
Computing Normalizers in Permutation p-Groups

Eugene M. Luks * Ferenc R6k6czi *

Computer and Information Science Computer and Information Science

University of Oregon University of Oregon

Charles R. B. Wright

Department of Mathematics

University of Oregon

Abstract

Let G and H be subgroups of a finite p-group of permu-

tations. We describe the theory and implementation of a

polynomial-time algorithm for computing the normalizer of
H in G. The method employs the imprimitivity structure
and an associated canonical chief series to reduce to linear

problems with fast solutions. An implementation in GAP

exhibits marked speedups over general-purpose methods ap-

plied to the same groups. There are analogous procedures

and timings for the problem of testing conjugacy of sub-
groups of p-groups, and implementations are planned. It is

an easy matter, also, to extend the application to general
nilpotent groups.

1 Introduction and Related Work

This paper contains a contribution to the collection of meth-

ods for computing normalizers in permutation groups, a
problem on which, as Holt [Ho] has commented, “there seems
to be almost unlimited scope for possible improvements.”

In general, the normahzer problem in permutation groups is

not known to be in polynomial time and, in fact, its com-
plexity is of great interest because of its relation to the prob-

lem of testing graph isomorphism (see, e.g., [Lu3]). Hence,
it is not surprising that existing implementations have ex-

ponential running time in the worst case. However, it ap-

pears that these implementations remain exponential even
for nilpotent groups, for which the norms.hzer problem is
known to be in polynomial time [KL]. (In fact, normalizers
are computable in polynomial time even for solvable groups

[Lu2].) With this in mind, we describe a normalizer algo-
rithm for p-subgroups of S. which has worst case timing of

0(n4). An implementation in GAP [Se] has resulted in sub-

stantial speedups over the GAP library function (see Section
7) on permutation domains of moderate size.

Thus, our point of view is that if the groups under con-

sideration are known to possess special properties, such as
nilpotency, then one can hope to exploit that knowledge to

devise normalizer algorithms that are faster than the generic

* Research supported in part by NSF grant CCR-901341O.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ISAAC 94- 7/94 Oxford England UK
@ 1994 ACM 0-89791 -638-7/94/0007..$3.50

ones applicable to wider classes of groups. We consider the

problem of computing ~G(~), the normalizer of H in G, in

the particular setting in which G and H are given as sub-
groups of a finite p-group of permutations. Although we

address only the p-group case here, it is easy to extend the

methods to a nilpotent permutation group (G, H).
In comparison with other available algorithms that ap-

ply specifically to nilpotent or solvable groups, notably the

Glasby-Slattery method [GS], we emphasize that our goal is

to exploit not only the nilpotency of our groups but also the

fact that their elements multiply as members of a permuta-

tion group. The method of [GS] applies more generally to
groups given by, or convertible to, power-commutator pre-

sentations and then requires collection methods to multiply
elements. However, it is not merely the fast multiplication

in the permutation domain that contributes to the efficiency
of our approach (and we do recognize that collection is of-
ten quite fast). We make essential use of natural actions
of p-groups on structure (imprimit ivit y) forests and, more

significantly, of a data structure that admits efficient linear
methods in the (elementary abelian) quotients of a particu-

lar normal series. (See, e.g., [BC] and [GHLS W] for other ex-
amples of exploitation of imprimitivity systems of p-groups

to get at the group structure; [LM] shows another, indis-
pensable, use of linear algebra in dealing with such groups.)

In a future paper, we will elaborate on implementations

of analogous methods for deahg with the problem of testing

conjugacy of groups H1 and HZ under G when (G, HI, Hz) is

nilpot ent. In the base linear algebra problem, the extension
of our method only involves loss of homogeneity of a linear
system. We note, however, that the procedure exhibits the

same computational complexity as the normalizer method.
Incorporated in the conjugacy test is an algorithm for finding

centralizers of subgroups.

The paper is organized as follows. We give a generic de-

scription of the main algorithm and associated subroutines

for computing certain maximal subgroups. Then we present

the data structures, matrices and linear methods used to
implement the algorithms, and we describe some of the tech-
nical details of the implementations. The paper ends with
a discussion of timing and implementation experience.

2 The Main Algorithm

Throughout, p will be a prime, G and H will be subgroups
of a finite group K of order a power of p, and our goal will
be to compute NG(H). Since K is a p-group, it has a cen-
tral chief series, K = KO D K] D . . . D KL = 1, with
Kj ~ K for each j and with each factor K, -I /K, of order

139

The Normalizer Algorithm

{input: Subgroups G and H of a group K.

