
Testing isomorphism of modules

Peter A. Brooksbank Eugene M. Luks

October 31, 2008

Abstract

We present a new deterministic algorithm to test constructively for iso-
morphism between two given finite-dimensional modules of a finitely generated
algebra. The algorithm uses only basic field operations; for arbitrary fields, this
is not possible with the existing methodology. Furthermore, the number of field
operations used by the algorithm is bounded by a polynomial in the length of
the input. The algorithm has been implemented in the computer algebra sys-
tem Magma and we report on its performance. Our approach has applications
to other problems concerning decompositions of modules.

1 Introduction

In this paper we present algorithms to solve certain fundamental problems in com-
putational representation theory. We are concerned principally with the theoretical
complexity of these problems, but we also demonstrate the practicability of the
algorithms we present to solve them.

Our algorithms assume an arithmetic model, wherein the fundamental steps are
basic field operations and computational complexity is determined by counting the
number of these operations. In particular, an algorithm runs in polynomial time
if this number is bounded by a polynomial in the input length. Of course, for
finite fields the arithmetical steps run in polynomial time in the usual sense. One
advantage of an arithmetic model is its great generality: in principle, our methods
apply to arbitrary fields.

Our main result is a new deterministic, polynomial-time algorithm to test for
isomorphism between two given finite-dimensional modules. This problem arises
naturally in a variety of algorithmic settings, and has been studied extensively.

In [CIK], Chistov, Ivanyos and Karpinski present a polynomial-time solution
to the isomorphism problem over a finite field or a number field. Their algorithm
requires the computation of the Jacobson radical of the underlying matrix algebra.
However, it is observed in [CIW] that construction of the Jacobson radical over fields
of characteristic of p requires computation of pth roots in the base field and, by a

1

result of Frölich and Shepardson [FS], these cannot be computed using basic field
operations.

We actually prove the following more general result.

Theorem 3.5. Given nontrivial modules M1 and M2, defined over an arbitrary
field, in polynomial time one can find maximal summands of M1 and M2 that
are isomorphic. Moreover, one can construct f ∈ HomΩ(M1,M2) inducing an
isomorphism between these summands.

The approach we take relies on a classical result that any weakly-closed subset (see
Section 2.1) of a non-nilpotent matrix algebra contains a non-nilpotent element [Ja,
Chapter II]. In Theorem 2.4 we present a constructive proof of this fact. Presented in
this generality, the algorithm provides an efficient method to construct non-nilpotent
elements in Lie algebras and Jordan algebras. However, the application to module
isomorphism requires only the following consequence.

Corollary 2.5. Given a set X of matrices whose enveloping algebra is not nilpotent,
in polynomial time one can find a non-nilpotent element of this algebra as a product
of elements of X.

The ability to construct non-nilpotent elements in this manner has further ap-
plications to finding direct sum decompositions of a given module. In particular, we
prove the following.

Theorem 3.6. Given a module M and nontrivial submodule T , in polynomial
time one can find a minimal direct summand of M containing T . (The minimal
summand is unique up to isomorphism.)

Using this result, we also propose a divide-and-conquer approach to computing
the socle of a module (Proposition 3.9).

In the case where the defining field is finite and one of the modules is known
to be irreducible, the improvement due to Holt and Rees [HR] (see also [IL]) of
Parker’s Meat-Axe algorithm can be adapted to construct an isomorphism between
two given modules. Efficient computer implementations of the resulting randomized
isomorphism test are distributed with the GAP and Magma systems. We conclude
the paper by reporting on a Magma implementation of our own algorithms.

2 Non-nilpotent matrices

This section is concerned with the construction of non-nilpotent elements in matrix
algebras. Our applications rely on a solution to the following:

Problem. Given a set of matrices generating a non-nilpotent algebra, construct a
non-nilpotent element of the algebra as a product of elements from the given set.

