
Reduction of Group Constructions to Point Stabilizers

Gene Cooperman and Larry Finkelstein* Eugene Lukst

College of Computer Science

Northeastern University
360 Huntington Ave.

Boston, Mass. 02115

ABSTRACT

The construction of point stabilizer subgroups is a problem
which has been studied intensively. [l, 4, 5, 10, 11, 12, 141
This work describes a general reduction of certain group
constructions to the point stabilizer problem. Examples are
given for the centralizer, the normal closure, and a restricted
group intersection problem. For the normal closure prob-
lem, this work provides an alternative to current algorithms,
which are limited by the need for repeated closures under
conjugation. For the centralizer and restricted group inter-
section problems, one can use an e?cisting point stabilizer
sequence along with a recent base change algorithm [2] to
avoid generating a new point stabilizer sequence. This re-
duces the time complexity by at least. an order of magnitude.
Algorithms and theoretical time estimates for the special
case of a small base are also summarized. An implementa-
tion is in progress.

1. INTRODUCTION

A fundamental problem in computat.ional group theory
is the construction of the point stabilizer seyueuce for a
permutation subgroup G acting on an n.-element subset A
relative to an ordering a = crl, (~2,. . . , (Y* of A. This is the
chain of subgroups

G = G(l) > @) 3 - 3 G@) = {I} - I.. -

where Gci) = Gataa,..ai-l is the pointzuise stabilizer of the
set {cY~,..., (Y~-I), 1 5 i 5 n. Because of its importance,
a great deal of effort has been spent on developing eficieut
algorithmic solutions to this problem. [l, 4, 5, 10, 11, 13, 141
A solution usually consists of a set 5’ of generators for G with
the property that

G(“) = (S n G(‘)), 1 5 i 5 TZ - 1.

A generating set for G with these properties is called a strong
generating set relative to (Y.

* Research partially supported by NSF Grant DCR-
8603293.

t Research partially supported by NSF Grant DCR-
8609491 and ONR Grant N00014-86-0419.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise , or to republish, requires a fee and/or specific permission.

Department of Computer Science

University of Oregon
Eugene, Oregon 94705

In this paper, we present a general result for computa-
tional group theory which shows how to transform the con-
struction of several important permutation subgroups re-
lated to C to a direct computation of the point stabilizer
sequence. This is obtained by creating a new permutation
group action on the disjoint union of two copies of the un-
derlying point set which clearly reveals the subgroups in
question as point stabilizer groups. New methods for con-
structing a strong generating set can then be applied [1]
to reduce the worst case asymptotic running time for these
const.ructions. In certain instances, a chnnge of base can be
used inst.ead, for which a recent base change algorithm [2]
further reduces the running time of our method.

Before stating our main result, we review the subgroups
in question. Given subgroups H and G of Sym(A), the
centraliter of H in G, denoted CG(H), is the subgroup of
G consisting of all elements of G which commute with each
element of N. We refer to CG(G) as the center of G and
denote it Z(G). G is said to normalize II if H is invariant
under conjugation by each element of G. The conjugate of

H by g (gllg-I), is denoted Hg, The normal closure of H
urlder C is the smallest normal subgroup of (H, G) which

cont,ains H and is denoted (JIG). In the case where H C G,
this is just the not-mal closure of 1J in G, denoted NCLG(H).
Our main results may be summarized as follows:

Tl~~~ern 1. Let G and ii be permutation groups acting
on WI n-element set A.

(i) Suppose t.hat a strong generating set is known for G.
Then a strong generating set for Z(G) can be con-

structed in t.ime O(n3).

(ii) The construction of the normal closure of H under

G, (I-I”), can be obtained in the same time bound as
required for comput.ing a strong generating set for G.

(iii) Assume that strong generating sets are known for G
and H. If G normalizes 11, then G n H can be con-

structed in time O(n3).