A normal series K = KO D . ~. DKL = 1 of Ac
H~=K, flHfori= O,..., L.}

{output: N~(H).}

begin
{Initialize the ambient normalizer M.}

M:=G
j: ,=flL(fij~wnto o do

:—

{M= NG(H,+I)}
forj:=ito L–ldo

{M= N~(H,A’j) rl Nc(Hi+l)}

M := N~(H,Kj+l)
{M= N~(H,Kj+I) niV~(H,+~)}

{M= NG(H,)}

{ill = N.(H)}
return M

end.

Figure 1.

p. We suppose a series like this to be given. Later in the
paper we will explicitly construct such a series suited to our

needs. Define H: := K,iIH for z = O, L. The plan of the
main algorithm is to compute normalizers of a sequence of
subgroups H, K, of K, starting with a subgroup that is obvi-
ously G-normal and ending with HO K~ = (Ko n H)KL = H.

Figure 1 gives a preliminary version. Statements in braces
{ } are assertions about the values of variables at stages

of the execution where the statements appear. Here and

in subsequent algorithms, endfor and endlf statements are

implied by the indentation.
The assertions in braces are immediate, since HL =

1, NG(HiKj) = NG(K,) = G, H,KL = H,, NG(H,) ~

N~(Hi+]) and HO = H.

This algorithm does not require G and H to be p-groups,
nor does it require special properties of the normal series for

K, These conditions will come into play later, when we
compute N~(Hi Kj+l). Note in passing that the overall

architecture of our algorithm differs from that in [GS] only

by having the inner and outer loops interchanged. At this

level of discussion that difference is inconsequential.

The preliminary algorithm just given can be modified to

omit some cases in which M cannot change. If H, = Ht+ 1,
i.e., if H avoids lfi /Ki+l, then we can skip the inner 100P for

i, and if HK3 = HK3+1, i.e., if H covers h’J/K3+l, then we

can skip the inside step for j. In the actual implementation
that we describe below, we will still carry out the step for j
in the covering case in order to update additional data for

j + 1. The factors Ks/Ks+l that H covers and avoids can
be determined initially, and that information can be used to
reduce subsequent computations.

The case in which K is a p-group and KO P . . . P K~
is a chief series is especially good; H either covers or avoids

each chief factor, and the covering-avoiding information can
be obtained as a byproduct of other computations that we

will be making. In the p-group case we also know that

KO b . . . b KL is a central series, whence HL_l < K.-1 s

Z(K) so NG(HL-1) = G, and dso [H,, G] < [Kij G] < Ki+l

so NG(Ht Kt+l) = G. Figure 2 shows the resulting stream-
lined algorithm.

The Normalizer Algorithm for p-Groups

{input: Subgroups G and H o.f a finite p-group K.
Achiefserie~K=KOP . . . DKL=l ojK.

–K, nHfori=O,L.
~=–{s c {o,..., L – 1}: H covers Ks/Ks+l}}

{output: N~(H).}

begin

MG :=

fori:=L –2downto Oandie A do
forj:=i +lto L–landj @Ado

M := NM(H, Kj+l)

return M
end.

Figure 2.

To carry out the algorithm we must be able to compute

N~(HiK3+1) assuming the following five conditions:

(a) kf normalizes Hi+l;

(b) M normalizes H, K,;

(c) Ofi<j <L;

(d) i c A, so HK, = HK,+~, and [Hi : Hi+l] = P;

(e) j ~ A, so H3 = H,+I, and [Hh’, : Hh’j+l] = p.

It follows from (a)—(e) that the group V :=
H, K3 /H,+l A’J+l is elementary abelian of order P2 and is

acted upon by M, which centralizes both H, Kj /H,+l Kj

and H,~I A’j /H,~l Kj+l. To get the stabilizer in M of the

l-dimensional subspace H,KJ+l /H,+l Kj+I of V we use the

following.

Proposition 1. If (a)—(e) hold and if lti+l c Hi\ Hi+l,

then the map 0: M * K1jKJ+~ given bY

[hI+l) 9] ~ Ht+lfW)

is a wefl-defined homomorphism. Its kernel, NM (H, KJ + 1),

has index 1 or p in M.

Proof. The natural action of M on V induces a matrix

representation

‘-(: ‘?)

relative to the basis {h,+l Ift+l Kj+l, kjH,+IKj+l} for V.
Clearly, 0: M - Zp is a homomorphism, and ker(o) =
NM (H, KJ+l). (Our thanks to a referee for this short argu-

merit.) m

To use the proposition, we must have elements h,+l c

Hi\ Ht+], which we obtain from generating sets for H and
.7
n.

The grotip K cent tins elements Z1, ZL with Ki-l =

(z,,,.., .ZL)fOri= l,..., L +1. Section 4 describes the con-
struction of such a sequence for K in an important special

case. For now, suppose that a canonical generating sequence
Z1, ..., %L of this sort has been chosen for K.