2

That such an element exists follows from the results presented in [Ja, Chapter II].
In fact, motivated by Jacobson’s treatment we are able more generally to construct
a non-nilpotent element in any weakly-closed subset of the given algebra.

In Section 2.1 we introduce the relevant notions and terminology. In Section 2.2
we present a basic version of our algorithm, which we use to establish polynomial
timing. Finally, in Section 2.3, we give an alternative version of our algorithm that
is more suitable for computer implementation.

2.1 Preliminaries

Let F be a field and let Md(F) be the algebra of all d×d matrices over F . We refer
to subalgebras of Md(F) as linear algebras. An algebra A is nilpotent if An = 0 for
some positive integer n. It is easy to see that A ! Md(F) is nilpotent if and only if
Ad = 0; then x ∈ A is nilpotent if xd = 0.

For X ⊂ Md(F), denote by X the semigroup generated by X. The enveloping
algebra generated by X is spanF (X), the F -linear span of X: we denote this linear
algebra by Env(X).

Let Vd(F) denote the d-dimensional F -space of row vectors. Then A ! Md(F)
acts on Vd(F) by right multiplication. If W ! Vd(F) is invariant under A, then AW

is the algebra induced by A on W .

Lemma 2.1. Given X ⊂ Md(F), and Env(X)-invariant subspace W of Vd(F), in
polynomial time one can test whether or not Env(X)W is nilpotent.

Proof. Let X = {x1, . . . , xk} and denote by WX the space Wx1 +Wx2 + . . .+Wxk.
Initialise U ← W and proceed as follows:

while UX %= U do
U ← UX

Clearly Env(X)W is nilpotent if and only if U = 0 on termination. There are at most
d iterations of the loop, and each test UX = U requires O(|X|d3) field operations.
(In case Env(X)W is nilpotent, the subspaces obtained in the loop comprise a flag
in Vd(F) upon whose quotients Env(X) acts trivially.)

Remark 2.2. Strictly speaking, the complexity of the test UX = U above is
O(|X|dω), where ω is the exponent of matrix multiplication [CW]. Similar remarks
apply to the complexity estimates of other parts of our algorithm. However, since
our principal objective is to devise algorithms having polynomial time complexity,
we will not concern ourselves with precise statements of this type. Furthermore, this
is not a useful practical distinction, since computer algebra systems use variations
of classical methods for linear algebra.

3

Let δ:A×A→ F be any function. Then ∆ ⊆ A is weakly closed with respect to
δ if xy + δ(x, y)yx ∈ ∆ for all x, y ∈ ∆. We say simply that ∆ ⊆ A is weakly closed
if the specific δ is understood. The closure of X ⊆ A with respect to δ, denoted
clδ(X), is the smallest subset of A containing X that is weakly closed with respect
to δ. In case δ is identically 0, one has clδ(X) = X.

2.2 Basic algorithm

A proof of the following result can be extracted from [Ja, Chapter II].

Theorem 2.3. Let A be a linear algebra, and let X ⊆ A with Env(X) not nilpotent.
Then every weakly-closed subset of A containing X has a non-nilpotent element.

In this section we prove a constructive version of this result using the algorithm
below. The input is a subset X = {x1, . . . , xk} of a linear algebra A such that
Env(X) is not nilpotent, and a computable function δ:A ×A → F . The output is
a non-nilpotent element of clδ(X). For convenience we define a binary operation #δ

on A, where y #δ z = yz + δ(y, z)zy for all y, z ∈ A.

Algorithm1 (X , δ)

1 m← min{ i : Env({x1, . . . , xi}) is not nilpotent }
2 Y ← {x1, . . . , xm−1}
3 z ← xm

4 while z is nilpotent do
5 find y ∈ Y such that y #δ z %∈ Env(Y)
6 if Env(Y ∪ {y #δ z}) is nilpotent then
7 Y ← Y ∪ {y #δ z}
8 else
9 z ← y #δ z
10 return z

Theorem 2.4. Given X ⊆ Md(F) such that Env(X) is not nilpotent, and any
computable function δ, Algorithm1 returns a non-nilpotent element of clδ(X). If δ
is computable in polynomial time, then the algorithm runs in polynomial time.