The construction for Theorem l(i) actually reduces to
the construction given in Theorem l(iii) by setting H =
CS~,,~~~)(G). In this case, it makes use of the fact first

shown in [G] (see also [S]) that if S is a generating set for
G then a strong generating set for CSym(A)(G) can be de-

termined in time O(~S~YL’). We present an alternative proof

0 1989 ACM O-89791-325-6/89/0007/035 1 $1.50
351

of this fact in section 4 which makes intrinsic use of the
structure of G as a permutation group. The reduction of
the normal closure problem to the direct computation of a
strong generating set is related to but distinct from exist-
ing methods used to solve this problem. [1, 31 Interestingly
enough, efficient computation of normal closure plays a key
role in the O(n410g”(n)) algorithm [l] for the computation
of a strong generating set. The idea of reducing the central-
izer problem to one of constructing a strong generating set
was previously observed in [13], but the construction of a
strong generating set for Z(G) depended on a group acting
on n2 points. (The current construction uses a group acting
on 2n points.)

In section 2, we describe the basic transformation which
is used to prove Theorem 1. We are able to prove Theo-
rem I(ii), (iii) as a direct consequence of this transforma-
tion. However, substantially more work is needed in order
to derive Theorem I(i). Section 3 provides some background
material on group membership data structures which is re-
quired for the discussion in section 4 of the algorithm to con-
struct a strong generating set for CSym(A)(G). Section 4 es-

tablishes an upper bound of O((S(u2) for this computation,
which suffices to prove Theorem l(i). However, our method
can be substantially improved by applying new data struc-
tures [4, 51 which have been used for implementing a strong
generating test. These ideas are outlined in section 5 to-
gether with a different estimate for computing Csym(A)(G)
which yields a better time for Theorem l(i) when G has a
small base.

2. MAIN REDUCTION

Let G and H be distinct permutation groups acting on
the set, A. Let A = AltiAz, where Al and A:! are copies
of A. Thus D can be described as the subgroup of Sym(A)
consisting of all elements of the form {(g, g): g E G}. Let
K = (D u 1 x H) 2. G x G. Since each element of K can
be written uniquely rn the form (gr, 92) for suitably chosen
elements gl E G, and g2 E (H, G), we can define projection
maps fl: h’ + G, and f2: K + (H,G) according to the
rules flt(gl,ga)) - 91 and fz(h, n)) - 92. Final let
Kl = fr(K~~) and Kz = f2(KA1) where KAI and K&
are the pointwise stabilizers subgroups in K of Al and A2
respectively. To fix notation, for elements z, y of a group we
refer to zyz-r as the conjugateof y by x and denote it by
YX*

Theorem 2.1. Under the above conditions, Kl = (HG)flG
and K2 = (HG>.

Proof. Observe that an arbitrary element of # can be
expressed in the form ~6192h2. a. ~~ilu for some n and
81 , * ._* ,ih E D, hl,--- , hu E 1 x H. Letting pi = (gi,gi)
and hi = (1,hi) (1 is the identity), it follows that

K = {(gl.. . 9nSn+l, 91h192h2-..9nhngn+1)}

= ((g1 . - 1 gngn+l, h;%;1g3 *. . h9,‘-‘g”glg2 * * *gngn+l)}.

The last equation is similar to the one used to prove Schreier’s
lemma ([7], Lemma 7.2.2). In light of this description of Ii,
we can “solve for gu+l” in order to find the following char-

acterizations of lil and K2.

Ii; = {12f1h~1g3 .-.h~“.g”g1g2...gngn+l 1 g1 .-.gn+l = e}

= {l~~lh~~~’ . . . IL~““~ 1 91,. . . ,gn,hl,. . . ,h, are

all arbitrary}

= (HG)

The next result is important for Corollary 2.3. Its proof
is clear.

Lemma 2.2.

(i) K = D(l x H) if and only if G C Nsym(A)(H). (The
first formula says K is factorizable.)

