivalently TRANS, CONJ-ELT) polynomial-time

reduible to GRAPH-ISO?

See Setion 10 for additional open questions on where group-theoreti deision

problems �t in this hierarhy.

5. Not Likely to be in Polynomial Time

A suggested approah to DC-EQ (e.g., [9, 19℄) has been to determine, in any

given double-oset GxH , its lexiographially least element, as Gx

1

H = Gx

2

H

i� the lex-least element in Gx

1

H is the lex-least element in Gx

2

H . This is anal-

ogous to, and a generalization of, attaking GRAPH-ISO by establishing lexio-

graphially least representations (e.g. lex-least adjaeny matries) as anonial

forms.

Of ourse, proponents realize that the approah has limitations. It is never-

theless worthwhile to provide theoretial substantiation of its diÆulty, namely,

that it involves an NP-hard problem.
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We suppose that 
 is linearly ordered with respet to a relation <. Then

Sym(
) aquires a lexiographi ordering �, spei�ally, if x; y 2 Sym(
) and

x 6= y, then x � y i� !

x

< !

y

for the least ! 2 
 suh that !

x

6= !

y

.

We state a polynomial-time equivalent deision problem in order to bring the

question into NP.

Problem. LEXICOGRAPHIC LEADER in DOUBLE COSET (LLDC)

Input: A linearly-ordered set 
; G;H < Sym(
); x; y 2 Sym(
).

Question: Is there some z 2 GxH suh that z � y?

LLDC is in NP, for one an guess permutations g; h and verify that g 2 G,

h 2 H and gxh � y. Clearly, if one ould �nd lex-least elements in polynomial

time then LLDC would be solvable in polynomial time. Conversely, a polynomial

number of alls to an LLDC proedure would suÆe in a binary-searh proedure

for lex-least elements.

We show

Theorem 5.1. LLDC is NP-omplete.

In fat, we give two distint redutions of known NP-omplete problems to

LLDC, as they involve di�erent, yet seemingly reasonable, lasses of groups and

seem to display di�erent reasons for the diÆulty. The �rst shows that LLDC is

\hard" even if G and H are symmetri groups (not, of ourse, in their natural

ations). The seond redution shows that LLDC is \hard" even if G and H are

abelian and even if the orbits of hG; x;Hi are small (size 3). (However, see the

remark following the proofs.)

First proof of Theorem 5.1. It is known that the following problem is

NP-omplete (see, e.g., [12℄).

Problem. MAXIMAL CLIQUE (MAX-CLIQ)

Input: Graph G = (V;E), integer K.

Question: Does G ontain a lique of ardinality K?

(Reall that W � V is alled a lique in G if fw

1

; w

2

g 2 E, for all w

1

; w

2

2W .)

We redue MAX-CLIQ to LLDC, thereby establishing LLDC is also NP-

omplete:

Let (G = (V;E);K) be an instane of MAX-CLIQ. We may assume that V is

linearly ordered so that V = fv

1

; : : : ; v

m

g, the subsripts reeting the ordering.

Let 
 be the set of pairs ffv

i

; v

j

g j 1 � i < j � mg. Then 
 is linearly ordered

with fv

i

; v

j

g < fv

k

; v

l

g, for 1 � i < j � m, 1 � k < l � n, if either j < l or j = l

and i < k. For any q, 1 � q �

�

m

2

�

, let 


q

denote the set onsisting of the �rst q

elements of 
 in this ordering.

Note that E � 
. We may assume that jEj �

�

K

2

�

. Let x be any permutation

in Sym(
) that maps 


jEj

to E. Let H be the natural image of Sym(V ) in

Sym(
) and let G = Sym(
)


n


jEj

(so G ' Sym(


jEj

)).
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Let y 2 Sym(
) be the transposition swithing the elements in positions

�

K

2

�

and

�

K

2

�

+ 1. Then, for z 2 Sym(
), z � y i� z pointwise �xes 


(

K

2

)

We

laim there is a lique of size K in G i� 9z 2 GxH suh that z � y. This

follows from the fat that there is a lique in G of ardinality K i� there exists

h 2 H(= Sym(V )) suh that (


(

K

2

)

)

h

� E (the lique then being fv

h

1

; : : : ; v

h

K

g).

But, as the permutations in Gx map 


(

K

2

)

preisely to the subsets of ardinality

�

K

2

�

in the set E, there is a lique of size K i� some permutation in H agrees

with some permutation in Gx on 


(

K

2

)

, whih is true i� some z 2 GxH pointwise

�xes 


(

K

2

)

, i.e., i� z � y.

Seond proof of Theorem 5.1. The following is also NP-omplete (see,

e.g., [12℄).

Problem. EXACT 3-COVER (X3C)

Input: A set � together with a olletion � of size-3 subsets of �.

Question: Is there a subolletion �

0

� � with j�

0

j = j�j=3 suh that

� =

S

�2�

0

�.

Redution of X3C to LLDC:

Given an instane (�;�) of X3C, we onstrut an instane (
; G;H; x; y) of

LLDC as follows.

We may assume the triples in � are distint. Let 	 = ff�; �

0

g j �; �

0

2

�; � \ �

0

6= ;g, the olletion of unordered-pairs of interseting triples. Let

� = � [� [	. The desired permutation domain is


 = �� f1; 2; 3g

and we �x any linear ordering of 
 subjet only to the ondition that � � f1g

preedes �� f2g and �� f2g preedes �� f3g.

For any � 2 �, we let a

�

2 Sym(
) be the 3-yle ((�; 1); (�; 2); (�; 3)) (i.e.,

(�; 1) ! (�; 2) ! (�; 3) ! (�; 1)), and let b

�

2 Sym(
) be the transposition

((�; 1); (�; 2)). (Note that hfa

�

j � 2 �gi is an elementary abelian 3-group and

hfb

�

j � 2 �gi is an elementary abelian 2-group.) For � = f�

1

; �

2

; �

3

g 2 �,

de�ne 

�

2 Sym(
) by



�

= a

�

1

a

�

2

a

�

3

a

�

�

Y

�2 2	

a

 

:

Now let

G = hf

�

j � 2 �gi;

H = hfb

�

j � 2 � [	gi;

x =

Y

�2�

a

�1

�

:
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Further, let y 2 Sym(
) be the transposition swithing the last point in ��f1g

with the �rst point in �� f2g. Then, for z 2 Sym(
), z � y i� z �xes �� f1g

pointwise.

To establish the redution we show that LLDC with input (
; G;H; x; y) has

an aÆrmative answer i� X3C with input (�;�) has an aÆrmative answer.

First suppose that �

0

� � is an exat over of �. Let

g =

Y

�2�

0



�

2 G

h =

Y

�2�

0

(b

�

�

Y

�2 2	

b

 

) 2 H:

We laim that gxh pointwise �xes � � f1g (whene gxh � y). To see this:

for � 2 �, � is in � for exatly one � 2 �

0

so that (�; 1)

gxh

= (�; 2)

xh

=

(�; 1)

h

= (�; 1); for � 2 � n �

0

, (�; 1) is �xed by eah of g; x; h; for � 2 �

0

,

(�; 1)

gxh

= (�; 2)

xh

= (�; 2)

h

= (�; 1); �nally, for  2 	, if  \ �

0

= ; then

( ; 1) is �xed by eah of g; x; h, otherwise � 2  for preisely one � 2 �

0

so that

( ; 1)

gxh

= ( ; 2)

xh

= ( ; 2)

h

= ( ; 1).