Proof. First note that the following are all invariants of the while loop beginning
on line 4: Env(Y) is nilpotent; Env(Y ∪ {z}) is not nilpotent; and z ∈ clδ(X). In
view of the latter, it suffices to show that the loop terminates in polynomial time.

Consider a fixed iteration of the loop (in which z is assumed nilpotent). Let

Ai = spanF

⋃

j+k!i

zjY k

 ⊂Md(F) for positive integers i.

4

Since A1 %= 0 and A2d = 0 (the latter since z and Env(Y) are nilpotent),

A1 " A2 " A3 " . . . " A2d−1 " A2d = 0

is a nontrivial flag in the F -space Md(F). Clearly AiY ⊆ Ai+1 so Env(Y) acts (by
right multiplication) trivially on the quotients of the flag.

The successful execution of the iteration depends only on the existence of y ∈ Y
such that y #δ z %∈ Env(X) (line 5). Suppose, to the contrary, that Y #δ z ⊆ Env(Y),
so that

Y z ⊆ spanF (zY) + Env(Y).

It follows that Aiz ⊆ Ai, and hence that Env(Y ∪ {z}) acts on the flag. Since
z is nilpotent, it acts trivially on the quotients of some refinement of the flag.
Then, however, Env(Y ∪ {z}) acts trivially on those quotients, which is absurd
since Env(Y ∪ {z}) is not nilpotent.

It remains only to establish polynomial timing. First note that the loop termi-
nates after at most

(d
2

)
iterations. For, adding y #δ z to Y (line 7) increases the

dimension of Env(Y), which, since Env(Y) is nilpotent, can occur at most
(d−1

2

)

times, while z can be reassigned to y #δ z (line 9) at most d− 1 times for the same
reason.

Finally, each iteration requires a polynomial number of field operations: up to
|Y | elements y #δ z are constructed in line 5, each in polynomial time; the test
y #δ z %∈ Env(Y) is a membership test in an F -space of dimension less than d2; and
the nilpotence or otherwise of Env(Y ∪ {y #δ z}) is decided using Lemma 2.1.

The following consequence of Theorem 2.4 is central to our applications.

Corollary 2.5. Given X ⊂Md(F) such that Env(X) is not nilpotent, in polynomial
time one can find z ∈ X not nilpotent and write z = xz′ with x ∈ X and z′ ∈ X∪{1}.

Proof. Apply Theorem 2.4 to X, taking δ to be the trivial function, to construct a
suitable z ∈ X. Recording how z is constructed from X in Algorithm1, one readily
obtains a suitable factorization.

2.3 Practical alternative

We now present an alternative version of the algorithm that is more suitable for com-
puter implementation. Indeed our own Magma implementation, which we discuss
in Section 4, contains a function based on the following description.

5

Algorithm2 (X , δ)

1 m← min{ i : Env({x1, . . . , xi−1}) is not nilpotent}
2 Y ← {x1, . . . , xm−1}
3 z ← xm

4 W ← Vd(F)
5 while z is nilpotent do
6 while dim(WY + Wz) < dimW do
7 W ←WY + Wz
8 find y ∈ Y such that W (y #δ z) %∈WY
9 if Env(Y ∪ {y #δ z})W is nilpotent then
10 Y ← Y ∪ {y #δ z}
11 else
12 z ← y #δ z
13 return z

Theorem 2.6. Given X ⊆ Md(F) such that Env(X) is not nilpotent, and any
function δ, Algorithm2 returns a non-nilpotent element of clδ(X). If δ is computable
in polynomial time, then the algorithm runs in polynomial time.