140

If Xisasubgroup of K,then X= Xrl KO~... ~Xrl
KL = 1 is a central series for X with each factor of or-

der 1 orp. We call a sequence Zl,zt of generators for

X an induced generating sgstem (IGS) for X (relative to
Ko P . . . D .k’L) in case the subgroups (z,,zt) for

i = I,. ..jt + 1 are the distinct subgroups in the chain

XnKo~ ...~xn~L. Ifzl,..., z,isan IGSfor X,

then 1X1 = Pt, and for each chief factor h’J-l/K3 covered

by Xthereis a unique iwith Kj-l =(x,)A’J.
We will use an IGS to describe the subgroup M in the im-

plementation of the normalizer algorithm. Thus the group
Gis given in the input by an IGSfor G, and the algorithm

returns an IGS for NG(~). If the permutation group G is

initially given by a set S of generators, we can construct
an IGS for G by sifting S against the canonical generating

sequence Z1, 2L for h’.

It will be convenient to describe the input subgroup H by
a sequence hl, hL that is not quite an IGS. If H,_l = H,,

i.e., if H avoids K,–l/h’t, let h~ := 1. Otherwise, choose

hi c Hi-l\Hi so that hi~i = z,h’,. Thus, for A as in the

algorithm,

A={ic{O,...,l }:h; +l#l}l} and

h$+l - z:+l mod Ki+l for i G A.

One can construct such a sequence h], hL, which we call
a strong generating system (SGS) for H, by sifting a set of

generators for H against Z1, ~L. In our implementation,
hi,..., lt~ and the IGS for G are computed by a modification
of Knuth’s [Kn] organization of the Sims-Schreier methods.
Note that the sequence hl, h~ is only computed once.

3 Updating the Normalizer

We use facts from Section 2 to describe an algorithm for

updating NG(H,+l) to NG(H,). Consider a fixed i in A, and
let h := h,+l c H,\H,+l be the corresponding member of

an SGS for H relative to the canonical generating sequence

zl,.. .,zLfor K. Forj=i,.. ., Llet M~ =NG(H,+l)n
~G(H1.Kj). Thus M, = NG(H,+l), ML = NG(H,), and the

instruction M := Njw(H, Kj+l) in the main algorithm re-

places M~ by Mj+l, To compute M3+1 from MJ we main-

tain three sequences: an IGS ml, mt for MJ, a sequence

~1, . . . , Zt of members of Ht+l, and a sequence ~(l), @(t)

of exponents in 2ZP= {0,1, .,, ,p– 1}.
Figure 3 gives the expanded algorithm for computing

MJ+l from MJ. To show that this algorithm produces the
correct result, we verify the statements in braces. Since

h = h,+] c h’,, we have [h, m~] s 1- z~ mod K,+ I on first

entry into the main loop. We verify the last comment by

considering cases.
Suppose first that j @ A and that s = max{k: ~(k) # O}.

We have [h, m~] = z~z~~l) mod lY3+l for 1< k s s. Propo-
c#(k)

sition 1 applies, since j @ A. We have O(mk) = %1+1 Kj+l,

so 6’(mkmY(k)) = 8(mk)8(m.)a(k) = Z’~~)+a(k)4(s)Kj+~ =

a(k)
h’j+l, whence m~ms ~ Mj+I. For k > s the values of
mk and Zk are Simply moved to ink-l and xk_~. Since
O(m$) # 1, m. @ ker O = MJ+l, a maximal subgroup of

&fj. Thus the sequence given in the original notation by
a(l)

mlm. ,. . . . m~-lm~(s-l) ,m.+~, ..., mt is an IGS for ikf~+l

Update from NG(H,+I) to NG(H,)

{input: An IGS ml ,.. . ,mt for NG(Hi+l). }
{output: An IGS for N~(H,).}

begin
{Initialize,}

fork: =1 totdo
xk := 1 c H,+ I
~(k) := o c z,

forj:=i+lto L–ldo

{(ml,..., mt) is an IGSfor MJ,

xl,ztc H.+],
and [h, +1, mk] S xk mod A’j }ork = 1, . . . ,t}

fork: =1 totdo
Compute q$(k) G ZP with

~~l[h,+l, m~] s zjti+~) mod KJ+l
if j @ A then

if q$(k) # O for some k then
f,:= t-1

s := max{k: ~(k) # O}
fork: =ltos–ldo

Solve #(s)cr(k) + #(k) = O for a(k) c ~p
a(k)

??Zk 1= mkm~

a(k)
Xk := (z$m~])a(~)zkm~

fork: =s totdo
mk ~= mk+l

%k := X,$+l

else {j E A}
fork: =1 totdo

~k := Z@~l)

{(m~,..., m~) is an IGSfor M,+l,

Zl, ..., x~ E H,+l,

and [h$+l, mk] R ~k mod KJ+l for k = 1, . . . ,t}
return (ml, . . . ,mt)

end.