Conversely, suppose that gxh � y, for g 2 G; h 2 H , so that gxh pointwise

�xes �

1

. We an express

g =

Y

�2�



e

�

�

; where e

�

= 0; 1; or 2;

h =

Y

�2�

0

b

�

�

Y

 2	

0

b

 

; where �

0

� �;	

0

� 	:

We show that �

0

is an exat over of �: For � 2 �, (�; 1)

gxh

= (�; 1) implies

e

�

= 0 if � 62 �

0

and e

�

= 1 if � 2 �

0

. Hene, g =

Q

�2�

0



�

. For � 2 �,

(�; 1) = (�; 1)

gxh

= (�; 1)

ga

�1

�

, and so � 2

S

�2�

0

�. Finally, we must show that

�

0

does not ontain �; �

0

with � \ �

0

6= ;. Suppose, to the ontrary, that suh

�; �

0

2 �

0

and let  = f�; �

0

g 2 	; then ( ; 1)

gxh

= ( ; 1)



�



�

0

h

= ( ; 3)

h

=

( ; 3), ontraditing the fat that gxh �xes ( ; 1).

Remarks. The onstrution in the seond proof should be ompared with the

result of Theorem 6.2, where it is shown that, with a judiious hoie of ordering

of 
 (determined by G alone), the problem is atually in polynomial time for

interesting lasses of groups G. This inludes all solvable groups as well as all

groups with bounded orbits. Either of these onditions are satis�ed by the groups

of the above redution, in fat for hG; x;Hi.

On the other hand, we onjeture that there is no analogous �x for the situ-

ation enountered in the �rst proof. Therein 
 is the set of size-2 subsets of a

linearly ordered set V , H the natural image of Sym(V ) in Sym(
) and G is the

subgroup of Sym(
) �xing all but the �rst q points for some q �

�

jV j

2

�

. In this

speial setting, we ask



154 E. M. LUKS

Question 5. Given suh 
, G, H, is there a reordering of 
 with respet to

whih the lexiographially least elements in GxH, for any x 2 Sym(
), an be

found in polynomial time?

With suh an ordering in hand, one ould de�ne a polynomial-time omputable

anonial form for graphs G = (V;E) with jEj = q: take any x 2 Sym(
)

suh that 


x

q

= E (


q

remains the �rst q elements in the original ordering);

�nd z, the lex-least element (with respet to the new ordering) in GxH ; set

CF(G) = (V;


z

q

). The graph CF(G) is independent of the hoie of x; even more

signi�antly, it is a omplete isomorphism invariant (hene a anonial form),

that is, G = (V;E) is isomorphi to G

0

= (V;E

0

) i� CF(G) = CF(G

0

).

As we do not expet an aÆrmative answer to Question 5, we suggest looking

for evidene to the ontrary. Could one show, for example, that with suh G

and H , LLDC remains NP-omplete for any presribed ordering of 
?

An important restrited ase of LLDC ours when G = H (e.g., [19℄). Thus,

it is worth observing that this ase is equally \hard".

Corollary 5.2. LLDC remains NP-omplete when G = H.

Proof. We desribe a polynomial-time redution of the general LLDC prob-

lem to this speial ase.

Suppose (
; G;H; x; y) is an instane of LLDC.

Set

^


 = 
�f1; 2g and linearly order

^


 so that (!; i) � ( ; j) if i < j or if i = j

and ! �  . Let

^

G = G�H at on

^


 via (!; 1)

(g;h)

= (!

g

; 1), (!; 2)

(g;h)

= (!

h

; 2)

for ! 2 
; g 2 G; h 2 H (thus G ats naturally on 
�f1g and H ats naturally

on 
 � f2g). Let x̂; ŷ 2 Sym(

^


) satisfy (!; 1)

x̂

= (!

x

; 2), (!; 1)

ŷ

= (!

y

; 2) and

(!; 2)

x̂

= (!; 2)

ŷ

= (!; 2) for ! 2 
.

To establish the redution, we show that the instane (
; G;H; x; y) of LLDC

has an aÆrmative answer i� the instane (

^


;

^

G;

^

G; x̂; ŷ) has an aÆrmative answer.

Suppose 9g 2 G; h 2 H satisfying gxh � y. Then (g; 1)x̂(1; h) � ŷ. This

follows from that the fat that, for ! 2 
, (!; 1)

(g;1)x̂(1;h)

= (!

gxh

; 2).

Conversely, suppose 9(g

1

; h

1

); (g

2

; h

2

) 2

^

G satisfying (g

1

; h

1

)x̂(g

2

; h

2

) � ŷ.

Then g

1

xh

2

� y. To see this: the �rst point in

^


 at whih (g

1

; h

1

)x̂(g

2

; h

2

) and

ŷ di�er must lie in 
�f1g for no permutation agrees with ŷ on 
�f1g and stritly

preedes it; the result now follows from the observation (!; 1)

(g

1

;h

1

)x̂(g

2

;h

2

)

=

(!

g

1

xh

2

; 2).

Remark. A ontext in whih LLDC arises is the atual enumeration of all

double osets GxH of subgroups G;H of some L 2 Sym(
) (see, e.g., [9℄). (For,

assuming LLDC is not signi�antly harder than DC-EQ for the partiular groups,

it would be most eÆient to ompute and store the lex-least elements as anonial

representatives of their double osets.) Sine the answer is not neessarily of

polynomial size, the natural question to ask in this ase is how muh work has

to be done beyond that whih is ditated by the output.



PERMUTATION GROUPS AND POLYNOMIAL-TIME COMPUTATION 155

Question 6. Given G;H;L 2 Sym(
) with G;H � L, an the double osets,

GxH, for x 2 L, be enumerated in time O((� + n)



), where � is the number of

suh double osets?

The proof of Theorem 5.1 ontains the ingredients of another NP-omplete-

ness result. Consider the lass of problems

Problem. MEMBERSHIP IN PRODUCT OF m GROUPS (m-MEMB)

Input: A

1

; A

2

; : : : ; A

m

� Sym(
); x 2 Sym(
).

Question: Is x 2 A

1

A

2

: : : A

m

?

Of ourse, 1-MEMB is in polynomial time by (3.8). The problem 2-MEMB is

simply a restatement of DC-EQ, whih is of unknown omplexity.

What happens for m � 3? Clearly, m-MEMB is in NP, for one an guess

and verify a fatorization x = a

1

� � � a

m

with a

i

2 A

i

. Now, in the redution

in eah proof of Theorem 5.1, the element y was taken to be a transposition

of two adjaent elements !

i�1

; !

i

in the linearly ordered 
. Then, for z 2

Sym(
), z � y i� z 2 Sym(
)

(i)

. Hene, there exists z 2 GxH preeding y i�

GxH \ Sym(
)

(i+1)

6= ;, whih ours i� x 2 GSym(
)

(i+1)

H . It follows that

Proposition 5.3. m-MEMB is NP-omplete for m � 3.

Remark. Variations on these redutions an be used to show that even the

speial ase of testing membership in GHG, for G;H � Sym(
), is NP-omplete.

Furthermore, this remains NP-omplete even when G and H are both abelian.

6. A Polynomial-Time Instane of LLDC

Following tehniques introdued in [20℄ and [6℄, we show that the diÆulty

of the LLDC instane used in the seond proof of Theorem 5.1 is attributable

entirely to the partiular linear ordering of 
. That is, for a more general hoie

of G, one an de�ne (in polynomial time) a linear ordering of 
 so that the

lexiographially-least element in any GxH is obtainable in polynomial time.

This will, in turn, yield polynomial-time solutions to speial ases of INTER,

STAB and CENT.

The restrition to be plaed, on G alone, is a limit on the sizes of the nonyli

omposition fators. Spei�ally, for any �xed integer d, let �

d

denote the lass

of groups all of whose non-yli omposition fators are isomorphi to subgroups

of S

d

. So, in partiular, �

d

inludes all solvable groups. The following is proved

in [2℄.