Proof. The outer loop beginning on line 5 has the following invariants: W is Y ∪{z}-
invariant; Env(Y)W is nilpotent; and Env(Y ∪{z})W is not nilpotent. In view of the
latter, the inner loop beginning on line 6 terminates with W %= 0 and W = WY +Wz.

Once again we must establish the existence of a suitable y ∈ Y in line 8. Suppose,
to the contrary, that W (Y #δ z) ⊆ WY . Since W is invariant under Y ∪ {z}, we
have WY z ⊆ WY . But then Wz = (WY + Wz)z ⊆ WY + Wz2 and, inductively,
W ⊆ WY + Wzi for all integers i " 1. Since z is nilpotent, we have W ⊆ WY ,
contradicting the nilpotence of Env(Y)W .

To establish polynomial timing, note that W can be reassigned at most d − 1
times (line 7). If Y is reassigned to Y ∪{y #δ z} (line 10), then the dimension of WY
increases; this can occur at most dim(W) times for fixed W . The value of z can be
reassigned to y #δ z (line 12) at most d− 1 times, as in the basic version.

Remark 2.7. Although both Algorithm1 and Algorithm2 perform O(d2) iterations
in the worst case, the tests performed within each iteration of the former are more
expensive than their counterparts in the latter. For example, Algorithm1 tests
membership in Env(Y), of dimension O(d2), whereas Algorithm2 tests membership
in a space of dimension at most d.

6

3 Applications to modules

Throughout this section Ω will denote a finitely generated algebra over an arbitrary
field F . An Ω-module M is specified by the action of a fixed set {ω1, . . . ,ωn} of
generators for Ω on some finite-dimensional vector space over F . Thus M is input
via {a1, . . . , an} ⊂Md(F), where d = dimF (M).

A fundamental component of the algorithms in this section is the construction of
the space of all homomorphisms between two given modules. For given Ω-modules
M1 and M2, of dimensions d1 and d2 respectively, we regard HomΩ(M1,M2) as
a subspace of Md1×d2(F), the space of all d1 × d2 matrices with entries in F . In
this way, HomΩ(M1,M2) is easily expressed as the solution space of a system of
linear equations. In particular, using standard linear-algebraic techniques we have
the following.

Lemma 3.1. Given Ω-modules M1 and M2, in polynomial time one can compute
an F -basis for HomΩ(M1,M2).

Remark 3.2. Although the construction of HomΩ(M1,M2) is elementary from a
complexity viewpoint, it is a substantial bottleneck in practical implementations.
We will discuss this issue further in Section 4.

3.1 Splitters

Key to our various applications is the ability to construct isomorphisms between
direct summands of two given Ω-modules if such exist. If N1 is a submodule of M1

and f ∈ HomΩ(M1,M2), then we denote by N1f the f -image of N1 in M2. We say
that M1 = N1⊕K1 is an f-decomposition if N1 %= 0, ker(f) ! K1, and N1f a direct
summand of M2. If M1 has an f -decomposition then we say that f is a splitter.

Lemma 3.3. Let f ∈ HomΩ(M1,M2). Then f is a splitter if and only if there
exists g ∈ HomΩ(M2,M1) such that fg ∈ EndΩ(M1) is not nilpotent.

Proof. First suppose that f is a splitter and write Mi = Ni ⊕ Ki (i = 1, 2), where
0 %= N1

∼= N1f = N2. If α:N1 → N2 is the isomorphism induced by f , let g be the
element of HomΩ(M2,M1) inducing α−1 on N2 and 0 on K2. Then fg ∈ EndΩ(M1)
is the identity on N1 and hence is not nilpotent.

Conversely, let g be any element of HomΩ(M2,M1) such that fg is not nilpotent.
Let s = fg and t = gf . Then M1 = M1sd ⊕ ker(sd) and M2 = M2td ⊕ ker(td) are
Ω-module decompositions of M1 and M2, where d = max{dim(M1),dim(M2)}.
Furthermore M1sd %= 0, (M1sd)f = M2td and ker(f) ! ker(sd).

