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ABSTRACT 

The construction of point stabilizer subgroups is a problem 
which has been studied intensively. [l, 4, 5, 10, 11, 12, 141 
This work describes a general reduction of certain group 
constructions to the point stabilizer problem. Examples are 
given for the centralizer, the normal closure, and a restricted 
group intersection problem. For the normal closure prob- 
lem, this work provides an alternative to current algorithms, 
which are limited by the need for repeated closures under 
conjugation. For the centralizer and restricted group inter- 
section problems, one can use an e?cisting point stabilizer 
sequence along with a recent base change algorithm [2] to 
avoid generating a new point stabilizer sequence. This re- 
duces the time complexity by at least. an order of magnitude. 
Algorithms and theoretical time estimates for the special 
case of a small base are also summarized. An implementa- 
tion is in progress. 

1. INTRODUCTION 

A fundamental problem in computat.ional group theory 
is the construction of the point stabilizer seyueuce for a 
permutation subgroup G acting on an n.-element subset A 
relative to an ordering a = crl, (~2,. . . , (Y* of A. This is the 
chain of subgroups 

G = G(l) > @) 3 - 3 G@) = {I} - I.. - 

where Gci) = Gataa,..ai-l is the pointzuise stabilizer of the 
set {cY~,..., (Y~-I), 1 5 i 5 n. Because of its importance, 
a great deal of effort has been spent on developing eficieut 
algorithmic solutions to this problem. [l, 4, 5, 10, 11, 13, 141 
A solution usually consists of a set 5’ of generators for G with 
the property that 

G(“) = (S n G(‘)), 1 5 i 5 TZ - 1. 

A generating set for G with these properties is called a strong 
generating set relative to (Y. 
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In this paper, we present a general result for computa- 
tional group theory which shows how to transform the con- 
struction of several important permutation subgroups re- 
lated to C to a direct computation of the point stabilizer 
sequence. This is obtained by creating a new permutation 
group action on the disjoint union of two copies of the un- 
derlying point set which clearly reveals the subgroups in 
question as point stabilizer groups. New methods for con- 
structing a strong generating set can then be applied [1] 
to reduce the worst case asymptotic running time for these 
const.ructions. In certain instances, a chnnge of base can be 
used inst.ead, for which a recent base change algorithm [2] 
further reduces the running time of our method. 

Before stating our main result, we review the subgroups 
in question. Given subgroups H and G of Sym(A), the 
centraliter of H in G, denoted CG(H), is the subgroup of 
G consisting of all elements of G which commute with each 
element of N. We refer to CG(G) as the center of G and 
denote it Z(G). G is said to normalize II if H is invariant 
under conjugation by each element of G. The conjugate of 

H by g (gllg-I), is denoted Hg, The normal closure of H 
urlder C is the smallest normal subgroup of (H, G) which 

cont,ains H and is denoted (JIG). In the case where H C G, 
this is just the not-mal closure of 1J in G, denoted NCLG(H). 
Our main results may be summarized as follows: 

Tl~~~ern 1. Let G and ii be permutation groups acting 
on WI n-element set A. 

(i) Suppose t.hat a strong generating set is known for G. 
Then a strong generating set for Z(G) can be con- 

structed in t.ime O(n3). 

(ii) The construction of the normal closure of H under 

G, (I-I”), can be obtained in the same time bound as 
required for comput.ing a strong generating set for G. 

(iii) Assume that strong generating sets are known for G 
and H. If G normalizes 11, then G n H can be con- 

structed in time O(n3). 

The construction for Theorem l(i) actually reduces to 
the construction given in Theorem l(iii) by setting H = 
CS~,,~~~)(G). In this case, it makes use of the fact first 

shown in [G] (see also [S]) that if S is a generating set for 
G then a strong generating set for CSym(A)(G) can be de- 

termined in time O(~S~YL’). We present an alternative proof 
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of this fact in section 4 which makes intrinsic use of the 
structure of G as a permutation group. The reduction of 
the normal closure problem to the direct computation of a 
strong generating set is related to but distinct from exist- 
ing methods used to solve this problem. [1, 31 Interestingly 
enough, efficient computation of normal closure plays a key 
role in the O(n410g”(n)) algorithm [l] for the computation 
of a strong generating set. The idea of reducing the central- 
izer problem to one of constructing a strong generating set 
was previously observed in [13], but the construction of a 
strong generating set for Z(G) depended on a group acting 
on n2 points. (The current construction uses a group acting 
on 2n points.) 