Lemma 6.1 (Babai, Cameron, P

�

alfy). There is a onstant  suh that if

G is a primitive subgroup of Sym(	) and G 2 �

d

then jGj = O(j	j

d

).

Remark. Sine many problems on permutation groups have natural redu-

tions to the primitive ase, results that bound the size of primitive groups under

various onditions are often essential to the analysis (see, e.g., [7℄ for other
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examples). Indeed, the investigations leading to Lemma 6.1 were inspired by

omputational omplexity appliations. In partiular, the lemma enables a sim-

pli�ation as well as a wider appliability of the set-stabilizer algorithm in [20℄.

In this setion, the lemma omes into play in the base ase of a \divide-and-

onquer" algorithm that is guided by the orbit/imprimitivity struture of G. For

onveniene, we keep trak of this in a struture forest F for G. Suh a forest

inludes one struture tree for eah orbit. The (rooted) tree T

�

on the orbit � has

leaf set � and is suh that the ation of G on � an be lifted to automorphisms

of T

�

, with the further property that the subgroup of G that �xes any node

ats primitively on the hildren of that node. The polynomial-time onstrution

of a suitable T

�

is an easy onsequene of (3.2): if G is primitive then simply

attah all points to a root, else �nd any non-trivial blok �

1

and reursively

onstrut a struture tree for the ation of G on f�

1

g

G

and a tree for the ation

of Stab

G

(�

1

) on �

1

, using G to opy the latter to the other bloks (in this ase,

Stab

G

(�

1

) is the stabilizer of a single \point" in the ation on f�

1

g

G

).

We establish some additional notation that is onvenient for a reursive ex-

ploitation of orbits and bloks. Let 
 be a �xed linearly-ordered set. For

any � � 
, Sym(
)

�

aquires a lexiographi linear ordering (via f

1

� f

2

i�

f

1

(Æ) < f

2

(Æ) for the least Æ 2 � suh that f

1

(Æ) 6= f

2

(Æ)). De�ne � : Sym(
)�

Sym(
)! Sym(
) by �(g; h) = g

�1

h and let pr

i

: Sym(
)�Sym(
)! Sym(
),

for i = 1; 2 be the projetions onto the �rst and seond fators, respetively. For

A � Sym(
) � Sym(
), � � 
, let ``

�

(A) denote the lexiographially-least

element in �(A)

�

; observe that the lex-least element of GxH is ``




((1; x)G�H).

We also onsider the elements that indue ``

�

(A), namely LL

�

(A) = fz 2 A j

�(z)

�

= ``

�

(A)g. We need the following fats.

Fat 1. If � = �

1

_

[�

2

with the elements of �

1

stritly preeding all those

of �

2

then

LL

�

(A) = LL

�

2

(LL

�

1

(A)):

Fat 2. If A = A

1

[ A

2

[ � � � [ A

m

then

``

�

(A) = lex-leastf``

�

(A

i

) j 1 � i � mg

LL

�

(A) =

[

fLL

�

(A

i

) j ``

�

(A

i

) = ``

�

(A); 1 � i � mg

Fat 3. If A is a left oset of M and � is invariant under pr

1

(M), then

LL

�

(A) is a left oset of Stab

M

(f(Æ; Æ

``

�

(A)

) j Æ 2 �g).

The proofs of Fats 1 and 2 are straightforward. Fat 3 follows from the

observation that, for u; v 2 Sym(
) � Sym(
), if pr

1

(u

�1

v) stabilizes � then

�(u)

�

= �(v)

�

i� u

�1

v stabilizes f(Æ; Æ

�(u)

) j Æ 2 �g.

These fats are used in the main theorem of this setion:
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Theorem 6.2. Let d be �xed. Given G < Sym(
), with G 2 �

d

, in polyno-

mial time one an establish a linear ordering of 
 with respet to whih one an

then �nd, in polynomial time, the lexiographial least element in GxH for any

given x 2 Sym(
) and any given H � Sym(
).

Proof. Let F be a �xed struture forest for G. Taking any planar layout of

F , with the leaves (i.e., the set 
) situated at the same level, order the leaves

left-to-right.

To aommodate reursion, we desribe a general proedure for �nding

LL




(zM) where zM is any left oset ofM � Sym(
)�Sym(
) and pr

1

(M) < G.

(Our overall goal is the speial ase ``




((1; x)G�H).) Note that we may onsider

M as ating on 
 via either pr

1

or pr

2

, and pr

1

(M) also ats on F .

Assuming the orbits of G our in the order 


1

; : : : ;


m

, we have, by Fat 1,

LL




(zM) = LL




m

(� � � (LL




1

(zM)) � � � ):

By Fat 3, the intermediate answers are always left osets.

Thus it suÆes to desribe the onstrution of LL

�

(zM) where � is the set

of roots desendent from a node � in F and � (therefore �) is �xed by pr

1

(M).

If � is a leaf, then � = f�g. In this ase, ``

�

(zM) is the least element in

the orbit of �

�(z)

under pr

2

(M). If wL is the suboset of M mapping �

�(z)

to

``

�

(zM) (via the pr

2

ation) then LL

�

(zM) = zwL.

If � is not a leaf, then let L be the subgroup of M that �xes the immediate

hildren, �

1

; : : : ; �

r

(listed left-to-right), of � (L is found by an appliation of

(3.6)) and �nd a left transversal fw

1

; : : : ; w

jM : Lj

g for L in M , so

M =

jM : Lj

[

i=1

w

i

L:

By Fat 2, omputation of LL

�

(zM) follows from omputation of LL

�

(zw

i

L) for

1 � i � jM : Lj. By Fat 3, eah ontributing subanswer, i.e., eah LL

�

(zw

i

L),

for whih ``

�

(zw

i

L) = ``

�

(zM), is a oset v

i

K of the same subgroup K =

Stab

L

(f(Æ; Æ

``

�

(zM)

) j Æ 2 �g), so that the subanswers v

i

1

K; : : : ; v

i

s

K glue

together to a oset as in:

v

i

1

K [ � � � [ v

i

s

K = v

i

1

hK; fv

�1

i

1

v

i

t

g

2�t�s

i:

Finally, to ompute LL

�

(zw

i

L), we exploit the fat that pr

1

(L) stabilizes eah

�

i

, in the iterative approah

LL

�

(zw

i

L) = LL

�

r

(� � � (LL

�

1

(zw

i

L)) � � � );

where �

i

denotes the set of leaves desendent from �

i

.

For the purpose of timing, we observe that, that jM : Lj is bounded by the

size of the primitive group in the ation of G

�

on f�

1

; : : : ; �

r

g. Suppose now

that G 2 �

d

. Then jM : Lj � O(r

d

). Thus, the one problem on � has involved
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at most O(r

d+1

) reursive alls to problems on sets of size j�j=r. It follows that

the timing for the entire proedure is O(n

d+

0

).

Sine double osets an be ompared when lex-least elements are available,

Theorem 6.2 has immediate appliations to the problems of Setion 4.

Corollary 6.3. Let d be �xed. Given G < Sym(
), with G 2 �

d

, in poly-

nomial time one an

(i) for any �

1

;�

2

� 
, test whether there exists g 2 G suh that �

g

1

= �

2

;

(ii) for any given H � Sym(
) and any x

1

; x

2

2 Sym(
) test whether

Gx

1

H = Gx

2

H;

(iii) for any x

1

; x

2

2 Sym(
), test whether there exists g 2 G suh that

x

g

1

= x

2

.

The methods of Setion 4 yield polynomial-time equivalent \AUTO" versions

for the statements in Corollary 6.3.

Corollary 6.4. Let d be �xed. Given G < Sym(
), with G 2 �

d

, in poly-

nomial time one an

(i) for any � � 
, �nd Stab

G

(�);

(ii) for any given H � Sym(
), �nd G \H;

(iii) for any x 2 Sym(
), �nd C

G

(x).