This result provides the basis of an elementary test for whether a given homo-
morphism is a splitter.

7

Lemma 3.4. Given Ω-modules M1 and M2, and f ∈ HomΩ(M1,M2), in polyno-
mial time one can decide whether or not f is a splitter. If it is, moreover, one can
find an f-decomposition of M1.

Proof. Use Lemma 3.1 to compute a basis, C, for HomΩ(M2,M1). Now use
Lemma 2.1 to decide whether or not Env(fC) ! EndΩ(M1) is nilpotent.

Observe that f · HomΩ(M2,M1) = spanF (fC) = Env(fC). Thus, if Env(fC)
is nilpotent, by Lemma 3.3, f is not a splitter.

On the other hand, if Env(fC) is not nilpotent, use Corollary 2.5 to construct
a non-nilpotent s ∈ fC, so that s = fg for some g ∈ HomΩ(M2,M1). Hence, by
Lemma 3.3 and its proof, M1 = M1sd ⊕ ker(sd) is an f -decomposition of M1.

3.2 Testing isomorphism

Our first application of Lemma 3.4 is a polynomial-time, constructive test for iso-
morphism between Ω-modules. In fact, we prove the following stronger result.

Theorem 3.5. Given nontrivial Ω-modules M1 and M2, in polynomial time one
can find maximal summands of M1 and M2 that are isomorphic. Moreover, one can
construct f ∈ HomΩ(M1,M2) inducing an isomorphism between these summands.

Proof. The existence of the isomorphic summands is a consequence of the Krull-
Schmidt theorem for modules [AF, Theorem 12.9], which also establishes the unique-
ness of such summands up to isomorphism. Initialize M∗

1 ← 0, f ← 0, L1 ←M1,
L2 ←M2, B ← basis for HomΩ(L1,L2), and proceed as follows.

1 while ∃ a splitter b ∈ B do
2 write L1 = N1 ⊕K1 and L2 = N1b⊕K2

3 M∗
1 ←M∗

1 ⊕N1 and f ← f⊕ restriction of b to N1

4 L1 ← K1 and L2 ← K2

5 B ← basis for HomΩ(L1,L2)
6 return f, M∗

1

Note that the control of the loop is tested in line 1 using Lemma 3.4, which also
produces the decompositions of L1 and L2 in line 2.

It is clear that M∗
1 is a summand of M1, and that M∗

1f is a summand of M2

isomorphic to M∗
1. It remains to show that M∗

1 is maximal.
First note that M1 = M∗

1⊕L1 is an invariant of the loop. Suppose, at the start
of some iteration of the loop, that L1 has a nontrivial summand, S1, isomorphic to
a summand, S2, of L2. It suffices to show that any basis for HomΩ(L1,L2) contains
a splitter.

8

Let B∗ be any basis for HomΩ(L1,L2) and C∗ any basis for HomΩ(L2,L1). Let
s be an element of HomΩ(L1,L2) inducing an isomorphism S1 → S2, and let t be
an element of HomΩ(L2,L1) inducing an isomorphism S2 → S1. Then

st ∈ HomΩ(L1,L2) ·HomΩ(L2,L1) = spanF (B∗) · spanF (C∗) ! Env(B∗C∗)

is nonsingular on S1, and hence is not nilpotent. Therefore, by Corollary 2.5, there
exists z = (b∗c∗)z′ not nilpotent, with b∗ ∈ B∗, c∗ ∈ C∗ and z′ ∈ B∗C∗ ∪ {1}. Hence
z = b∗g for some g ∈ HomΩ(L2,L1), whence b∗ is a splitter by Lemma 3.3.