In section 2, we describe the basic transformation which 
is used to prove Theorem 1. We are able to prove Theo- 
rem I(ii), (iii) as a direct consequence of this transforma- 
tion. However, substantially more work is needed in order 
to derive Theorem I(i). Section 3 provides some background 
material on group membership data structures which is re- 
quired for the discussion in section 4 of the algorithm to con- 
struct a strong generating set for CSym(A)(G). Section 4 es- 

tablishes an upper bound of O((S(u2) for this computation, 
which suffices to prove Theorem l(i). However, our method 
can be substantially improved by applying new data struc- 
tures [4, 51 which have been used for implementing a strong 
generating test. These ideas are outlined in section 5 to- 
gether with a different estimate for computing Csym(A)(G) 
which yields a better time for Theorem l(i) when G has a 
small base. 

2. MAIN REDUCTION 

Let G and H be distinct permutation groups acting on 
the set, A. Let A = AltiAz, where Al and A:! are copies 
of A. Thus D can be described as the subgroup of Sym(A) 
consisting of all elements of the form {(g, g): g E G}. Let 
K = (D u 1 x H) 2. G x G. Since each element of K can 
be written uniquely rn the form (gr, 92) for suitably chosen 
elements gl E G, and g2 E (H, G), we can define projection 
maps fl: h’ + G, and f2: K + (H,G) according to the 
rules flt(gl,ga)) - 91 and fz(h, n)) - 92. Final let 
Kl = fr(K~~) and Kz = f2(KA1) where KAI and K& 
are the pointwise stabilizers subgroups in K of Al and A2 
respectively. To fix notation, for elements z, y of a group we 
refer to zyz-r as the conjugateof y by x and denote it by 
YX* 

Theorem 2.1. Under the above conditions, Kl = (HG)flG 
and K2 = (HG>. 

Proof. Observe that an arbitrary element of # can be 
expressed in the form ~6192h2. a. ~~ilu for some n and 
81 , * ._* ,ih E D, hl,--- , hu E 1 x H. Letting pi = (gi,gi) 
and hi = (1,hi) (1 is the identity), it follows that 

K = {(gl.. . 9nSn+l, 91h192h2-..9nhngn+1)} 

= ((g1 . - 1 gngn+l, h;%;1g3 *. . h9,‘-‘g”glg2 * * *gngn+l)}. 

The last equation is similar to the one used to prove Schreier’s 
lemma ([7], Lemma 7.2.2). In light of this description of Ii, 
we can “solve for gu+l” in order to find the following char- 

acterizations of lil and K2. 

Ii; = {12f1h~1g3 .-.h~“.g”g1g2...gngn+l 1 g1 .-.gn+l = e} 

= {l~~lh~~~’ . . . IL~““~ 1 91,. . . ,gn,hl,. . . ,h, are 

all arbitrary} 

= (HG) 

The next result is important for Corollary 2.3. Its proof 
is clear. 

Lemma 2.2. 

(i) K = D(l x H) if and only if G C Nsym(A)(H). (The 
first formula says K is factorizable.) 

(ii) Let a(,‘), . . . , ai” be an ordering for G acting on Al, 

and let af2), . . . , c$” be the corresponding ordering for 
G acting on AZ. Suppose that K = D(l x H). Then 

(1) strong generators for K relative to the ordering (al , 

. . . . ail), a?‘, . . . , aL2’) can be determined from strong 
generators for G and H. In fact, Kjacl) 

1 >...,a, (1)) = 

D{a!x) ),.., a$’ x H), and K{a(ll, ,...) a, ,a, (1) (2),...,p) = 

(1 x Htay),,,,,,& 1 5 i I ,I. 

Corollary 2.3. 

(i) If H E G, then K1 = K2 = NCLc(H). 

(ii) If G normalizes H, then K1 = G n H and Ka = H. 
Given strong generators for G and H, strong generators 
for G tl H can then be computed in time O(n3). 