Figure 3.

in this case.

141

We know that z, and z~ are in -Hi+l, which is normalized

by Mj. Hence

(z,m~l)a(’)wn:(’) e H,+ I(m;’)a(’)Z&(’) = H,+,.

Now to show that [h, m~m?~)] E (z,rnz1)”(k)z~m$k) mod

KJ+l we may assume that K3+1 = 1, so that z := Zj+I

Z(K). Then [h, m~] = Xkzo(k), so m? = mkm;b-+(k).

follows that

(mkm:(@ h) = mkZ~’Z-4(’)(mst~ l~-4(’))o(’)

–1 a(k)z-+(k)–+(.)a(k)
= mkX~l(m, X.)

— a(k)m–a(k) —1. mkm~ s Zk (m,z~l)o(k),

a(k) h _ ~~m~l)a(k)~km
SO [mkms , 1-((~(k))-’, as desired.

Suppose next that i g A but that d(k) = O for every
Then “fij = ~J+l, and &eady [h, ??Zkj >’xk mod ~~+1- for

each k.
In the final case, with j E A, Ml = MJ+l again

and ml,..., m~ is still an IGS. Moreover, since j c A,

h3+l K3+l = zj+l~’~+l and thus [h, ~k] z xkh~f/ mod

fS’j+l with zkh$~~ C ~,+1 since j ~ i + 1.

The execution of this algorithm requires computing prod-
ucts, powers and commutators in K. The algorithm also re-
quires computing “leading coefficients” ~(l), ,.., ~(t) (in the

sense of [Se]) relative to the canonical generating sequence

for A-. In the next section we describe a data structure that

permits these coefficients to be calculated rapidly, and in

Section 5 we discuss their calculation.

4 The Linear Structure

In this section we consider a finite p-group K“, acting on a
rooted tree in a way that produces a normal series for K
with element ary abelian factors. The unique refinement of

the series to a chief series for K corresponds to a sequence of

A’-invariant flags in the factors, viewed as ~P-vector spaces,
and the matrices that describe the bases associated with

the flags provide easy membership tests for subgroups in

the chief series.
If K is any finite group of permutations it is possible to

construct a structure forest for K [LM, Lul] consisting of

root ed trees, one for each orbit of h“, such that in a given
tree the children of the root correspond to maximal blocks

of imprimitivity, and the subtree rooted at the child corre-
sponding to a block is the structure tree for the restriction
to that block of its setwise stabilizer. This construction
can be carried out essentially as efficiently as finding im-

primitivity systems [At] (see also [GHLSW] for additional
comments on the construction in p-groups). In case h’ is

a p-Sylow subgroup of SP,, the repeated wreath product
K= Cp~Cp I... I Cp of t groups of order p, the structure

forest consists of a single full p-ary structure tree.

In this paper, G and H are subgroups of a p-group K of

permutations, so it is possible to compute a structure for-
est for (G, H); the general implementation of our algorithm
begins by constructing such a forest, using imprimitivit y in-

formation from (G, H). For this exposition, however, we
will assume that the forest consists of a single tree. (The

extension to the general case involves a straightforward re-

formulation of the normal series in K; for example, one can

view the disjoint trees in a vertical list, redefining “layers”
accordingly in the account below.) Thus, we let n = pe and

suppose that G and H are given as subgroups of the p-Sylow
subgroup K of S., acting as automorphisms on a full p-ary

rooted tree I’ with n leaves.
The nodes of r form layers, on each of which K acts

transitively. For r = O, 1,. ... t let F. be the subgroup of

h“ fixing each of the p’ nodes at depth T, which we label so
that the children of the root are labeled O,... ,landthehe
children of a node labeled k are labeled kp, (k+ l)p – 1.

Then K = FO > F1 > . . . > Ft = 1, and each group Fr
is normal in h’. Let rr in F~ be the cyclic permutation

(o , p – 1) of the p children of the first node at depth r,
permuting the subtrees rooted at those children but other-
wise leaving the subt rees unchanged. Then the conjugates
of r, under K permute the children of the other nodes at

depth T, so F,/Fr+l is elementary abelian, generated by

r, and its K-conjugates. Indeed, K = (~o, r-l, . . ., ~~-1),

F, = (r,, rr+l,l)l) x for each T, and K acts hnearly on
the Zp-vector space V, := F,/F,+I, which has a basis con-

sisting of p“ conjugates of ~, under h’ (mod F,+l). To refine

the series F = FO D . . . D Ft = 1 to a chief series for K we

must find for each r a basis b., bP. -] for V. such that ev-
ery subspace (b~, b~+l, bP. –l) is (TO, . . . , r~–I)-invariant.