3.3 Decomposing modules

The problem of computing a nontrivial direct sum decomposition of a given mod-
ule (or establishing that the module is indecomposable) is considered, for example,
in [CIK]. There, a polynomial-time Las Vegas algorithm is given that solves this
problem for finite fields and certain algebraic number fields.

As a further application of Proposition 3.4, we present a deterministic algorithm
(which again applies to arbitrary fields) to solve a related decomposition problem.

Theorem 3.6. Given an Ω-module M and nontrivial submodule T , in polynomial
time one can find a minimal direct summand of M containing T .

Proof. Let π:M → M/T be the natural map. If M = N ⊕ K with N %= 0 and
T = ker(π) ! K, we have M/T = Nπ ⊕ (K/T), so that π ∈ HomΩ(M,M/T) is a
splitter. Thus one may obtain some proper summand K containing T by applying
Lemma 3.4 to π. A minimal such summand is obtained by iteration.

The minimal summand constructed in the theorem need not be unique, as one
can see with the Z-module M = Z4 ⊕ Z2. Here, (1, 0) and (1, 1) generate distinct
subgroups of order 4 (and hence distinct direct summands of M) that both contain
the submodule generated by (2, 0), which has no complement. However, we note the
following.

Theorem 3.7. Let M be an Ω-module and let T be a nontrivial submodule. If K1

and K2 are summands of M, both minimal with respect to containing T , then there
is an automorphism of M sending K1 to K2.

Proof. Suppose, for i = 1, 2, that M = Ni ⊕ Ki, where Ki is minimal with respect
to containing T . Let fi ∈ HomΩ(M,K3−i) be projection onto K3−i, and let gi ∈
HomΩ(Ki,K3−i) be the restriction of fi to Ki. Then gi is the identity on T so that
gig3−i ∈ EndΩ(Ki) is not nilpotent. Hence Ki(gig3−i)dimM is a direct summand of
Ki containing T . By minimality Ki = Ki(gig3−i)dimM, whence g1:K1 → K2 is an
isomorphism. It follows that N1 and N2 are also isomorphic, and g1 can be extended
to an automorphism of M.

9

Remark 3.8. Using the same ideas one can derive a variation of this result for
groups. For a finite group G and subgroup A, let

SG,A = {S : A ! S ! G and G = N ! S with N a normal subgroup of G}.

If S1 and S2 are minimal elements of SG,A, then S1
∼= S2 (though this isomorphism

does not necessarily extend to an automorphism of G).

As one application of Theorem 3.6 we propose a divide-and-conquer approach to
computing the socle of a module.

Proposition 3.9. Let M be an Ω-module and let T be any proper submodule. Given
Soc(T) and Soc(M/Soc(T)), in polynomial time one can compute Soc(M).

Proof. Let S0 = Soc(T) and S1/S0 = Soc(M/S0), so that S0 ! Soc(M) ! S1. Use
Lemma 3.6 to write S1 = N ⊕K, where K is minimal with respect to containing S0.
We claim that S0 ⊕N = Soc(M).

Let π:S1 → S1/S0 be the natural map, so that S1/S0 = (Nπ) ⊕ (K/S0). Since
S1/S0 is semisimple, Nπ ∼= N is semisimple. Hence

Soc(M) = Soc(S1) = Soc(N)⊕ Soc(K) = N ⊕ Soc(K).

It suffices to show that S0 = Soc(K). Suppose, to the contrary, that S0 is a proper
summand of Soc(K), say Soc(K) = S0⊕N ∗. Since K/S0 is semisimple, there exists a
proper submodule K∗ of K, containing S0, such that K/S0 = (K∗/S0)⊕(Soc(K)/S0).
Hence K = K∗ + Soc(K) = K∗ + (S0⊕N ∗) = K∗⊕N ∗, with S0 ! K∗, contradicting
the minimality of K.

This yields a Las Vegas algorithm to compute the socle of a module defined over
a finite field (see [LW] for another approach to this problem).