Remarks. The timing in all of these results, as implied by the proof of Theo-

rem 6.2, an be expressed in the form O(j
j

d

), for onstant . An improvement

desribed in [4℄ results in the timing O(j
j

d= log d

).

If G = (V;E) is a onneted graph of valene d, and e 2 E, then Aut(G)

e

2

�

d�1

. This observation, together with the result in Corollary 6.4(i), was used

in [20℄ to establish a polynomial-time isomorphism test for graphs of bounded

valene. Using the improved timing as above, one gets isomorphism-testing for

valene-d graphs in time O(jV j

d= log d

) (so the exponent is o(d)). Together with

the \valene-redution" trik of Zemlyahenko [31℄, this, in turn, yields the best-

known timing for general graph isomorphism, O(n

p

n= logn

) [4℄.

The result of Corollary 6.4(i) also underlies polynomial-time isomorphism

tests for a broader lass of graphs generalizing both bounded valene and bounded

genus [25, 26℄.

We remark, �nally, that Corollary 6.4 an be approahed diretly, and possibly

a bit more ompatly, than via Theorem 6.2. However, there is some dividend

in the lex-least approah. For example, one an apply it to �nd anonial forms

in the above graph lasses [6℄.
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7. Exploiting Normality

Problems that involve �nding normal subgroups often have eÆient solutions

aording to the riterion of this paper. We illustrate the point, in this setion,

with the problems of Setion 4. Other examples are given in Setions 8 and 9.

We �rst onsider INTER.

Proposition 7.1. Given G;H � Sym(
), where G normalizes H, then

G \H an be found in polynomial time.

Proof. This is an appliation of (3.5), for we have the tower

G \H = G \G

(n)

H � G \G

(n�1)

H � � � � � G \G

(2)

H � G \G

(1)

H = G:

Generators for G

(i)

H are available (union of generators for G

(i)

and generators

for H) and so membership-testing in both G and G

(i)

H , therefore in G\G

(i)

H ,

is in polynomial time. Moreover,

jG \G

(i�1)

H : G \G

(i)

H j � jG

(i�1)

H : G

(i)

H j � jG

(i�1)

: G

(i)

j � n� i:

Hene, (3.5) applies.

The result generalizes to

Corollary 7.2. Given G and H suh that H CC hG;Hi. Then G \H an

be found in polynomial time.

Proof. If G normalizes H then apply Proposition 7.1. Otherwise, sine

H CC hG;Hi, H

G

< hG;Hi and so G \ H

G

< G. It suÆes then to observe

that G \ H = H \ (G \ H

G

), whih we ompute reursively (G \ H

G

being

obtained by the proposition).

Remark. In partiular, Corollary 7.2 o�ers an alternative approah for inter-

seting subgroups of a nilpotent group (wherein all subgroups are subnormal).

The method appears substantially di�erent from the orbit and imprimitivity-

bloks divide-and-onquer that led to Corollary 6.4(ii).

If a targeted normal subgroup N E G an be interpreted as the kernel of some

indued ation � : G ! Sym(	), then N = G

	

(obtainable in polynomial time

by (3.6)). We use this in several plaes, inluding the following.

Proposition 7.3. Given G;H � Sym(
), where G normalizes H, then

C

G

(H) an be found in polynomial time.

Proof. We desribe an ation � : G ! Sym(	), with j	j � j
j. Then if

K = ker(�), we desribe a new ation � : K ! Sym(
) suh that C

G

(H) =

ker(�).

Let 	 be the set of equivalene lasses in 
 relative to the relation de�ned

by � � � , H

�

= H

�

. Let � : G ! Sym(	) be the ation of G indued by

onjugation. Note that C

G

(H) � K = ker(�).
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To de�ne �, �x a point �

�

in eah orbit � of H . Then for k 2 K let

(�

h

�

)

�(k)

= �

h

k

�

:

Sine H

k

�

�

= H

�

�

, � is well-de�ned, whene it is immediate that � is a homo-

morphism. We need to verify only that C

G

(H) = ker(�)

Clearly, if k entralizes H then k 2 ker(�). Conversely, suppose k 2 ker(�).

Let h 2 H ; we must show hk = kh. For any ! 2 
, ! = �

h

1

�

for some � and

some h

1

2 H . Sine k 2 ker(�),

!

h

= �

h

1

h

�

= �

(h

1

h)

k

�

= (�

h

k

1

�

)

h

k

= (�

h

1

�

)

h

k

= !

h

k

:

Hene h

k

= h.

Remarks. In [21℄, it is observed that, when G normalizes H , C

G

(H) an be

diretly interpreted as a kernel, though the ation is on a set of size O(j


2

j).

The above approah avoids this blowup in spae demands.

Proposition 7.1 o�ers still another approah, as entralizers in Sym(
) an

be found in polynomial time (see, e.g., [10℄ or [15℄). With that in mind, we an

employ C

G

(H) = G \ C

Sym(
)

(H).

Proposition 7.3 has the immediate orollary

Corollary 7.4. Given G � Sym(
), then the enter of G an be found in

polynomial time.

In pratie, enters are typially omputed by utting down to the entral-

izers of suessive generators. Sine the elements to entralize are hosen in a

speial way, for example, the �rst one from within the group itself, one might ask

whether there may be a polynomial-time approah of this sort, notwithstanding

the unertain omplexity of general CENT. However, we observe that in the �rst

round, one is already solving a problem as hard as CENT. Consider

Problem. INTERNAL-CENTRALIZER (INT-CENT)

Input: G � Sym(
); x 2 G.

Find: C

G

(x).

Unfortunately,

Proposition 7.5. INT-CENT is polynomial-time equivalent to STAB.

Proof. Suppose INT-CENT is in polynomial time. Then, with notation as

in the redution of STAB to CENT (in proof of Proposition 4.3), in the faithful

ation of hG; xi on

b


 we ould �nd C

hG;xi

(x) Observe, however, that hG; xi also

ats on the system 
 = ff!

1

; !

2

g j ! 2 
g, whih may be identi�ed with 
 (via

(!

1

; !

2

)$ !); the resulting ation of C

hG;xi

(x) on 
 is C

G

(x).
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Remarks. We note that the proof shows �nding C

G

(x) is \no easier" when

x 2 G is an involution.

CONJ-ELT (Setion 4) has an analogous \internal" ase in whih x

1

; x

2

are

assumed to be in G. Again, this is polynomial-time equivalent to the general

problem.

Corollary 7.2 inspires the question of whether the following is also in polyno-

mial time.

Problem. SUBNORMAL-CENTRALIZER (SUBNORM-CENT)

Input: G;H � Sym(
) with H CC G.

Find: C

G

(H).

However, this problem, too, is no easier then CENT.

Proposition 7.6. SUBNORM-CENT is polynomial-time equivalent to STAB.

Proof. In the above disussion of INT-CENT, hxi

G

is an elementary abelian

2-group, so that hxi E hxi

G

E hG; xi, whene hxi CC hG; xi.

Proposition 7.3 does give a bit of information about general entralizers.

Corollary 7.7. Given G;H � Sym(
), then Core

G

(C

G

(H)) an be found

in polynomial time.

Proof. Core

G

(C

G

(H)) = C

G

(H

G

).

Following the redution of STAB to CENT, this immediately yields

Corollary 7.8. Given G � Sym(
) and � � 
, then Core

G

(Stab

G

(�))

an be found in polynomial time.

Corollaries 7.7 and 7.8 prompt the question of whether Core

G

(G\H) an be

omputed in polynomial time. It an. However, we do not know an \elementary"

proof (see Proposition 8.6).