Proposition 2. %2’ eaCh T = 1, ..., t thele iS a pr X p’
matrix B, with the following properties,

(a) The rows bo ,. ... bP. –l of B, form a ZP-basis for Vr =

z;” ,

‘s) of V. spanned(b) For s = O,... ,p’ – 1 the subspace V.

by {b,, , . . . bp~-l} is invariant under To, ~,_l

(c) The inner products of the rows of B? satisfy

b,. bj~
{

modpfori+j~pr
(–!)’ modp fori+j=p” –1,

(d) B,= B;l.

Moreover, the su bspaces V;’) in (b) are uniquely determined

by their invariance property.

PToof. We first exhibit a matrix BI satisfying (a)-(d)
for r = 1. Then we build Bz, B, from B1 by using

Kronecker products of matrices.

142

To begin with, VI = Z:, with standard basis
eo, . . . , eP_l, relative to which conjugation by the p-cycle

TO has the permutation matrix

(““ 1

01 0
01

c := “.. .

01

10...00

From now on we will index rows and columns of matrices
beginning with O. Define the p x p integer matrix B with
10WS bo, bP–l by

b. := [1 O . . . O]=eo and

b, := bO(I– C)’ for 1 s i <p,

where I denotes the p x p identity matrix. Then b; =

~~~&l)~)~)ek

B2 = I,

since (B2):J = ~k(–l)~+~ (~) (~) = ~k(–l)~+’ (~) (~~~) =

(~) z.(-l)s(’~’), which yields (Bz),, = I and (B’),j = o
ifj+i.

The matrix B(I – C) B-’ has an especially nice form.

For O~i<p–1,

e,(B(I — C)B–l) = b,(I – C)B–l = eo(I – C) ’+l B–l

= b,+l B-] = e,+l BB-l = e,+l.

For the last row, since Cp = I,

eP_.l B(I – C) B-l

= bP_l(I – C) B-l

= eo(f – C)PB–l

Thus

(1)

B(I – C) B-l =

o 1 0

0 1

‘. “.

o 1
0 (–l)p~) . . . –(P:2) (P:l)

In particular,

B(I – C) B-l E

01 0

01

‘.”.!. mod p,

so that, taken mod p, the rows of B form a basis for

\
01

OO<.. OO

a To-invariant flag in Vl; i.e., (b,, b,+l, . . . ,bP–l)C ~

(b,, b,+,,..., bP_l)for i= O,...,l–l.

Moreover, (BB~),j = Z, B~kB,k = ~k (i) (;) =

(’~’), so (BB~);j E O mod p if i + j z p and (BBT),J z

(–l)’ modpif i+j =p– 1. Hence

[“)
1

* –1

(2) BBT ~ mod p..“

–1 o

1

Thus B1 := B satisfies (a)-(d) for r = 1.
Now consider r > 1. For O ~ j < r, the mapping r~

permutes the nodes O, 1,.. .,plofra tdepthrbyby

{
a+p r–J–l mod Pr-] for O~a<p’–J–lah
a for p’-~ ~a <p’.

The corresponding pr x p’ permutation matrix Tj, has the

form

[1

o II o
0 11 0

T,, := ‘.
.II;

11 00

0 0 . . . 0 12

for suitable identity matrices II and 12, which we can de-
scribe using Kronecker, i.e., tensor, products of matrices.

Recall that the Kronecker product of an m x n matrix A
and an s x t matrix B is the ms x nt matrix A B B defined

by

(A@ B)ms+p,Tt+6= +&Y13L36

for O~a<m,O~y<n,O~~<s, 0<6<t. It

follows that (A@ B)(C @ D) = (AC)@ (BD) for matrices
A, B, C and D of compatible sizes. Denote by A@” the

~-fold Kronecker product A @ . . . @ A, with the convention

that A@O is the 1 x 1 identity matrix. Thus 18’ is the P“ x p’
identity matrix.

To describe the matrix Tj, for the transformation in-

duced by rj, let D be the p x p matrix with Dij = [i =
O][j = O] (here and later we use the not ationaJ convention

that ~redicate] has the value 1 if predicate is true and the
value O if predicate is false). Thus D’s only nonzero entry

is a 1 in the upper left corner. Then

where C is the cyclic permutation matrix from the case T = 1
above.

143



We want a p’ x p“ matrix B, whose rows form a basis

defining a flag in V, that is invariant under conjugation by
7.,. ... rr_l, i.e.,a B, such that B,(TJ~–18’)BF1 is strictly

upper-triangular for O ~ j < T. It turns out that B@” has
the correct rows, but in the wrong order.

Let P, be the matrix of the permutation

Tr: ar–lp ‘–1 +. . .+alp+ao + aoP”–l +“ “ “+~r-2P+~r-l

of{o, . . ..pr — I}, where O S a, < P for each i. Then

P; = I@’. Moreover, it is easy to check that

for p x p matrices Al,. ... -&, and hence that l’rB@r =
B@’P,. Define

B, := PrB@r.

Then B? = P, B@rP~B@’ = (B@ ’)2 = (B2)@” = I@”, so