(ii) Let a(,‘), . . . , ai” be an ordering for G acting on Al,

and let af2), . . . , c$” be the corresponding ordering for
G acting on AZ. Suppose that K = D(l x H). Then

(1) strong generators for K relative to the ordering (al ,

. . . . ail), a?‘, . . . , aL2’) can be determined from strong
generators for G and H. In fact, Kjacl)

1 >...,a, (1)) =

D{a!x)),.., a$’ x H), and K{a(ll, ,...) a, ,a, (1) (2),...,p) =

(1 x Htay),,,,,,& 1 5 i I ,I.

Corollary 2.3.

(i) If H E G, then K1 = K2 = NCLc(H).

(ii) If G normalizes H, then K1 = G n H and Ka = H.
Given strong generators for G and H, strong generators
for G tl H can then be computed in time O(n3).

Proof. The proof of (i) is obvious. To prove (ii), note
a strong generating set for K relative to the ordering

a!” , . . . , ail), 0(12), . . (2) . , an

that

can be computed directly using part (ii) of the Lemma.
Thus, lit = G n H can be computed in time O(n3) [2] by
using a change of base (or ordering) to

a(1”’) . . .) ap, a$‘) (1) ,...,an .

0

The proof of Theorem l(ii),(iii) follows directly from
Corollary 2.3. The proof of Theorem l(i) will be given at
the end of section 4.

3. BACKGROUND

Let G be a permutation group acting on the set A and
let o = (ol, (~2,. . . , on) be an ordering of A. As defined in

352

section 1, the point stabilizer sequence relative to (Y is the
sequence of subgroups

G = G(l) > Gc2) 2 . . . 2 G(“) = (1) -

where G(‘) = Galoa...ai-l.

For each i, 1 5 i 5 n, let Vi be complete set of coset
representatives for G(‘+‘) in G(‘). We will always assume
that the identity belongs to Ui. The set

u = lJ;.%Jj

is called a complete family of coset representatioes for the
point stabilizer sequence of G relative to (Y. The associated
cosets will be referred to as the cosets of the point stabilizer
sequence. Each set Vi is in a l-l correspondence with the
points in the orbit of (pi under G(j), denoted A(‘), in the
sense that each element of Vi maps CY~ to a distinct point of
A(‘) I

Suppose now that g E Sym(A), and we want to test
if g E G. Set h = g. If alh e A(‘), then g # G, and
the test will fail. Otherwise, there exists a unique element
g1 E U1, such that ,lh = culgl and we continue the test
with h replaced by ggc’ . Eventually, we arrive at an index

j such that h = ggyl.. . gyJl E Uj-1 with gi E Vi for
l<i<j- 1, h fixes al,c22,. . . , aj-1, and either h is the

identity element or ajh 4 A (il. If the latter occurs, then
we conclude that g @ G. Otherwise, g E G and we can write
g in the unique factored form

g = gj-1gj-2.. . 91, giEUi9 l<;<j-l.

Note that testing for membership using this chain of sub-
groups takes O(n’) time.

A data structure is a group membership data structure
for a group G (relative to an ordering cr), if there is a corre-
sponding algorithm to calculate a subset of a complete fam-
ily of coset representatives for the point stabilizer sequence
of G. If this subset is the entire family of coset representa-
tives for the point stabilizer sequence then we say the data
structure is complete. Both labelled branchings [lCJ] and
Schreier vectors [14] are examples of group membership data
structures. In the case of labelled branchings the algorithm
to recover a coset representative takes time O(n), whereas
in the case of Schreier vectors the time is O(n2). In practice,
the recovery of coset representatives using Schreier vectors
takes time which is usually linear in n, although examples
exist for which the worst case time of nz occurs. Schreier
vectors have the further advantage of being more space ef-
ficient when G has a small strong generating set. From the
point of view of proving Theorem l(i), we will always assume
that it takes O(n) time to recover a coset representative.