Remarks. The polynomial-time methods for Propositions 7.1, 7.3 ultimately

utilize the fat that the targeted subgroup H � G lies in a hain

H = H

m

� H

m�1

� � � � � H

0

= G(1)

with jH

i

: H

i+1

j \small". In fat, this is true for any H CC G, where \small"

an be interpreted as � n. To show this, it suÆes to onsider to assume H E G,

in whih ase

H = HG

(n)

� � � �HG

(2)

� HG

(1)

= G:

This suggests that (3.5) should provide the tool for �nding targeted normal

subgroups muh more generally. The diÆulty that arises, however, is that

we do not have, a priori, ways of \reognizing" the intermediate groups. (See

Question 10, for example.)
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One expets, also, to �nd normal subgroups as kernels of ations. However, for

arbitraryN C G � Sym(
), G=N may not be representable on a polynomial-size

set [27℄. One knows, however, for H CC G, there is a hain

H = L

m

E L

m�1

E � � � E L

0

= G

with L

i

=L

i+1

,! Sym(
) for eah i. (To show this, we may assumeH E G; using

the hain in (1), indutively let L

i+1

be the kernel of the right-multipliation

ation of L

i

on the right osets of H

i+1

in H

i

.) Call the minimal suh m the

depth of L in G. It is not hard to show that if L E G then m = O(log

2

j
j). (This

redues easily to the primitive ase, wherein one uses the Cameron lassi�ation

of primitive groups, see, e.g., [7℄.)

Though we are not sure of polynomial-time impliations, the following ques-

tion seems of interest.

Question 7. What is the least upper bound on the depths of normal and

subnormal subgroups in permutation groups?

The proof of Proposition 7.3 shows, for example, that the depth of the entralizer

of a normal subgroup is at most 2.

8. Quotient Groups

In [18℄, Kantor and Luks suggest the thesis that problems that are in poly-

nomial time for permutation groups remain in polynomial time for quotients of

permutation groups. The justi�ation is not, however, via routine onsideration

of the quotients as permutation groups, as is often the ase in available systems,

inasmuh as quotients may not have any small (polynomial-size) faithful permu-

tation representations [27℄. The generalizations of problems INTER and CENT

provide good illustrations of the tehniques that are brought to bear in [18℄.

Problem. QUOTIENT-INTERSECTION (Q-INTER)

Input: G;H;K � Sym(
) with K E G, K E H.

Find: G=K \H=K.

Problem. QUOTIENT-CENTRALIZER (Q-CENT)

Input: G;K � Sym(
); x 2 Sym(
), with K E G and x normalizing K.

Find: C

G=K

(xK=K).

(G=K;H=K may be onsidered as ontained in the group hG;Hi=K and G=K,

xK=K in the group hG; xi=K.)

Sine permutation representations of the quotients may be infeasible, the ques-

tion arises of whether these problems present a still higher level of hallenge.

However,

Proposition 8.1. Q-INTER and Q-CENT are polynomial-time equivalent to

STAB.
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Proof. It is obvious that Q-INTER is no harder than INTER, sine

G=K \H=K = (G \H)=K.

Redution of Q-CENT to STAB: Let (G;K; x) be an instane of Q-CENT.

Let

^

G = f(g; gk) j g 2 G; k 2 Kg ating on 
 � 
. For x 2 G let �(x) =

f(!; !

x

) j ! 2 
g � 
� 
. Then for (g; gk) 2

^

G, �(x)

(g;gk)

= �(x

g

k), so that

(g; gk) stabilizes �(x) i� [x; g℄ = k

�1

. But gK 2 C

G=K

(xK=K) i� there exists

k 2 K suh that [g; x℄ = k. Hene, if we ompute Stab

^

G

(�(x)) and let H be its

�rst oordinate projetion, we have C

G=K

(xK=K) = H=K.

Remark. Similarly, the quotient versions of DC-EQ and ELT-CONJ are pol-

ynomial-time equivalent to the permutation-group ases.

Thus, it seems, from a polynomial-time perspetive, that these problems do

not get any harder for quotients. In a positive diretion, we next show that the

instanes where INTER and CENT are in polynomial time generalize to quotient

groups.

The following is just a repeat of Proposition 7.1.

Proposition 8.2. Given G;H;K � Sym(
), with K E G and K E H, and

where G=K normalizes H=K, then G=K \ H=K an be found in polynomial

time.

Proof. G=K \H=K = (G \H)=K and the hypotheses imply G normalizes

H .

Corollary 7.2 generalizes immediately, as well.

Generalizations of Corollary 6.4(ii,iii) and Proposition 7.3 require a surprising

amount of additional mahinery.

The following is proved in [16, 17℄.

Lemma 8.3 (Kantor). Given G � Sym(
) then

(i) For any prime p dividing jGj, a Sylow p-subgroup of G an be found in

polynomial time.

(ii) Given Sylow p-subgroups P

1

; P

2

of G, some g 2 G suh that P

g

1

= P

2

an be found in polynomial time.

(iii) Given K;P � Sym(
) with P a Sylow p-subgroup of K and K E G,

then N

G

(P ) an be found in polynomial time.

Quite unlike the methods being desribed in this paper, whih have relied on

elementary group theory, the algorithms and proofs underlying Lemma 8.3 use

substantial onsequenes of the lassi�ation of �nite simple groups, inluding

detailed knowledge of simple-group types. Nevertheless, that having been done,

it is demonstrated in [18℄ that one an e�etively use the result as a \blak-

box" in further, one again elementary, arguments. We illustrate �rst with a

generalization of Corollary 6.4(iii). This involves a onstrutive version of the

well-known
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Frattini argument. Let P � K E G with P a Sylow p-subgroup of K.

Then G = KN

G

(P ).

Proposition 8.4. Given G;K � Sym(
) and x 2 Sym(
), where K E G, x

normalizes K, and with G=K 2 �

d

, then C

G=K

(xK=K) an be found in polyno-

mial time.

Proof. Note that the �

d

hypothesis applies only to G=K. If, however, G 2

�

d

then the redution in the proof of Proposition 8.1 would lead to an instane

of STAB with a group,

^

G, in �

d

, whene we ould apply 6.4(i).

So suppose G 62 �

d

. Then K 62 �

d

. In partiular, K is not nilpotent, so that,

for some prime p dividing jKj, any Sylow p-subgroup, P , of K is not normal.

Find generators for suh a P as well as G

1

= N

G

(P ) and K

1

= N

K

(P ), and �nd

k 2 K suh that P

k

= P

x

(Lemma 8.3). Let y = xk

�1

, so y normalizes P and

therefore normalizes K

1

.

Reursively ompute L=K

1

= C

G

1

=K

1

(yK

1

=K

1

). Then C

G=K

(xK=K) =

LK=K.

The reursive proedure runs in polynomial time sine G

1

< G. The or-

retness is a onsequene of a Frattini argument: Sine G = G

1

K, it suÆes to

show, for g

1

2 G

1

that g

1

K entralizes xK=K (in hG; xi=K) i� g

1

K

1

entralizes

yK

1

(in hL; yi=K

1

). But g

1

K entralizes xK=K i� [g

1

; x℄ 2 K i� [g

1

; y℄ 2 K

i� [g

1

; y℄ 2 K

1

(sine K

1

= N

K

(P ) and both g

1

and y normalize P ) i� g

1

K

1

entralizes yK

1

.

A similar Frattini argument (see [18℄) is used for the following extension of

Corollary 6.4(ii).

Proposition 8.5. Given G;H;K � Sym(
), where K E G, K E H, and

with G=K 2 �

d

, then G=K \ H=K an be found in polynomial time.