B, satisfies (d).
Moreover, we have

—— B@r(BT)@” = (BBT)8’.

Since (BB~),l a O mod P for z + j 2? P and (BBT),~ ~

(-1) ’modpfori+.j=p-1,

(3)
{

modpfori+j~p”

(B’B~)” - ~–l)’ modpfor i+j =Pr –1.

Thus B, satisfies (c).
Furthermore, for O ~ j < T

Since the matrix B(C – I)B is strictly upper-triangular mod
p by (1), so is B,(Tj~–I@’’)BXl. Thus the rows of B. yield

a basis for a flag in VT that is invariant under ro, ..., T~–I.
That is, B, satisfies (a) and (b).

We can say substantially more. Indeed, we know that

(Ir-J-l)a,J = [a = 8],

()(W-W)Pe = [~=p+l]+[p=p–l][c > O](–l)p+’+e p ,c

Hence (4) yields

(5)( B,(I@-Tmr)B;]) ap’– J+pp”– J–1+~,6p”– J +cp. –3-1+{

= (l@(r-~-’))aa(B(I - C) B)6c((BDB)@’)7c

= [Cr=ti].

( ())[~=@+l] + W=P – l][C > 0](–l)p+’+’ p .e

[(= o]

forO~ff<pj,0~8<p~,0s p<p,o<~<p,

O s -jJ< p“–~–l and O ~ ~ < p’–3-1. To complete the proof,
we must show uniqueness of the flags. Denote the rows of B,
by bO, bl, . . .. bpr_l. For O < i < p’ let p’” be the highest

power of p that divides i; say i = pms with s prime to p.

Write i – 1 = ap~+l +pp~+ywitho<a,o~~<p,and
O s ~ <pm. Thenp~s = t = crp~+l +~p~+ 1 +7. Hence

l+y -0 modp~, so 1+7 = pm and thus s = ap+,f?-1-l with
~+1 <p. Hence i = ap~+’ +(opm+l+~) < (a+l)p~+’.
From (5) we have, since /3 # p – 1,

(Br(I@’ - Tr-~-,,,)BF’),-I,JP--l +CP~+C

= (B(18’ - Trnr)B~l) Opm+l+ppm+y,bpm+l+epm+i

= [ii=cl][c= @+l][(=o]

= [6= @][cl’p+ c = S][( = o]

= [6= cr][fp+c= S][(= o]

= [c$pm+] +Cpm+(= i],

so

bl_, (I@r – Tr-~-l,r)

= e,--l B,(I@r – Tr_~_l,,)BF]Br
—— e$Br= b,.

“) := (b,, bg+l,For O ~ s < p’ the subspaces V, . ..) form
,.

a flag in !4 mvarlant under To, ~,..., T.-.1,.. Suppose that

U is a subspace of V, invariant under To,., ..., T~-I ,r that

contains (mod p) an element u := b. + as+lb~+l + .”” E
b, + Vjs+l)

with s + 1 < p’. Then b,+, = b.(I@’ – T)

for some T 6 {To,,, . . . . Tr_l,r}, so U contains u(I@r –
(~+z) By finite induction, U contains bpr–1 JT) c b.+l + V. .

and hence also, working back up, hp.-Q, . . . . bs+l, bs. Thus

U = V#) for some j. It follows that the invariant subspaces

V(’) are unique.T 9

We have just seen how to construct b, from b,-1. The

next proposition shows an easy way to construct the b,’s

from the bottom up, as fast as they can be written, start-
ing with the last row of B., which is (1, 1, ..., 1). Here we
denote the j-th component of b~ by (b~)~.

144



Proposition 3. If O ~ 2’< p’ and ifp’” is the highest power
of p that divides i, then (b, _l )J is congruent mod p to

(bi)j for O ~ j < pr-m-’

(b,-l)j-P~-~-l + (b,), for pr-~-l < j < pr-m

(bt-1),-,r-~, for pr-m s j < pr.

Proof. Write

i = aT_lp ‘-l+ . ..+c%nPm

with O <t czk < p for all k and am # O. Let r be the

permutation introduced above that reverses p-ary digits and

has matrix P,. Then

T(2) = ~mp”-~-l + ~,

with O s a < p’-~-l. We have

2 — 1 = cvr_lp ‘-’ + . . . +(am – l)pm + (p’” – 1),

so

7r(2 — 1) = (pm — l)pr–m + (c% – I)p’-’”1”l + cr.

Define y, & and /3 by

j = yp’-m + ~p ‘-m-l + P’

with O < -y <pm, 0~6<pand O~~<pr-~-1,

Then

(B,),-,,j = (PrB8’),-l,j = B:;-, ),,

= B~%_l,7 . Ba~_l,6 . B~$-’@

~ 1. Ba~_1,6 . B~$-~-l) mod p,

because the last row of B“~ consists of 1’s mod p. Since y

is irrelevant here, we have established the case pr-m ~ j of

the proposition.

By a similar argument,

so that

(B-)i-l,j – (Br)i,J

= (%n-],d – &m,6) . B~f~-r-l)

If O ~ j < p“-m-l , then 6 = O so (Br),_l,j – (B,),,j = O as

claimed.
Finally, if 8>0 then

= (-1)6 [(”ma-(”:)]=4“~3
= Bam–l,&l ,

which establishes the proposition for p’–~-l ~ j < p’-m,

since

(B~)i-i,j-P.-m-l ~ 1. 13am-1,6-I. B~~~-r-’) mod p. i

5 Computing #(k) and Testing Membership

Proposition 2(c) gives an easy method for determining mem-
bership in the subgroups A“j and for computing the coeffi-