Let SC’) = (-$‘) n S. A group membership data struc-
ture is fully augmented (relative to an ordering o) for a set of

generators S of G, if for each p E oi(‘(‘)), the corresponding
algorithm will compute an element of (SC’)) which moves ai
to p. In particular, if S is a strong generating set for G, then
a group membership data structure fully augmented for G
must be complete.

Given a generating set S, it is possible to compute a
Schreier vector data structure fully augmented for S in time
O(ISln + n log n) and a labelled branching fully augmented
for S in time O(-/Sln + n’). [4]

The essential facts which we require for section 4 can
now be summarized as follows.

Lemma 3.1. Given a set of generators S for G c Sym(A),
a group membership data structure can be computed in
time O(l.911~ + n2) which is fully augmented for S and such
that the corresponding algorithm can recover an appropriate
coset representative in time O(n).

4. CENTRALIZERS IN SN

In this section, we describe an algorithm for comput-
ing the centralizer in S, of a permutation group acting on
A = {1,2,... ,n} using O((S(n2) time. This algorithm is
substantially different from the one described in [6, 8] in the
sense that it relies on the properties of G as a permutation
group (primitivity, transitivity, etc.) rather than on the cy-
cle structure of a set S of generating permutations for G.
The time estimates are the same, but this new version ap
pears to allow faster implementations, and makes possible
theoretically faster algorithms when G has a small base. The
issues of implementation and a small base are postponed un-
til section 5, while we present, here, a high level description
which suffices to establish Theorem l(i).

Let Z = C Sym(A)(G). We begin by giving a high level
structure theorem for 2. If 01 and 02 are two orbits of G,
then we say that 01 is G-equivalent to 02, denoted 01 5~
02, if there exists a one-one and onto map 6: 01 I-+ 02,
such that Va E 01, Vg E G, a+9 = as+. In this case, we
say that 4 induces the G-equivalence. We write GIO for the
action of G restricted to the orbit 0.

Let C be a G-equivalence class of orbits with ICI = k.
For each 0 E C, let 20 = Cs,,(u,(GIU). The 20 are
isomorphic to each other. Zo can be viewed as a subgroup
of &m(A) by trivially extending each element outside of 0.
We can then associate with each class C, a direct factor Zc
of 2 which has the following simple structure. It is the split
extension of a direct product of the subgroups Zo for each
0 E C by the symmetric group SI, acting naturally on the L
orbits of C. Zc in fact can be described as a wreath product
(see [9] for a formal definition of wreath products).

Lemma 4.1. Let Cl,. . . ,Ct be the G-equivalence classes
of orbits of G acting on A. Let ICil = I;;, 1 5 i _< t and
let ZC, = CSyn~(Uj)tGluj)~ for some Sj E C;. Then 2
is isomorphic to the direct product of the wreath products
ZCi1Ski;15iIt. -

The proof of Lemma 4.1 is straightforward and is omit-
ted. According to this result, the construction of an al-
gorithm for computing CSym(A)(G) reduces to classifying
the orbits of G under G-equivalence, and then for each i,
1 5 i 5 t, computing generators for CSy,(uj)(G(Oi) for
a single representative Uj E Ci, 1 5 i 5 t. Lemmas 4.2-
4.4 show how to compute generators on a single orbit for
different cases.

We first review some standard definitions. G acts tran-
sitively on A if aG = A for a E A. G is semiregular if

353

Ga = {e} for all a E A. G is regular if G is semiregular and
acts transitively. This last is equivalent to]G] = IAl. B C A
is a block of imprimitiuity for G if for all g E G, Bg f~ B = B
or Bg n B = B. G is primitive if {e} and A are the only
blocks of imprimitivity.

Lemma 4.2. Suppose that G acts regularly on A. TJren 2
is regular. Moreover we can describe Z precisely as follows:
Let gi E G be the unique element of G which moves 1 to i.
Then Z is the set of permutations g i; l-l correspondence

with g E G defined by setting is = lg g*.