Proof. The proof of (i) is obvious. To prove (ii), note 
a strong generating set for K relative to the ordering 

a!” , . . . , ail), 0(12), . . (2) . , an 

that 

can be computed directly using part (ii) of the Lemma. 
Thus, lit = G n H can be computed in time O(n3) [2] by 
using a change of base (or ordering) to 

a(1”’ ) . . . ) ap, a$‘) (1) ,...,an . 

0 

The proof of Theorem l(ii),(iii) follows directly from 
Corollary 2.3. The proof of Theorem l(i) will be given at 
the end of section 4. 

3. BACKGROUND 

Let G be a permutation group acting on the set A and 
let o = (ol, (~2,. . . , on) be an ordering of A. As defined in 
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section 1, the point stabilizer sequence relative to (Y is the 
sequence of subgroups 

G = G(l) > Gc2) 2 . . . 2 G(“) = (1) - 

where G(‘) = Galoa...ai-l. 

For each i, 1 5 i 5 n, let Vi be complete set of coset 
representatives for G(‘+‘) in G(‘). We will always assume 
that the identity belongs to Ui. The set 

u = lJ;.%Jj 

is called a complete family of coset representatioes for the 
point stabilizer sequence of G relative to (Y. The associated 
cosets will be referred to as the cosets of the point stabilizer 
sequence. Each set Vi is in a l-l correspondence with the 
points in the orbit of (pi under G(j), denoted A(‘), in the 
sense that each element of Vi maps CY~ to a distinct point of 
A(‘) I 

Suppose now that g E Sym(A), and we want to test 
if g E G. Set h = g. If alh e A(‘), then g # G, and 
the test will fail. Otherwise, there exists a unique element 
g1 E U1, such that ,lh = culgl and we continue the test 
with h replaced by ggc’ . Eventually, we arrive at an index 

j such that h = ggyl.. . gyJl E Uj-1 with gi E Vi for 
l<i<j- 1, h fixes al,c22,. . . , aj-1, and either h is the 

identity element or ajh 4 A (il. If the latter occurs, then 
we conclude that g @ G. Otherwise, g E G and we can write 
g in the unique factored form 

g = gj-1gj-2.. . 91, giEUi9 l<;<j-l. 

Note that testing for membership using this chain of sub- 
groups takes O(n’) time. 

A data structure is a group membership data structure 
for a group G (relative to an ordering cr), if there is a corre- 
sponding algorithm to calculate a subset of a complete fam- 
ily of coset representatives for the point stabilizer sequence 
of G. If this subset is the entire family of coset representa- 
tives for the point stabilizer sequence then we say the data 
structure is complete. Both labelled branchings [lCJ] and 
Schreier vectors [14] are examples of group membership data 
structures. In the case of labelled branchings the algorithm 
to recover a coset representative takes time O(n), whereas 
in the case of Schreier vectors the time is O(n2). In practice, 
the recovery of coset representatives using Schreier vectors 
takes time which is usually linear in n, although examples 
exist for which the worst case time of nz occurs. Schreier 
vectors have the further advantage of being more space ef- 
ficient when G has a small strong generating set. From the 
point of view of proving Theorem l(i), we will always assume 
that it takes O(n) time to recover a coset representative. 

Let SC’) = (-$‘) n S. A group membership data struc- 
ture is fully augmented (relative to an ordering o) for a set of 

generators S of G, if for each p E oi(‘(‘)), the corresponding 
algorithm will compute an element of (SC’)) which moves ai 
to p. In particular, if S is a strong generating set for G, then 
a group membership data structure fully augmented for G 
must be complete. 

Given a generating set S, it is possible to compute a 
Schreier vector data structure fully augmented for S in time 
O(ISln + n log n) and a labelled branching fully augmented 
for S in time O(-/Sln + n’). [4] 

The essential facts which we require for section 4 can 
now be summarized as follows. 

Lemma 3.1. Given a set of generators S for G c Sym(A), 
a group membership data structure can be computed in 
time O(l.911~ + n2) which is fully augmented for S and such 
that the corresponding algorithm can recover an appropriate 
coset representative in time O(n). 