cients ~(k) required by the update algorithm.

In the main loop of the algorithm we are given ele-

ments z~l[h,+l, ~k] in KJ and must find constants ~(k) E
{0,1,...,1}l} such that

z~l[h,+l, ~k] E zj~l) mod ~j+l.

Given j, the first step is to compute r such that F, ~ A’j >

A’3+1 > F,+I, Le., such that A’l and Kj+l correspond to K-
invariant subspaces (b,, b$+l, . ..) and (b,+l, . . .) of V, :=

F,/F,+l, with ZJ+l corresponding to b,. For convenience,

assume that F,+l = 1, and let v := ~~l[hi+l, Tk]. Then

~(~,d(k)b.+u with u E (b~+l,. . .) = ~j+~. By Proposition

bP,._,-.l . v = q5(k)bP,_,_l . b. - (-l)s@(k) mod p,

so to compute ~(k) we need only take the dot product of

v with an appropriate row of B,. We also get a test for
membership in KJ, since, for u c V~,

u~(b,, b,+l . ...) iff u. b$=Ofor/3~p’ -s.

On each pass through the main loop of the update algo-
rithm the value of j increases by 1. Thus the test vectors for

V, run through bP._l, bPr_z, . . . . bo. By Proposition 3, the
complete matrix B need not be stored in order to implement
the algorithm.

6 Complexity

There are two parts to the al orithm, each of them with a
f

worst-case complexity of O(n ). The first part is to obtain
the chief series for H, which is essent ally a Sims-Schreier pro-

cedure, as organized by Knuth [Kn]. The gain in the analysis

comes from the fact that we have fewer than n/p subgroups

in the chain, each having p cosets, while in Knuth’s analysis
we have n in the worst case for both of these factors.

In the second part (finding the normahzer) there are two
nested loops. Each of them can be O(n) long. There is
usually an O(rz) check or 0(n2 ) maintenance work when the
normalizer does not change, and there is an O(n3) main-

tenance work when the normalizer shrinks, which cannot
happen more than n/p times. Thus the whole time is still

0(n4).

7 Implementation and Experiments

We have implemented the algorithm in GAP [Se]. The pro-

gram occupies about 400 lines of code.
Comparing the running times with GAP’s built-in nor-

malizer algorithm, it appears that, while the running times
of our algorithm are fairly predictable, the ones for GAP’s

algorithm depend more on the structure of the groups in-
volved. In the cases that we investigated (for example, 2-,

3-, 5- and 7-groups on < 125 points), our algorithm was up
to several hundred times faster on some examples. We saw
slower times only in some small examples; here the overhead
in setting up our matrices, etc., was not worth the effort.

We also compared the timings with those obtained by

GAP’s AgGroup normalizer function (which is based upon

the method of [GS]). For this we first applied the GAP
function AgGroup to the ambient group (G, ff), getting the
embedding of G and H in the AG group via the PreImage
function. After determining NG(kl) as an AG-group, we
used the Image function to lift the answer back to a permu-
tation group.

145



In the tables below, we report some sample results run

on a Sun SPARC-2 (in multiuser mode) for p-subgroups of
S’lOO, when p = 2 and 3. We use the notation s?(kr) to

denote the length of a composition series for the p-group

K, i.e., 4(K) = logp \KI. The running times are in sec-
onds of cpu-time as reported by the GAP function Runtime

(and rounded to the nearest second). In instances where
the other methods (listed as GAP and AG, respectively) re-

quired more than 20x that of our linear method (listed as
LIN) we indicate only an asterisk (*) in the table; in some

instances we simply interrupted the process when this time
ratio was exceeded. The groups were generated by between

I and 4 random elements of a random Sylow p-subgroup of
SIOO. In some instances, we forced H s G (indicated by

L(G) = l((G, H))) and a few trials involved the full Sylow