Theorem 3.10. Let M be an Ω-module defined over a finite field F . Then Soc(M)
can be computed in polynomial time using a Las Vegas algorithm.

Proof. Use [Ró] to test whether M is irreducible (this test is Las Vegas polynomial
time for large finite fields). If it is, then M = Soc(M) and we are done. If it
is not, then [Ró] yields a proper submodule T . Recursively compute Soc(T) and
Soc(M/Soc(T)), and then use Proposition 3.9 to construct Soc(M).

Remark 3.11. For a practical version of Theorem 3.10, one should instead use the
algorithm of Holt and Rees [HR] to test for irreducibility. Their algorithm is also Las
Vegas, but has better asymptotic complexity than Rónyai’s algorithm; in addition
there are several highly effective implementations of their algorithm available.

10

4 Implementation

The various algorithms presented in Sections 2 and 3 have been implemented in
Magma [BCP] and are publicly available. In this section we briefly discuss some
practical issues pertaining to the implementation.

4.1 Computing HomΩ(M1, M2)

This appears to be the most formidable obstacle from a practical viewpoint.
Let di = dimF (Mi) for i = 1, 2, and suppose that Mi is generated by sets

of n matrices from Mdi(F). Then we seek the solution to a linear system of size
O(nd1d2) in d1d2 unknowns. If d1 ! d2 = d, computation of the solution space of
this system costs O(nd6) field operations (cf. Remark 2.2), which is prohibitive even
for moderate values of d. Furthermore the space required to store elements of an
arbitrary field may increase rapidly throughout such a computation.

In the case of finite fields there are efficient methods to handle such computa-
tions. The Magma function AHom, implemented by Steel, is very effective and our
implementation uses it wherever possible. The methods underlying this function
were developed by Leedham-Green and Steel, but remain unpublished. An alterna-
tive approach to the problem by Lux and Szöke is described in [LS]. Steel recently
extended the functionality of AHom so that it can now be applied to modules defined
over the rationals.

4.2 Testing isomorphism

We now describe a series of tests carried out with our implementation of the algo-
rithm to construct an isomorphism between summands of two modules. We hence-
forth refer to this implementation via its function name SummandIsomorphism.

Irreducible modules over finite fields. As noted in the introduction, if one of
the input isomorphic modules is known to be irreducible, then an isomorphism can
be readily constructed using standard Meat-Axe machinery [HR]. Although we did
not anticipate that SummandIsomorphism would be competitive with the Magma
default function IsIsomorphic in this special case, we do not come away too badly
even here.

We compared the two functions by constructing invariant forms for symplec-
tic groups Sp(d, q) for various values of d and q. This is equivalent to computing
an isomorphism between the natural module V = Vd(GF(q)) for G and its dual
module V ∗. To define V we took matrix generators for a random conjugate of
the standard Magma copy of Sp(d, q); to define V ∗ we took the inverse-transposes
of these generators. In a variety of tests conducted with symplectic groups of de-
gree up to 1000 defined over fields of moderate size, IsIsomorphic constructed

11

Table 1: SummandIsomorphism versus IsIsomorphic for modules over GF(2)

b m ModuleIso IsIsomorphic

24 2 0.042 0.028
16 3 0.046 0.028
12 4 0.055 0.031
8 6 0.073 0.038
4 12 0.095 0.093
3 16 0.120 0.490
2 24 0.144 832.592

the desired form roughly twice as quickly as SummandIsomorphism. (This is to be
expected, since SummandIsomorphism essentially computes two spaces of homomor-
phisms rather than one.)

General modules over finite fields. There is a randomised method to construct
an isomorphism M1 → M2 from a basis for HomΩ(M1,M2). Namely, construct
random elements of HomΩ(M1,M2) until a nonsingular element is found.

This näıve approach performs badly in situations where the proportion of invert-
ible elements in HomΩ(M1,M2) is small. To construct instances of such module
pairs, one may proceed as follows.