The proo.fhis by direct computation, noticing that for h E G
and j = 1 , gj = gih.

Lemma 4.3. Let B be the set of points fixed by G1, so
that 1 E B. Assume that G acts transitively on B. Then
Z is semiregular. B is stabilized by Z, and so 1.2’1 < IBI.
Furthermore, if G is transitive on A, then B is a block of
imprimitivity for G.

Proof: The first statement is proved in [9]. To prove that Z
stabilizes B, we simply use the fact that B represents the set
of points fixed by a subgroup Gr of G which is centralized
by Z. Finally, since G, = G1 for each a E B, it follows that
B is a block of imprimitivity for G. 0

Lemma 4.4. Let B be the set of points fixed by G1, so
that 1 E B. If G is transitive on A, then IBI = IZl and Z
can be described exactly.

Proof: If IBI = 1, then by Lemma 4.3, Z fixes 1. It then
follows from the transitivity of G that Z fixes every point,
and hence is trivial. On the other hand, if B = A then the

result follows from Lemma 4.2. Thus, we may assume that
B is non-trivial. In this case, B is a block of imprimitivity
for G.

Let GcB) be the set stabilizer of B in G and let H =
GcB)JB be the image of G(B) acting on B. Then H acts
regularly on B. To see this, first note that if g E G moves
1 to any other distinct point in B, then g must set stabilize
B, since B is a block. Hence, G(S) acts transitively on
B. Furthermore, Gu = GB for any a E B implies that
Ho = {e}.

It now follows from Lemma 4.2, that U = Csym(B)(H)
has order IBI and can be described exactly. By Lemma 4.3,
it suffices to show that each p E U can be extended uniquely
to an element of Z.

Fix a E B. Usually, a will be taken to be 1. Let ~1 E U.
For c E A - B, let cre E G move a to c. Extend p to A - B
so that

cP = #‘oc

If u: E G also moves a to c, then u:a,l fixes a. Hence
cr:cr,’ set stabilizes B, since B is a block of imprimitivity.
But the structure of H then implies that aicre’ acts trivially
on B. Therefore, the definition of cP is independent of the
choice of ue.

We now have to show that p centralizes G, or

xgp = xpg, Vx E A, g E G.

Let c = o”‘cg. Then we may take UC = uxg. Thus,

as required. 0

Lemma 4.5. Suppose that 01 and 02 are two orbits of
G acting on A with IC31] = 1021. Let S be a generating
set for G. Then it is possible to test in time O(lS((0,12)
whether Cnr and 02 are G-equivalent, and ifso, to construct
an expJici t map d.

Proof: Suppose that we try to explicitly construct such a
map 4. Then 4 has to satisfy the following property:

jg+ = j+g

Let a be a fixed point of 01 and suppose that we choose
some b E 02 and restrict 4 to satisfy b = a@. Then G acts
transitively on 01 implies that the above condition uniquely
determines (b. More precisely, if g E S, then egd = e6g = bg.
Thus for each b, 4 can be determined in time O(lS]]Or])
using a transitive closure type argument. Once 4 has been
determined, it takes O(]S]l0,]) time to verify whether 4 is
an equivalence. Since there are 1011 choices for b, the result

follows. cl

We can now describe our algorithm. Let Or, 02,. . . , Op
be the orbits of G acting on A. Assume that the points of
A are ordered so that the points in 01 come first, to be fol-
lowed by those in 02, etc. Let T hold the strong generating
set for CSym(A)(G with T initialized to NIL. We iterate h
on i from T down to 1. We compute CSy,(Gi)(G]Oi) ns-
ing Lemma 4.4, and append these generators to T. We now
attempt to find the largest j, if any, with 1 5 j < i and sat-
isfying G]Oi 3 GlOj. If such a j is found, then we construct
a permutation equivalence 4 between GlOi and GlUj using
Lemma 4.5. We may assume that 4 interchanges Oi with
Oj and is trivial on the remainder of A. We then append 4
to T. We record the fact that CSr,,(~j)(GJOj) is known.