subgroup for G (1(G) is then 97 when p = 2 and 48 when

p = 3).

p=2

Ongoing investigations will include an implementation in

Magma [CP].

References

[At] M.D. Atkinson, An algorithm for finding the
blocks of a permutation group, Math. Comp., 29
(1975), 911-913.

[BC] G. Butler and J.J. Cannon, On Holt’s algorithm,
J. Symb. Comp., 15 (1993), 229-233.

[Bu] G. Butler, Computing normalizers in permuta-
tion groups, J. Algorithms, 4 (1983), 163-175.

[CP] J. Cannon and C. Playoust, An Introduction to

MAGMA, School of Mathematics and Statistics,

U. of Sydney, 1993.

~GHLSWl Z. Gall C.M. Hoffmann. E.M. Luks. C.P.

1(G) I(H) 4((G, H)) E(N~(H)) L1~n&$im;;

97 5 97 34 19 * *

97 67 97 72 138 * 861

85 40 90 43 104 * 1974

85 35 85 45 89 994

77 3 83 19 57 118 1012

40 85 90 39 113 526 *

3 77 83 1 68 35 1353

p=3

I(G) t(H) t((G, H)) l(N~(H)) &!’n:;pTim;;

48 3 48 15 7 * 137

48 32 48 36 27 * 149

40 3 44 7 10 * *

36 21 42 22 16 28 178

21 I 36 42 19 171* 267

3 40 44 2 14 I 12 207

Note that the instances in these tables where the general

GAP normalizer has the better timing correspond to the
case of a cyclic, and fairly small, G.

As suggested by a referee, we ran additional tests to de-
termine the time spent in various procedures by the LIN and

AG methods. One of the objectives was to determine the
timings essentially for multiplication by “collection” (in the

AG setting) versus multiplication in the permutation set-
ting, since the structures of the underlying methods (ours

compared to that of [GS]) are analogous,l In some instances,
the time in AG for just this part was closer to, or even bet-

ter than, the overaJl time for our method. Rarely, however,
did it match the timing for just the corresponding segment
of our method (excluding, for example, the time to build a
structure forest and to determine a chief series for (G, H)).

For instance, the “pure” part of the AG method for the first
group in the p = 2 table took 56 seconds; the analogous

part of the LIN program took 9 seconds. For the second
group, the two methods had very similar timings for these
segments: 94 seconds for the AG method and 99 seconds for
LIN. For the other groups in that table, the AG timings were

always twice, or more, those for LIN. While there must be
groups where the AG method will be substantially superior,
our “random” selections did not include any.

L .

[GS]

[Ho]

[KL]

[Kn]

[Lul]

[Lu2]

[Lu3]

[LM]

[Se]

Schnorr, A. Weber An O(n3 log n) determinis-
tic and cm 0(n3) Las Vegas isomorphism test for

trivalent graphs, J. ACM, 34 (1987), 513-531.

S.P. Glasby and M.C. Slattery, Computing in-

tersections and normalizers in soluble groups, J.
Symb. Comp., 9 (1990), 637-651.

D.F. Holt, The computation of normalizers in

permrstation groups, J. Symb. Comp, 12 (1991),
498-516.

W.M. Kantor and E.M. Luks, Computing in quo-

tient groups, Proc. 22nd ACM Symposium on

Theory of Computing, 1990, 524–533.

D.E. Knuth, Notes on eficierat representation of

perm groups, Combinatorics, 11 (1991), 57–68.

E.M. Luks, Parallel algorithms for permutation

groups and graph zoomorphism, Proc. 27~h IEEE

FOGS, 1986, 292-302.

E.M. Luks, Computing in solvable matrix groups,

Proc. 33rd IEEE Symp. on the Foundations of
Comp. Sci., 1992, 111-120.

E.M. Luks, Permutation groups and poiynomia!-

time compzstation, in Groups and Computa-
tion, DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, 11,
Amer. Math. Sot, 1993, ed. L. Finkelstein and
W. Kantor, 139–175.

E.M. Luks and P. McKenzie, Parallel compu-
tation in solvable permutation groups J. Comp.
Syst. Sci., 37 (1988), 39-62

M. Schonert et al., GAP, Groups, Algorithms
and Programming, Lehrstuhl D fiir Mathematik,

Rheinisch Westfalische Technische Hochschule,
Aachen, Germany, 3rd edition, 1993.

146