We reiterate that, while Corollary 6.4(ii,iii) has been extended to quotient

groups, the fat that the extensions are dependent upon Lemma 8.3, means that

we have now had to invoke the lassi�ation of simple groups. On the other

hand, in the speial ase when hG=K;H=Ki is solvable, there are \elementary"

proofs of Propositions 8.4 and 8.5 based upon results in [22℄.

Question 8. Is there an \elementary" onstrution of C

G=K

(H=K) and/or

G=K \H=K if only G=K is assumed to be solvable?

Our extension of Proposition 7.3 to quotient groups requires the ability to

ompute ores of given subgroups of permutation groups. In pratie, this is

ommonly done by interseting onjugates until the resulting group is normal.

Sine intersetions are not presently available, this approah is not yet feasible

in polynomial time. Nevertheless, ores are attainable. Following the theme of

Setion 7, we observe that the normality of the targeted group failitates this.
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Proposition 8.6. Given G;H � Sym(
), then Core

G

(G \H) an be found

in polynomial time.

Proof. For eah prime p, �nd a Sylow p-subgroup, P

p

, of G. Sine

Core

G

(G \H) E G,

Core

G

(G \H) = hfP

p

\ Core

G

(G \H) j p divides jGjgi:

It suÆes to determine P

p

\ Core

G

(G \H) for eah p. This is made feasible by

the fat that we an test membership in Core

G

(G \ H), that is, if g 2 G then

g 2 Core

G

(G \ H) i� hgi

G

� H . Thus, initially setting T = P

p

, test whether

T

G

� H and, if so, output T ; else we an �nd g 2 G suh that T

g

6� H (the

omputation of generators for the normal losure, (3.11), an maintain generators

as onjugates of the generators of T ) and repeat with T := T \H

g

�1

(interset

by Corollary 6.4(ii)).

The proedure sueeds beause the relation T \ Core

G

(G \H) =

P

p

\ Core

G

(G \H) is maintained.

It is immediate that

Corollary 8.7. Given G;H � Sym(
) with H � G, then Core

G

(H) an be

found in polynomial time.

Remark. The proof of Proposition 8.6 provides a striking ounterpoint to that

of Corollaries 7.7 and 7.8. While the latter two were elementary, the former uses

Lemma 8.3 whih, in turn, uses the lassi�ation of �nite simple groups. On

the other hand, we observe in Setion 9 that another problem (�nding p-ores)

whih, in pratie, has seemed to require onstrution of Sylow subgroups, has

a diret and elementary approah. One again we are led to questions about the

existene of non-lassi�ation-dependent arguments.

Question 9. Is there an \elementary" approah to �nding Core

G

(G\H) or

even for �nding Core

G

(H) when H � G?

In partiular, onsidering the remarks at the end of Setion 7,

Question 10. Is there an \elementary" onstrution of a hain

Core

G

(H) = N

0

E N

1

E � � � E N

m

= G

in whih N

i+1

is the kernel of a \small" degree representation of N

i

?

Of ourse, these issues may lie with Lemma 8.3 itself.

Question 11. Is there an \elementary" approah to �nding Sylow subgroups?

Can one even get started?

Question 12. Is there an \elementary" method for loating an element of

order p where p is a prime dividing jGj?
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Returning to the main issue, we omplete this setion with the following

extension of Proposition 7.3.

Corollary 8.8. Given G;H;K � Sym(
), with K E G and K E H, and

where G normalizes H, then C

G=K

(H=K) an be found in polynomial time.

Proof. Consider G�G ating naturally on the disjoint union, 


_

[
, of two

opies of 
. Let L = f(g; gk) j g 2 G; k 2 Kg and M = f(g; gh) j g 2 G; h 2 Hg.

Find Core

M

(L) (Corollary 8.7) and let C be the group obtained by restriting

Core

M

(L) to the �rst opy of 
. Output C=K.

We show that C=K = C

G=K

(H=K), i.e., that for g 2 G, (g; gk) 2 Core

M

(L)

for some k 2 K i� gK entralizes H=K (in hG;Hi=K). Sine K �K E M , we

have K �K � C so that K � C. Then, for (g; gk) 2 L,

(g; gk) = (g; g)(1; k) 2 Core

M

(L) i� (g; g)

M

� L

i� (g; g)

(1;h)

2 L; 8h 2 H

i� g

�1

g

h

2 K; 8h 2 H

i� gK entralizes H=K:

9. p-Cores

For any prime p and group G, the p-ore of G is the (unique) maximal normal

p-subgroup of G and is denoted O

p

(G).

Theorem 9.1. Given G � Sym(
), then O

p

(G) an be found in polynomial

time.

A suggested method for omputing the p-ore of a permutation group has

been to �nd a Sylow p-subgroup P � G and then use

O

p

(G) = Core

G

(P ):

This does give a polynomial-time solution. However, the oneptual overhead in

this approah to O

p

(G) is that the known method for �nding P (Lemma 8.3)

uses the lassi�ation of �nite simple groups. Nevertheless, unlike the situation

for general ores, we o�er a self-ontained elementary proof of Theorem 9.1,

giving another measure of support for the theme that normal targets are easier

to loate. (See [27℄ for another diret approah to p-ores.)

A few lemmata are required.

Lemma 9.2. Given a transitive G � Sym(
) with jGj > n, in polynomial time

one an �nd a proper normal subgroup or else establish that G does not have a

regular abelian normal subgroup.

Proof. If G

(3)

= 1 then jGj < n

2

. (Reall that G

(3)

is the subgroup �xing

!

1

and !

2

.) In that ase, the elements of G an be listed and the normal losure

of the group generated by eah an be omputed in polynomial time. If none
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of these yield a proper normal subgroup then G does not have a regular abelian

normal (or any proper normal) subgroup.

Assume G

(3)

6= 1 and let 	 = f(G

(3)

)

g

j g 2 Gg. Then 1 < j	j �

�

n

2

�

and

G ats transitively (via onjugation) on 	. Let B be a minimal G-blok system

in 	 (i.e., start with B = 	 and while G does not at primitively on B, replae

B by a nontrivial partition of B into bloks of imprimitivity). Output G

B

(the

kernel of the ation of G on B) if it is proper, else delare that G does not have

a regular abelian normal subgroup.

We must show, under the assumption that G has a regular abelian normal

subgroup A that G does not at faithfully on B. Sine A is regular, there is a

unique a 2 A suh that !

a

1

= !

2

. Suh a normalizes, in fat entralizes, G

(3)

,

for if x 2 G

(3)

, both a and x

�1

ax are elements of A mapping !

1

to !

2

so that

a = x

�1

ax. Hene a �xes the blok in B ontaining G

(3)

. We onlude that

A does not at regularly on B. But then A annot at faithfully on B, for a

normal subgroup of a primitive group is transitive and so, if it is abelian, it is

regular.

Remarks. The above algorithm simpli�es one with an analogous purpose in

[21℄. The modi�ation is due to

�

A. Seress. (See also [7℄.)

Note that the output of a proper normal subgroup leaves open the question

of whether there is a regular abelian normal subgroup, thus leading us to ask

Question 13. Given G � Sym(
), an one determine, in polynomial time,

whether G has a regular abelian normal subgroup and, if so, �nd one?

More generally,

Question 14. Given G � Sym(
), an one determine, in polynomial time,

whether G has a regular normal subgroup and, if so, �nd one?

Both of these issues are in polynomial time for primitive groups: if a primitive

group G has an abelian normal subgroup N , then N = O

p

(G) for (the unique)

prime p dividing n; in general, if H is the smallest nontrivial term in a om-

position series for G ([21℄), then G has a regular normal subgroup i� H

G

is

regular.

Lemma 9.3. Given G � Sym(
), in polynomial time one an �nd a proper

normal subgroup of G or else establish that O

p

(G) = 1.