It is useful to observe that generators for CSym(Gj)(GJOj)
need not be added to T. In the end, T will hold a strong
generating set for CS~~,(A)(G).

It is easy to show that the generators accumulated in
T form a strong generating set for CSym(A)(G). Further-
more, it is also straightforward to show that ITI 5 n - 1.
These facts will be formally stated after the pseudocode is
presented.

Centralizer Algoritlrm Input: Generators S for a sub-
group G of Sg,m(A). Output: A strong generating set T
fcx ‘?s~,,,(A)(G)~ Local Vuriablesr L, a boolean array of
length r with each entry initialized to FALSE. L[i] will be
set to TRUE if C,,,(Gi)(G]Oi) has already been computed.
6 will be used to hold a group membership data structure
for G]Oi with generating set S which is fully augmented for
S as discussed in section 3. The supporting routine Build-
Group-Data performs the necessary construction.

Set T - NIL
Foreach i, set L[i] + FALSE
Let Or,..., 0, be the orbits of G

[We can assume that the points are ordered

354

according to these orbits.]
For i + r down to 1 do

Set f3 + Build-Group-Data(S, Oi)
If JT[;] = FALSE then

Set C + Transitive-Centralizer(S, Oi, 8)
Append C to T

[We assume that each element of C is
trivially extended to A.]

For j +- i - 1 downto 1 do
Set 4 + Test-Equivalence(S, 8, Oi, Oj)
If 4 # NIL then

Append 4 to T
Set L[i] + TRUE
Break to the outer for loop (next ;)

return(T)

We now present pseudocode for the supporting routines
Transitive-Centralizer and Test-Equivalence.

Transitive-Centralizer Input: An orbit A of G acting on
A, generators S’ = SlA for GIA, and a group membership
data structure B for the action of G on A. Output: Gener-
ators for CsV,(h)(G).

We will assume for simplicity that the points of A are renum-
bered from 1 to IAl .

Let B be the set of points fixed by Gr
[This can be computed using Schreier

generators for Gr .]
If B = A then (G is regular)

Return generators for Csym(~)(G) using Lemma 4.2
If B = {I} then

Return NIL [see Lemma 4.31
If]Bl > 1 then

Let T = {ra, a E B: r, E G, lTo = a}
[T can be computed using B and

generates H = C~B)/GB.]
Let U be generators for CSyna(B) (H) determined

from Lemma 4.2
Extend each element of U of Ui as in Lemma 4.4
retflfnhisrequires the use of B.]

Test-Equivalence Input: Generators S for a subgroup G
of Sym(A), a group membership data structure B for G and
orbits 01 and 02 of G. Output: Either NIL, or a map 4
which induces a G-equivalence between 01 and 02.

In the case where the return value is not NIL, we may extend
4 to A so that I$ interchanges 01 and 02 and is trivial
outside 01 U 02.

If loll #]O2] then return(NIL)
Let a be the first point of 01
Foreach b E 02 do

[For each b, define a new 4.1
Set a@ + b
Foreach e E 02

Set 4# +- NIL
Foreach k E 01 do

Let g E G move cz to L [g determined from D]
[Require that &’ = e49.1
Set I;@ + bg
If (bg)@ = NIL then (bg)” +- k
Else break to outermost foreach (next b)

[Check if 4 is an equivalence.]

Foreach g E S do
If (&)I@ # (4sWh then

break to outermost foreach (next b)
Return(d)

Return(NIL)

Theorenr 4.0. The centralizer algorithm returns a strong
generating set T consisting of at most n - 1 generators in
the 0(ISln’).

Proof: The proof that the centralizer algorithm returns a
strong generating set for CSy,,,(A)(G) is straightforward and
relies on Lemma 4.1.