4. CENTRALIZERS IN SN 

In this section, we describe an algorithm for comput- 
ing the centralizer in S, of a permutation group acting on 
A = {1,2,... ,n} using O((S(n2) time. This algorithm is 
substantially different from the one described in [6, 8] in the 
sense that it relies on the properties of G as a permutation 
group (primitivity, transitivity, etc.) rather than on the cy- 
cle structure of a set S of generating permutations for G. 
The time estimates are the same, but this new version ap 
pears to allow faster implementations, and makes possible 
theoretically faster algorithms when G has a small base. The 
issues of implementation and a small base are postponed un- 
til section 5, while we present, here, a high level description 
which suffices to establish Theorem l(i). 

Let Z = C Sym(A)(G). We begin by giving a high level 
structure theorem for 2. If 01 and 02 are two orbits of G, 
then we say that 01 is G-equivalent to 02, denoted 01 5~ 
02, if there exists a one-one and onto map 6: 01 I-+ 02, 
such that Va E 01, Vg E G, a+9 = as+. In this case, we 
say that 4 induces the G-equivalence. We write GIO for the 
action of G restricted to the orbit 0. 

Let C be a G-equivalence class of orbits with ICI = k. 
For each 0 E C, let 20 = Cs,,(u,(GIU). The 20 are 
isomorphic to each other. Zo can be viewed as a subgroup 
of &m(A) by trivially extending each element outside of 0. 
We can then associate with each class C, a direct factor Zc 
of 2 which has the following simple structure. It is the split 
extension of a direct product of the subgroups Zo for each 
0 E C by the symmetric group SI, acting naturally on the L 
orbits of C. Zc in fact can be described as a wreath product 
(see [9] for a formal definition of wreath products). 

Lemma 4.1. Let Cl,. . . ,Ct be the G-equivalence classes 
of orbits of G acting on A. Let ICil = I;;, 1 5 i _< t and 
let ZC, = CSyn~(Uj)tGluj)~ for some Sj E C;. Then 2 
is isomorphic to the direct product of the wreath products 
ZCi1Ski;15iIt. - 

The proof of Lemma 4.1 is straightforward and is omit- 
ted. According to this result, the construction of an al- 
gorithm for computing CSym(A)(G) reduces to classifying 
the orbits of G under G-equivalence, and then for each i, 
1 5 i 5 t, computing generators for CSy,(uj)(G(Oi) for 
a single representative Uj E Ci, 1 5 i 5 t. Lemmas 4.2- 
4.4 show how to compute generators on a single orbit for 
different cases. 

We first review some standard definitions. G acts tran- 
sitively on A if aG = A for a E A. G is semiregular if 

353 



Ga = {e} for all a E A. G is regular if G is semiregular and 
acts transitively. This last is equivalent to ]G] = IAl. B C A 
is a block of imprimitiuity for G if for all g E G, Bg f~ B = B 
or Bg n B = B. G is primitive if {e} and A are the only 
blocks of imprimitivity. 

Lemma 4.2. Suppose that G acts regularly on A. TJren 2 
is regular. Moreover we can describe Z precisely as follows: 
Let gi E G be the unique element of G which moves 1 to i. 
Then Z is the set of permutations g i; l-l correspondence 

with g E G defined by setting is = lg g*. 

The proo.fhis by direct computation, noticing that for h E G 
and j = 1 , gj = gih. 

Lemma 4.3. Let B be the set of points fixed by G1, so 
that 1 E B. Assume that G acts transitively on B. Then 
Z is semiregular. B is stabilized by Z, and so 1.2’1 < IBI. 
Furthermore, if G is transitive on A, then B is a block of 
imprimitivity for G. 

Proof: The first statement is proved in [9]. To prove that Z 
stabilizes B, we simply use the fact that B represents the set 
of points fixed by a subgroup Gr of G which is centralized 
by Z. Finally, since G, = G1 for each a E B, it follows that 
B is a block of imprimitivity for G. 0 

Lemma 4.4. Let B be the set of points fixed by G1, so 
that 1 E B. If G is transitive on A, then IBI = IZl and Z 
can be described exactly. 

Proof: If IBI = 1, then by Lemma 4.3, Z fixes 1. It then 
follows from the transitivity of G that Z fixes every point, 
and hence is trivial. On the other hand, if B = A then the 

result follows from Lemma 4.2. Thus, we may assume that 
B is non-trivial. In this case, B is a block of imprimitivity 
for G. 