Remark. Output of a proper normal subgroup does not yet mean O

p

(G) 6= 1.

Proof of lemma. Let � be any nontrivial orbit of G and onstrut a min-

imal G-blok system B in � (so that G ats primitively on B). Let � : G !

Sym(B) be the indued ation. IfK = ker(�) 6= 1, output generators forK. Oth-

erwise, the primitive group �(G) is isomorphi to G. We may assume jGj > n

else G is listable and the lemma resolvable by brute fore. Apply Lemma 9.2 to

�(G). If �(G) has no abelian regular normal subgroup then O

p

(G) = 1 (else,
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if A is the the last nontrivial term in the derived series for O

p

(G), �(A) would

be a regular normal subgroup of the primitive group). Otherwise, the all to

Lemma 9.2 produes Y , generating a proper normal subgroup, in whih ase

return N = �

�1

(Y ). (The lifting �

�1

(y) for y 2 Y is omputed, for example,

(3.9); alternatively, while omputing Y , keep trak of liftings of elements yielding

Y

0

� G with �(Y

0

) = Y ; then N = hY

0

;Ki.)

Lemma 9.4. Given G � Sym(
), in polynomial time one an �nd a nontrivial

normal p-subgroup of G or else establish that O

p

(G) = 1.

Proof. We desribe a proedure p-NORM(G) with output as indiated.

Apply Lemma 9.3. If we disover O

p

(G) = 1 then return that information.

Otherwise we have 1 6= N C G and we proeed as follows.

Reursively all p-NORM(N). If the all returns P E N , then output P

G

.

Else (O

p

(N) = 1) reursively all p-NORM(C

G

(N)) (using Proposition 7.3 to

�nd C

G

(N)). If the all returns for P E C

G

(N) then output P

G

. Else report

\O

p

(G) = 1."

The proedure sueeds sine O

p

(N) = 1 implies O

p

(G) \ N = 1, whene

O

p

(G) � C

G

(N).

Timing onern: What if both reursive alls are made? That only happens

when O

p

(N) = 1 so that p does not divide jN \ C

G

(N)j, whene

jN j

p

jC

G

(N)j

p

= jNC

G

(N)j

p

� jGj

p

where sub-p denotes p-part. Thus, exept for multipliative ontributions from

known polynomial timings, the time is linear in log jGj

p

.

Lemma 9.5. Given P;G � Sym(
) with P C G where P is a p-group and G

is not a p-group, one an onstrut in polynomial time another ation � : G !

Sym(
), where ker(�) is a nontrivial normal p-subgroup of G.

Proof. Replaing P , if neessary, by the last nontrivial term in its derived

series, we may assume that P abelian. Let f�

i

g

i2I

be the set of orbits of P

and let � : G ! Sym(I) be the naturally indued ation, i.e., �

g

i

= �

i

�(g)

for

i 2 I; g 2 G. Choose Æ

i

2 �

i

for eah i 2 I . Then � is de�ned via

(Æ

x

i

)

�(g)

= Æ

x

g

i

�(g)

;

for i 2 I; x 2 P . (The supersripts x; x

g

denote the given ation.) That �

is well de�ned follows from the fat that P

�

i

is regular (sine it is abelian),

for, if Æ

x

i

= Æ

y

i

for x; y 2 P , then x and y at identially on �

i

so that x

g

and y

g

at identially on �

i

�(g)

. From this it is straightforward to see � is a

homomorphism. Sine ker(�) stabilizes eah �

i

and ommutes with the ation

of P thereon, ker(�)

�

i

= P

�

i

. Hene ker(�) is an abelian p-group ontaining P .

It is proper in G as G is not a p-group.
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Proof of Theorem 9.1. Wemay assumeG is not a p-group. By Lemma 9.4,

we establish immediately that O

p

(G) = 1 or else obtain a proper normal p-sub-

group K. In the latter ase, we apply Lemma 9.5 to obtain an ation � : G !

Sym(
) with 1 < K = ker(�) C G. Reursively, ompute hY i = O

p

(�(G)).

Then O

p

(G) = �

�1

(Y ) (omputed, say, via (3.9), wherein it is onvenient to

onsider �(G) as ating on a disjoint opy of 
).

For orretness, we observe that, sine ker(�) is a p-group, �(O

p

(G)) =

O

p

(�(G)).

For the timing, note that the reursive all involves a smaller group �(G) on

a permutation domain of the same size.

Remark. In [18℄ it is pointed out that, in polynomial time, one an onstrut

the maximal normal subgroup with omposition fators in any spei�ed olletion

of simple groups, but the general result ultimately makes use of the lassi�ation

of �nite simple groups.

10. Other Problems and their Relationships

We omment on several other problems resembling GRAPH-ISO and STAB,

et. There are open questions, not only about when they are in polynomial time,

but in the relationships among them.

10.1. Finding Subgroups. Possibly presenting a hallenge beyond STAB

is

Problem. NORMALIZER (NORM)

Input: G;H � Sym(
).

Find: N

G

(H).

Tehniques announed in [22℄ show that NORM is in polynomial time when

hG;Hi is solvable. Questions that immediately arise inlude

Question 15. Is NORM in polynomial time when only G is assumed to be

solvable?

The next step up the group ladder would appear to be

Question 16. Is NORM in polynomial time when hG;Hi is in �

d

(See Se-

tion 6).

How is NORM related to the problems of Setion 4? STAB redues to NORM,

either by Proposition 7.1, or, following the redution of STAB to CENT in

Proposition 4.3, the fat that x is an involution implies N

g

(hxi) = C

G

(x). But

is NORM, in general, \harder" than STAB, et.?

Question 17. Is there a polynomial-time redution of NORM to STAB?

For this question, notie that it would suÆe to �nd a polynomial-time solu-

tion to the speial ase
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Problem. NORMALIZER IN SYMMETRIC GROUP (NORM-SYM)

Input: G � Sym(
).

Find: N

Sym(
)

(G).

Reall that entralizers in the symmetri group are omputable in polynomial

time (see, e.g., [10℄). However, the omplexity of NORM-SYM is open.

Question 18. Is NORM-SYM in polynomial time? Is there even a subexpo-

nential solution?

If NORM-SYM were in polynomial time, then NORM would redue to INTER

(sine N

G

(H) =N

Sym(
)

(H) \G). In fat, even if polynomial-time algorithms

are not available, redutions between the problems are of interest.

Question 19. Is NORM-SYM polynomial-time reduible to STAB? Is STAB

polynomial-time reduible to NORM-SYM?

AÆrmative answers would, respetively, put NORM equivalent to STAB or

NORM-SYM.

One of the reasons that Questions 18 and 19 are partiularly intriguing is

that GRAPH-AUTO is polynomial-time reduible to NORM-SYM (as well as to

STAB). Redution: Given a graph G = (V;E), we onstrut 
, G � Sym(
) and

desribe an epimorphism � : N

Sym(
)

(G) ! Aut(G). Let I = f1; 2; : : : ; 2jV jg.

Set 
 = V �I

_

[ E�f1; 2g (so j
j = 2(jV j

2

+ jEj)). For eah v 2 V , let g

v

be the involution in Sym(
) that transposes (v; 2i� 1) with (v; 2i), for 1 � i �

jV j, and transposes (e; 1) with (e; 2), for every e 2 E having endpoint v, while

leaving other points �xed; thus g

v

moves preisely 2(jV j+degree(v)) points. Set

G = hfg

v

g

v2V

i (an elementary abelian 2-group). Within G the only non-identity

elements that move< 4jV j points are the g

v

. Hene, permutations in N

Sym(
)

(G)

permute the g

v

, so that there is an indued homomorphism � : N

Sym(
)

(G) !