We turn our attention to the timing estimate for the
algorithm. For simplicity, we may assume that each orbit

0,. has the same size so that n = mr. The compu-
%dn’df these orbits can be done in time O(]Sln+nlog(n))
using the procedure Augment in [4].

We will first show that each call to Transitive-Centralizer
takes time O(lSln2/r2 +n2/r). The computation of B takes
time O(]S]n2/r2). A simple way to obtain this result is to
find a generating set ior the point stabilizer and examine
each generator in this set. We use the Schreier generators
(see [7], Lemma 7.2.2). There are G(lSln/r) Schreier gener-
ators. The construction of each one takes time O(n/r) since
this involves the computation of two coset representatives
(in time O(n/r) by Lemma 3.1) and two multiplies restricted
to the orbit. B is then computed by examining each Schreier
generator, yielding a total time of O(]S]n2/r2). The con-
struction of the set T of generators for G(B)JB takes time

O(n’/r’)), since this involves the construction of at most
n/r coset representatives from S restricted to the orbit, and
the computation of each one takes time O(n/r), again by
Lemma 3.1. Furthermore, the construction of U from T
takes time O(ITln/r) and the extension of these elements to
(33 and then to A takes time 0(]‘2’]7r). Since ITI 5 n/r, the
result follows.

Since there are T orbits, the total time spent in calls to
Transitive-Centralizer is O((Sln2/r + n2).

Now consider the time spent in calls to Test-Equivalence.
In the worst case, there are O(?) tests for G-equivalence
between the T G-orbits. Each isomorphism test takes time
O(]S]n2/r2) by Lemma 4.5. Thus the total time spent in
calls to Test-Equivalence is O(]S]n2).

Adding this up, we spend O((S]VZ’/~ + n2) time in the
calls to Transitive-Centralizer and O((S(n’) time in the calls
to Test-Equivalence. The only other additional work is the T
calls to Build-Group-Data. By Lemma 3.1, each one of these
can be done in time O((S]n/r + n2/r2). This contributes
0(]S]n + n2/r) to the total running time. The accumulated
time is thus O(]S(n2) as required.

To see that the algorithm returns at most n - 1 gen-
erators, observe that at most T - 1 isomorphisms between
G-orbits are ever added to the generating set. Furthermore,
at most 11/T - 1 generators are added to the generating set
from each G-orbit. Since there are T orbits, the size of the
generating set returned is at most T(n/r-l)+(r-1) = n-l

as stated. fl

355

Proof of Theorem l(i): The result now follows directly
by combining Corollary 2.3 with Theorem 4.6. 13

5. IMPLEMENTATION ISSUES

The base change algorithm is the bottleneck to faster
algorithms. The ability to perform a base change on A in
time O(n3) [z] is, as described in Corollary 2.3, the key step
for obtaining upper bounds both for constructing a strong
generating set for Z(G) and, when G normalizes H, for con-
structing H n G. In the preceding sections, we have outlined
algorithms which suffice for the proof of Theorem l(i), (iii).
In this section, we suggest two approaches which can be used
to speed up these constructions. The approaches are being
compared experimentally in an ongoing implementation.

The first approach relies on eliminating the O(n) right
cyclic shifts, each requiring O(n’) time, on which [2] relies.
For our special case, we know that K is factorizable as
K = D(1 x H). In this situation, we have developed a new
base change algorithm requiring O(m2n2) time, where both
H and G have a small base of size m. To date, we have not
been able to extend the new base change algorithm beyond
this special case.

The second approach for improving the construction

of Csym(n) (G) is to note from Theorem 4.6, that testing
isomorphism of G-orbits dominates the running time. The
following characterization can be used to simplify this part
of the computation. The proof is clear, and is omitted.

Lemma 5.1. If a E O;, i < j, then Oi SG Oj w Go
has a fixed point on 0j.