Let GcB) be the set stabilizer of B in G and let H = 
GcB)JB be the image of G(B) acting on B. Then H acts 
regularly on B. To see this, first note that if g E G moves 
1 to any other distinct point in B, then g must set stabilize 
B, since B is a block. Hence, G(S) acts transitively on 
B. Furthermore, Gu = GB for any a E B implies that 
Ho = {e}. 

It now follows from Lemma 4.2, that U = Csym(B)(H) 
has order IBI and can be described exactly. By Lemma 4.3, 
it suffices to show that each p E U can be extended uniquely 
to an element of Z. 

Fix a E B. Usually, a will be taken to be 1. Let ~1 E U. 
For c E A - B, let cre E G move a to c. Extend p to A - B 
so that 

cP = #‘oc 

If u: E G also moves a to c, then u:a,l fixes a. Hence 
cr:cr,’ set stabilizes B, since B is a block of imprimitivity. 
But the structure of H then implies that aicre’ acts trivially 
on B. Therefore, the definition of cP is independent of the 
choice of ue. 

We now have to show that p centralizes G, or 

xgp = xpg, Vx E A, g E G. 

Let c = o”‘cg. Then we may take UC = uxg. Thus, 

as required. 0 

Lemma 4.5. Suppose that 01 and 02 are two orbits of 
G acting on A with IC31] = 1021. Let S be a generating 
set for G. Then it is possible to test in time O(lS((0,12) 
whether Cnr and 02 are G-equivalent, and ifso, to construct 
an expJici t map d. 

Proof: Suppose that we try to explicitly construct such a 
map 4. Then 4 has to satisfy the following property: 

jg+ = j+g 

Let a be a fixed point of 01 and suppose that we choose 
some b E 02 and restrict 4 to satisfy b = a@. Then G acts 
transitively on 01 implies that the above condition uniquely 
determines (b. More precisely, if g E S, then egd = e6g = bg. 
Thus for each b, 4 can be determined in time O(lS]]Or]) 
using a transitive closure type argument. Once 4 has been 
determined, it takes O(]S]l0,]) time to verify whether 4 is 
an equivalence. Since there are 1011 choices for b, the result 

follows. cl 

We can now describe our algorithm. Let Or, 02,. . . , Op 
be the orbits of G acting on A. Assume that the points of 
A are ordered so that the points in 01 come first, to be fol- 
lowed by those in 02, etc. Let T hold the strong generating 
set for CSym(A)( G with T initialized to NIL. We iterate h 
on i from T down to 1. We compute CSy,(Gi)(G]Oi) ns- 
ing Lemma 4.4, and append these generators to T. We now 
attempt to find the largest j, if any, with 1 5 j < i and sat- 
isfying G]Oi 3 GlOj. If such a j is found, then we construct 
a permutation equivalence 4 between GlOi and GlUj using 
Lemma 4.5. We may assume that 4 interchanges Oi with 
Oj and is trivial on the remainder of A. We then append 4 
to T. We record the fact that CSr,,(~j)(GJOj) is known. 

It is useful to observe that generators for CSym(Gj)(GJOj) 
need not be added to T. In the end, T will hold a strong 
generating set for CS~~,(A)(G). 

It is easy to show that the generators accumulated in 
T form a strong generating set for CSym(A)(G). Further- 
more, it is also straightforward to show that ITI 5 n - 1. 
These facts will be formally stated after the pseudocode is 
presented. 

Centralizer Algoritlrm Input: Generators S for a sub- 
group G of Sg,m(A). Output: A strong generating set T 
fcx ‘?s~,,,(A)(G)~ Local Vuriablesr L, a boolean array of 
length r with each entry initialized to FALSE. L[i] will be 
set to TRUE if C,,,(Gi)(G]Oi) has already been computed. 
6 will be used to hold a group membership data structure 
for G]Oi with generating set S which is fully augmented for 
S as discussed in section 3. The supporting routine Build- 
Group-Data performs the necessary construction. 

Set T - NIL 
Foreach i, set L[i] + FALSE 
Let Or,..., 0, be the orbits of G 

[We can assume that the points are ordered 
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according to these orbits.] 
For i + r down to 1 do 

Set f3 + Build-Group-Data(S, Oi) 
If JT[;] = FALSE then 

Set C + Transitive-Centralizer(S, Oi, 8) 
Append C to T 

[We assume that each element of C is 
trivially extended to A.] 