Sym(V ). Sine fv; wg 2 E i� g

v

and g

w

move the same point (i.e., the point

(fv; wg; 1)), it is lear that �(G) � Aut(G). It is straightforward to show that �

is surjetive.

Notie that the above redution involved an elementary abelian 2-group.

Thus, Question 18 is interesting and open even in this ase.

For any �nite �eld GF(q), there is a natural ation of Sym(
) on GF(q)




via

permutation of oordinates. Then g 2 Sym(
) stabilizes � � 
 i� g stabilizes

the vetor (a

!

)

!2


with a

!

= 1 for ! 2 � and a

!

= 0 otherwise. Thus STAB is

polynomial-time reduible to

Problem. VECTOR STABILIZER (VEC-STAB)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional vetor spae over GF(q); v 2 V

Find: G

v

= fg 2 G j v

g

= vg.



PERMUTATION GROUPS AND POLYNOMIAL-TIME COMPUTATION 171

Here, we assume that V is spei�ed via a basis and � is spei�ed on the given gen-

erators of G. By results of [22℄, VEC-STAB is solvable in polynomial time if G is

solvable. (\Polynomial in the input" is taken to be O((j
j+dim(V )+log q)



).) In

fat, it is also indiated there that the following is solvable in polynomial time

if G is solvable.

Problem. SUBSPACE STABILIZER (SUBSP-STAB)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional vetor spae over GF(q); a subspae W � V

Find: Stab

G

(W ) = fg 2 G jW

g

=Wg.

Question 20. Is VEC-STAB in polynomial time for G 2 �

d

? Is SUBSP-

STAB in polynomial time for G 2 �

d

?

VEC-STAB is polynomial-time reduible to SUBSP-STAB. The \obvious"

redution seems to be to stabilize �rst the 1-dimensional W =Span(v), after

whih we only need the kernel of a homomorphism � : Stab

G

(W ) ! GF(q)

�

(multipliative group). While this is not diÆult to omplete, we refer instead

to the redution between the orresponding deision problems (VEC-TRANS �

SUBSP-TRANS) in Setion 10.2.

Remark. One an also show that the problem of �nding N

G

(H) when H CC

hG;Hi is polynomial-time reduible to SUBSP-STAB.

Another question that arises is whether normality helps for some of these

problems. Tehniques of [18℄ (in partiular the method of Theorem 8.6 of this

present paper), an be used to �nd Core

G

(G

v

) and Core

G

(Stab

G

(W )) (where

v;W are a vetor and subspae, respetively). We wonder, however, about

Question 21. Given G;H � Sym(
), an one �nd Core

G

(N

G

(H)) in poly-

nomial time?

Note that we have found Core

G

(G \ H), whih is the kernel of the right-

multipliation-ation of G on right osets of H by G, while Core

G

(N

G

(H)) is

the kernel of the onjugay ation of G on the onjugates of H by G.

10.2. Deision Questions. The problems of Setion 10.1 suggest deision

analogues.

Corresponding to NORM:

Problem. CONJUGACY OF GROUPS (CONJ-GROUP)

Input: G;H

1

; H

2

� Sym(
).

Question: Is there some g 2 G suh that H

g

1

= H

2

?
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As in the STAB � TRANS equivalene, NORM is polynomial-time equivalent

to CONJ-GROUP.

The right analogue of NORM-SYM would seem to be

Problem. CONJUGACY IN THE SYMMETRIC GROUP (CONJ-SYM)

Input: H

1

; H

2

� Sym(
).

Question: Is there some x 2 Sym(
) suh that H

x

1

= H

2

?

Here, we do not see the equivalene. While a redution of CONJ-SYM to NORM-

SYM is not diÆult, we do not have a reverse redution. Thus, we ask

Question 22. Is NORM-SYM polynomial-time equivalent to CONJ-SYM?

VEC-STAB and SUBSP-STAB are, respetively, polynomial-time equivalent

to

Problem. VECTOR TRANSPORTER (VEC-TRANS)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional vetor spae over GF(q); v

1

; v

2

2 V

Question: Is there some g 2 G suh that v

g

1

= v

2

?

and

Problem. SUBSPACE TRANSPORTER (SUBSP-TRANS)

Input: G � Sym(
); a representation � : G! GL(V ), where V is a �nite

dimensional vetor spae over GF(q); subspaes W

1

;W

2

� V

Question: Is there some g 2 G suh that W

g

1

=W

2

?

The redution of VEC-TRANS to SUBSP-TRANS is worth noting. While a

polynomial-time redution an be ompleted along the lines begun in the VEC-

STAB to SUBSP-STAB disussion, that would not then be a Karp redution

(yes/no instane mapping to yes/no instane). Here then is another approah:

Let (G; �; V; v

1

; v

2

) be an instane of VEC-TRANS; we may assume that v

2

6= 0.

Then G ats naturally on the tensor produt V 
V (so that (v
w)

g

= v

g


w

g

)

and therefore there is an indued ation G ! GL(V � (V 
 V )). Let W

i

=

Span((v

i

; v

i


 v

i

)), for i = 1; 2. We laim that for g 2 G, v

g

1

= v

2

i� W

g

1

= W

2

.

The only-if diretion is lear. Assume W

g

1

= W

2

. Then, for some  2 GF(q),

(v

1

; v

1


v

1

)

g

= (v

2

; v

2


v

2

), so that v

g

1

= v

2

and (v

1


v

1

)

g

= (v

2


v

2

). Thus,



2

(v

2


 v

2

) = (v

2


 v

2

) = (v

g

1


 v

g

1

) = (v

1


 v

1

)

g

= (v

2


 v

2

). It follows that

 = 1, proving the laim.

We add two more problems that seem of partiular interest.

Problem. GROUP ISOMORPHISM (GROUP-ISO)

Input: Cayley tables for groups G;H.

Question: Are G and H isomorphi?
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Here \polynomial in the input" translates to polynomial in jGj (presumably

jGj = jH j). It is not hard to redue GROUP-ISO to GRAPH-ISO. (See [24℄ for

a disussion of this and related issues.) But is this problem easier? In partiular,

Question 23. Is GROUP-ISO in polynomial time?

It an be solved in subexponential O(jGj

+log

2

jGj

) time sine there is a set of

� log

2

jGj generators, and a homomorphism G! H is determined by the images

of the generators. This, however, appears to be the best result known for general

groups.

Possibly on the \harder" side is

Problem. PERMUTATION-GROUP ISOMORPHISM

(PERM-GROUP-ISO)

Input: G;H � Sym(
).

Question: Are G and H isomorphi?

PERM-GROUP-ISO is in NP: Supposing G = hXi, one an guess an isomor-

phism f : G ! H by guessing f(x) for all x 2 X and then verifying that f

is indeed an isomorphism by heking that jGj = jH j = jhf(x; f(x)g

x2X

ij (the

latter being onsidered as a subgroup of G�H ating, say, on 


_

[
).

It is shown in [3℄ that CONJ-GROUP is polynomial-time reduible to PERM-

GROUP-ISO.

To summarize the known relationships, letting \�" denote \is polynomial-

time Karp-reduible to" we have:

GROUP-ISO � GRAPH-ISO

GRAPH-ISO � TRANS

GRAPH-ISO � CONJ-SYM

TRANS � CONJ-GROUP

TRANS � VEC-TRANS

CONJ-SYM � CONJ-GROUP

CONJ-GROUP � PERM-GROUP-ISO

VEC-TRANS � SUBSP-TRANS

(And reall, TRANS � DC-EQ � CONJ-ELT.)

Question 24. Are there any other redutions between these problems exept

as implied by the above?

We do not antiipate seeing a negative answer very soon (as that would nees-

sarily inlude a proof of P 6= NP), but we believe a searh for other relationships

ould shed additional light on these problems.
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