In order to exploit this, assume that the points of 0 are
ordered so that the the orbits 01,. . .Or appear in consecu-
tive order. We also assume assume that a strong generating
set for G is known. This last fact is not required for the algo-
rithm in Section 4, but is needed in order to apply Theorem
1. If rul is the first point of 01, then we know generators
for G,, because of the existence of a strong generating set.
In particular, we can compute the orbits of G,, on R and
discover, via Ldmma 5.1, precisely those orbits which are
G-equivalent to 01.

In the case of orbits other than the first orbit, say (3j,
one doesn’t readily have generators available for Gaj, where
aj E c)j. This situation can be easily remedied by doing a

single right cyclic shift base change in O(n2) time so that
aj is now the first point in the ordering. Alternatively, a
variation of the standard base change in [2] can be used to
find fixed points of Gaj without needing to output a new
strong generating set. By a clever use of data structures
similar in spirit to the algorithm for fully augmenting a
group, [4] we can compute the fixed points of Gaj on 0
in time
O(lSln/~ + min(log ICI, n - 1)n + log IGI + nlog(n) + n2/r),
where it has been shown that log IGl 5 mlog(n).

Since this calculation must be carried out t times in
the worst case, the total time spent checking G-equivalence
of orbits in the centralizer algorithm can be given by
O(lSln + min(log ICI, n - 1)rn + rlog IG(+ rn log(n) -t- n’).
The above time appears overly pessimistic in practice, since
it assumes that most orbits are of a fixed size n/r, and the r
orbits divide into O(T) distinct G-equivalence classes. Thus

we expect both theoretically and experimentally that our
implementation using the above technique will be signifi-
cantly faster than the 0(lSln2) reported for Test-Equivalence
in section 4.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

REFERENCES

L. Ba.bai, E. Luks, and A. Seress, “On Managing Per-

mutation Groups in O(n410gc n)“, Proc. 28th IEEE
FOCS (1988), 272-282.

C.A. Brown, L. Finkelstein, and P.W. Purdom, “A
New Base Change Algorithm for Permutation Groups”,
SIAM J. Computing, to appear.

G. Butler and J.J. Cannon, “Computing in Permuta-
tion and Matrix Groups I: Normal Closure, Commuta-
tor Subgroups, Series” Math. Comp. 39 (1982), 663-
670.

G. Cooperman and L.A. Finkelstein, “Short Presenta-
tions for Permutation Groups and a Strong Generating
Test”, submitted to J. Symbolic Computation.

G. Cooperman, L. Finkelstein and P. Purdom, “Fast
Group Membership Using a Strong Generating Test”,
to appear in Proc. of 1989 Computers and Mathematics
Conference.

M. Fontet, “Calcul du Centralisateur d’un Groupe de
Permutations”, Bull. Sot. Math. France. Me’moires 49-
50, (1977), 53-63.

M. Hall, Jr., The Theory of Groups, Macmillan, New
York, 1959.

C.M. Hoffman, Group-theoretic Algorithms and Graph
Isomorphism, Lecture Notes in Computer Science, 136,
Springer-Verlag, Berlin, 1982.

B. H uppert, “Endliche Gruppen I”, Springer-Verlag,
Berlin, 1967.

M. Jerrum, “A Compact Representation for Permuta-
tion Groups”, J. Algorithms 7 (1986), 60-78.

D.E. Knuth, “Notes on Efficient Representation of Per-
mutation Groups” (1981), unpublished manuscript.

J. Leon, “On an Algorithm for Finding a Base and
Strong Generating Set for a Group Given by a Set
of Generating Permutations”, Alath. Comp. 35 (1980),
941-974.

E.M. Luks, “Computing the Composition Factors of a
Permutation Group in Polynomial Time”, Cornbinator-
ica 7, 87-99.

C.C. Sims, “Computation with Permutation Groups”,
in Proc. Second Symposium on Symbolic and Algebraic
Manipulation, edited by S.R. Petrick, ACM, New York,
1971.

356