For j +- i - 1 downto 1 do 
Set 4 + Test-Equivalence(S, 8, Oi, Oj) 
If 4 # NIL then 

Append 4 to T 
Set L[i] + TRUE 
Break to the outer for loop (next ;) 

return(T) 

We now present pseudocode for the supporting routines 
Transitive-Centralizer and Test-Equivalence. 

Transitive-Centralizer Input: An orbit A of G acting on 
A, generators S’ = SlA for GIA, and a group membership 
data structure B for the action of G on A. Output: Gener- 
ators for CsV,(h)(G). 

We will assume for simplicity that the points of A are renum- 
bered from 1 to IAl . 

Let B be the set of points fixed by Gr 
[This can be computed using Schreier 

generators for Gr .] 
If B = A then (G is regular) 

Return generators for Csym(~)(G) using Lemma 4.2 
If B = {I} then 

Return NIL [see Lemma 4.31 
If ]Bl > 1 then 

Let T = {ra, a E B: r, E G, lTo = a} 
[T can be computed using B and 

generates H = C~B)/GB.] 
Let U be generators for CSyna(B) (H) determined 

from Lemma 4.2 
Extend each element of U of Ui as in Lemma 4.4 
retflfnhisrequires the use of B. ] 

Test-Equivalence Input: Generators S for a subgroup G 
of Sym(A), a group membership data structure B for G and 
orbits 01 and 02 of G. Output: Either NIL, or a map 4 
which induces a G-equivalence between 01 and 02. 

In the case where the return value is not NIL, we may extend 
4 to A so that I$ interchanges 01 and 02 and is trivial 
outside 01 U 02. 

If loll # ]O2] then return(NIL) 
Let a be the first point of 01 
Foreach b E 02 do 

[For each b, define a new 4.1 
Set a@ + b 
Foreach e E 02 

Set 4# +- NIL 
Foreach k E 01 do 

Let g E G move cz to L [g determined from D ] 
[Require that &’ = e49.1 
Set I;@ + bg 
If (bg)@ = NIL then (bg)” +- k 
Else break to outermost foreach (next b) 

[Check if 4 is an equivalence.] 

Foreach g E S do 
If (&)I@ # (4sWh then 

break to outermost foreach (next b) 
Return(d) 

Return(NIL) 

Theorenr 4.0. The centralizer algorithm returns a strong 
generating set T consisting of at most n - 1 generators in 
the 0( ISln’). 

Proof: The proof that the centralizer algorithm returns a 
strong generating set for CSy,,,(A)(G) is straightforward and 
relies on Lemma 4.1. 

We turn our attention to the timing estimate for the 
algorithm. For simplicity, we may assume that each orbit 

0,. has the same size so that n = mr. The compu- 
%dn’df these orbits can be done in time O(]Sln+nlog(n)) 
using the procedure Augment in [4]. 

We will first show that each call to Transitive-Centralizer 
takes time O(lSln2/r2 +n2/r). The computation of B takes 
time O(]S]n2/r2). A simple way to obtain this result is to 
find a generating set ior the point stabilizer and examine 
each generator in this set. We use the Schreier generators 
(see [7], Lemma 7.2.2). There are G(lSln/r) Schreier gener- 
ators. The construction of each one takes time O(n/r) since 
this involves the computation of two coset representatives 
(in time O(n/r) by Lemma 3.1) and two multiplies restricted 
to the orbit. B is then computed by examining each Schreier 
generator, yielding a total time of O(]S]n2/r2). The con- 
struction of the set T of generators for G(B)JB takes time 

O(n’/r’)), since this involves the construction of at most 
n/r coset representatives from S restricted to the orbit, and 
the computation of each one takes time O(n/r), again by 
Lemma 3.1. Furthermore, the construction of U from T 
takes time O(ITln/r) and the extension of these elements to 
(33 and then to A takes time 0(]‘2’]7r). Since ITI 5 n/r, the 
result follows. 

Since there are T orbits, the total time spent in calls to 
Transitive-Centralizer is O((Sln2/r + n2). 