1. Fix positive integers b and m and a finite field F = GF(q).
2. Write out a set of matrices, X, generating the simple algebra Mb(F).
3. Set Y ← {diag(x, x, . . . , x):x ∈ X} ⊂Mbm(F).
4. Define M1 using the set Y , and define M2 using a random conjugate of Y .

Then EndΩ(M1) ∼= GF(q)m, so the probability that an element of HomΩ(M1,M2)
is nonsingular is (1− 1/q)m.

Using this construction, we fixed d = 48 and q = 2 and compared the perfor-
mance of SummandIsomorphism with that of IsIsomorphic for various choices of
input parameters (b, m) with bm = 48. Using an Intel Xeon computer with two
2.2GHz processors and 2GB main memory, the average of 20 runs for each imple-
mentation was taken and recorded in Table 1. As expected, the results indicate that
our implementation performs comparitively better as m increases.

Naturally, there are many other performance comparisons that one could run (we
have, for example, conducted tests with a variety of permutation modules). However,

12

we do not expect that our implementation will perform significantly better than the
Magma default for arbitrary modules over finite fields.

Modules over infinite fields. We have used SummandIsomorphism to construct
isomorphisms between modules defined over the rationals, and also between mod-
ules defined over infinite fields of positive characteristic. In the former case, the
AHom function in Magma works very well, and we have successfully tested isomor-
phism between rational modules in dimension up to 100 in reasonable time. For
other infinite fields HomΩ(M1,M2) is presently obtained as the solution to a linear
system by brute force. In order for this to be practical one must carefully manage
linear algebraic computations in order to avoid integer explosions. We have thus far
succeeded with such examples only in very modest dimensions.

Acknowledgment. The authors benefited from useful correspondence with G.
Ivanyos, L. Rónyai and A. Steel.

References

[AF] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-
Verlag, 1992.

[BCP] W. Bosma, J. Cannon and C. Playoust, The magma algebra system I: The
user language. J. Symbolic Comput. 24 (1997) 235–265.

[CIK] A. Chistov, G. Ivanyos and M. Karpinski, Polynomial-time algorithms for
modules over finite dimensional algebras, pp. 68–74 in: Proceedings Int. Symp.
on Symbolic and Algebraic Computation (ISSAC), 1997.

[CIW] A. Cohen, G. Ivanyos and D. Wales, Finding the radical of an algebra of
linear transformations, J. Pure Appl. Algebra 117/118 (1997), 177–193.

[CW] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Comput. 9 (1990) 251–280.

[FS] A. Frölich and J.C. Shepardson, Effective procedures in field theory, Royal Soc.
London, Phil. Trans. A 248 (1955-56), 407-432.

[HR] D. F. Holt and S. Rees, Testing modules for irreducibility, J. Austral. Math.
Soc. Ser. A, 57 (1994), 1–16.

[Ja] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathemat-
ics, Interscience Publishers, 1962.

13

[IL] G. Ivanyos and K. Lux, Treating the exceptional cases of the Meat-axe, Exper-
iment. Math. 9 (2000), no. 3, 373–381.

[LS] K. Lux and M. Szöke, Homomorphism spaces between modules over finite
dimensional algebras, Experimental Math, 12 (2003), 91–98.

[LW] K. Lux and M. Wiegelmann, Determination of socle series using the condensa-
tion method, Computational algebra and number theory (Milwaukee, WI, 1996),
J. Symbolic Comput. 31 (2001), 163–178.

[Ró] L. Rónyai, Computing the structure of finite algebras, J. Symbolic Comp. 9,
(1990), 355–373.

Peter A. Brooksbank
Department of Mathematics
Bucknell University
Lewisburg, PA 17837
email: pbrooksb@bucknell.edu

Eugene M. Luks
Computer and Information Science Department
University of Oregon
Eugene, OR 97403
email: luks@cs.uoregon.edu

14