Now consider the time spent in calls to Test-Equivalence. 
In the worst case, there are O(?) tests for G-equivalence 
between the T G-orbits. Each isomorphism test takes time 
O(]S]n2/r2) by Lemma 4.5. Thus the total time spent in 
calls to Test-Equivalence is O(]S]n2). 

Adding this up, we spend O((S]VZ’/~ + n2) time in the 
calls to Transitive-Centralizer and O((S(n’) time in the calls 
to Test-Equivalence. The only other additional work is the T 
calls to Build-Group-Data. By Lemma 3.1, each one of these 
can be done in time O((S]n/r + n2/r2). This contributes 
0( ]S]n + n2/r) to the total running time. The accumulated 
time is thus O(]S(n2) as required. 

To see that the algorithm returns at most n - 1 gen- 
erators, observe that at most T - 1 isomorphisms between 
G-orbits are ever added to the generating set. Furthermore, 
at most 11/T - 1 generators are added to the generating set 
from each G-orbit. Since there are T orbits, the size of the 
generating set returned is at most T(n/r-l)+(r-1) = n-l 

as stated. fl 
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Proof of Theorem l(i): The result now follows directly 
by combining Corollary 2.3 with Theorem 4.6. 13 

5. IMPLEMENTATION ISSUES 

The base change algorithm is the bottleneck to faster 
algorithms. The ability to perform a base change on A in 
time O(n3) [z] is, as described in Corollary 2.3, the key step 
for obtaining upper bounds both for constructing a strong 
generating set for Z(G) and, when G normalizes H, for con- 
structing H n G. In the preceding sections, we have outlined 
algorithms which suffice for the proof of Theorem l(i), (iii). 
In this section, we suggest two approaches which can be used 
to speed up these constructions. The approaches are being 
compared experimentally in an ongoing implementation. 

The first approach relies on eliminating the O(n) right 
cyclic shifts, each requiring O(n’) time, on which [2] relies. 
For our special case, we know that K is factorizable as 
K = D(1 x H). In this situation, we have developed a new 
base change algorithm requiring O(m2n2) time, where both 
H and G have a small base of size m. To date, we have not 
been able to extend the new base change algorithm beyond 
this special case. 

The second approach for improving the construction 

of Csym(n) (G) is to note from Theorem 4.6, that testing 
isomorphism of G-orbits dominates the running time. The 
following characterization can be used to simplify this part 
of the computation. The proof is clear, and is omitted. 

Lemma 5.1. If a E O;, i < j, then Oi SG Oj w Go 
has a fixed point on 0j. 

In order to exploit this, assume that the points of 0 are 
ordered so that the the orbits 01,. . .Or appear in consecu- 
tive order. We also assume assume that a strong generating 
set for G is known. This last fact is not required for the algo- 
rithm in Section 4, but is needed in order to apply Theorem 
1. If rul is the first point of 01, then we know generators 
for G,, because of the existence of a strong generating set. 
In particular, we can compute the orbits of G,, on R and 
discover, via Ldmma 5.1, precisely those orbits which are 
G-equivalent to 01. 

In the case of orbits other than the first orbit, say (3j, 
one doesn’t readily have generators available for Gaj, where 
aj E c)j. This situation can be easily remedied by doing a 

single right cyclic shift base change in O(n2) time so that 
aj is now the first point in the ordering. Alternatively, a 
variation of the standard base change in [2] can be used to 
find fixed points of Gaj without needing to output a new 
strong generating set. By a clever use of data structures 
similar in spirit to the algorithm for fully augmenting a 
group, [4] we can compute the fixed points of Gaj on 0 
in time 
O(lSln/~ + min(log ICI, n - 1)n + log IGI + nlog(n) + n2/r), 
where it has been shown that log IGl 5 mlog(n). 

Since this calculation must be carried out t times in 
the worst case, the total time spent checking G-equivalence 
of orbits in the centralizer algorithm can be given by 
O(lSln + min(log ICI, n - 1)rn + rlog IG( + rn log(n) -t- n’). 
The above time appears overly pessimistic in practice, since 
it assumes that most orbits are of a fixed size n/r, and the r 
orbits divide into O(T) distinct G-equivalence classes. Thus 

we expect both theoretically and experimentally that our 
implementation using the above technique will be signifi- 
cantly faster than the 0( lSln2) reported for Test-Equivalence 
in section 4. 
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