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Abstract

We address the graph isomorphism problem and
related fundamental complexity problems of computa-—
tional group theory.

The main results are these:

Al. A polynowmial time algorithm to test simpli-
city and znd(égm gsztion factors of a given permu—

tatlon irou{ 3 3 . .

AZ, polynomial time algerithm to find ¢lements
of given prime order p in a permutation group of
order divisible by p. :

A3, A polynomial time reduction of the problem
of finding " Sylow subgroups of permutation groups
(SYLFIND) to finding th? intersection of two cosetbs
of permutation groups INT). As a_consequence, one
can [ind 5{10# subgroups of solvable groups and of
groups with boundéd nomabelian composition factors
in Eolynomlal time. . A

4,”A polynomial time algorithm to solve SYLFIND
for fipnite simple groups.

A5, An pcd/log @ glgorithm for isomorphism
(IS0) of graphs of valency less than d and 2z conse—
quent improved moderately ex nen:%al general graph
isomorphism test in explcy/m fag ) ateps.

Ab., A moderately exponential, o algorithm

for INT. Combined with A3, we obtain am &' algo—
rithm for SYLFIND as well.

All these problems have strong links to each
other, IS0 easily reducea to INT, A subcase of SYL-

FIND was solved in gclygoml 1 time and ag lied to
bounded valence IS0 "in {Lul]. Now, IRD is
reduced to INT. Interesting special cases of STL-

FIND belong to NP~coNP and are not konown to have
subexponential sclutions, e

All the results stated depend om the classifica-
tion of finite simple groups. We note that mo pre-
vious IS0 test had nc(d) worst case behavior for
graphs of valency less than d. It a Eears that
unless there is another vradical breakg rough in
150, independent of the previous one, the simple
%rouns classification is an Ludzspensabie tool for
urther developments.
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1. The

The final success of a major joint effort by a
large number of mathematitiams is the recent com
pletion 9f the classification of finpite simp}e
§roups apart from the uniqueness of the Monster).

or non—technical infermatiom om this achievement
?ee Col. A more detailed account can be found in

lasgification

There ie no doubt that this result, the proof of
which involves several thousand pages, will have an
enormous impact on large sections of mathematics.

The solutions of many old Eroblems in group theor
are known to follow, such 28 the nonexistence o
b-trangitive permutation groups and indeed anm
essentlullz complete 1ist of doubly transitive
groups; Schreier s conjecture that the ocuter auto-—
morphism group of 4 finite simple group is solv—
gble; the comjecture that every finjte gigple grou
is generated by two elements %cf Cal?t?ge?,fxaz
for surveys of more consequences). Combinatorics
has ?Ire?gg Trfat1¥ be?e ited from these results
(lcazl, 35],(%a2],[Wel,[Pa2 a e other
fields, such ag model theery ([¢L], Cﬁ% ), number
)} and universal algebra [Pall.

theory (see [Fe 3
.The aim of the present gaper is fo discuses algo-
rithmi¢ comsequences of the clagsification, At the

present time, we are umable to give a polynomial
time algorithm to solve such a3 seemingly harmless
problem as firding an element of order p im a er—
mutation group of order divisible by p, without
invoking detailed knowledge of the clasaification.
The fundamental information about finite simple

roups ? shall need 1is the following (see
iCal ,[GOI . Apart from a finite number gf
sporadic groups (these shall never concern us),

the finite simple groups fall into the following
categories: cgcllc grougs of prime order, alternat-
ing groups and groups of Lie type., The groups of
Lie type are mafrix groups over finite fielda. They
are divided into a finite number of infinite fami-
lies. Each family is parametrized by the dimension
of the matrices and the order of the field. The
classical groups form essentially {four of these

amilies (projective special %1nﬁar, symplectic,
orthogonal and unitary ﬁgoups « The remaining ten
families of groups of Lie type, the so—called
exceptional groups , have boinded dimensions and
%galéﬁus parametrized by only the order of the
ield.

.Statements depending om the classification of
finite simple groups will be marked by C?SG%u

2, Complexity problems in computational group theory

The two basic tools in amalyzing group structure
are composition factors and S{low gubgroups. Both
can be regarded as building blocks of a EIOUP.

Finding them is a problem analogous to factoring
inkegers; we are “taking the group apart to see
what makes it tick",

It may be of particular interest to

note thar



some natural subproblems of SYLFIND (finding Sylow
s;b§roups belong to NP~ coNP while no subexponen-
tia] solution is known for them. An example : Does
a given permutation group G have an element of
order Br where p is a piven Erime and pf is
largest power of p dividing the order of G ?

Easy reductions show that the following problems
are polynomial time equivalent: finding the cen—
tralizer of a permutation im a given group, finding
the stabilizer of a given subset, f%nQLng the
1ntersect1?n of two permutatiom groups given by
generators), finding t?e lgtefsec?Lou of two cosets
of‘perm?ta: on groups (INT LuZ}. Graph isomor—
phism (ISQ) is easily Eeducgd to these. SILFIND is
also reducible to them (Section 8).

the

3. Dependence of the results on the classification

. The results depend on the classificationm im vary-

ing ways. . . . L.
e polynomial time simplicity test gnd the
determination of the composition factors (Sectiom

5) uses the classification through Schreier”s
jecture stated in the previous section.

Finding elements of given prime order p, and more
generally finding Sylow p-subgroups of simple
roupe in polynomial time, present relies om
etailed knowledge of gropgrties of all families of
finire simple groups (Sections 6,7), Part of this
result, combined with the composition factors algo—
rithm, yields a polynomial time algorithm for find-
ing eiementa of given prime order in arbitrary per—
mutation groups. |

The reduction of SYLFIND to INT (Section 8) ygse
the Sylow subgroups of finite simple groups (AL).
However, restricting the reduction fo solvable
roups and groups with bounded nonabelian composi-
tion factors, we find Sylow subgroups of such
groyps im polynomial time without using the clas=
ilflTatlon. This relies on the INT alg?rlt of

con=

estimates
the

Lul combined with from (Pal and

The timipng anpalysis of INT algorithm
described imn Sectlon 10 requires estimateg on the
orders of primitive permutatjon ?r?ups stng the
recent elementary bounds of [Ba2l, Ba&], we obtain

an exp(c/n 1032n) time bound for INT, Using  the
clasgification, one can essentially list all primi-
tive permutatiom groups of order greater than

nlog Nfcall, bringing down the INT rumning time to

nCJ;. More gignificantly, this list provides a rool
that might eventually lead to a subexpomential
(i.e. exp(g9(tb) INT algorithm and  thereby to
subexponential ISO and SYLFIND algorithms,

Due to an o to nd blowup in the I30 ro INT reduc-
tion, the curremt IKT algorlthms do not yield a
better than brute forece ISO fest, Notwithstanding,
there is a moderately expomential,

exp(eva logsfzn) IS0 test which refefs T the ele-
mentary bounds mentioned above (see [BLI). A naive
uge of those consequences of the classification
{Cal! wmentioned in the previous paragraph reduces
the expoment of log n from 5/2 to 1. A further _in-
depth analysis, details of which will be outlined
in Section results in the best current bound,
explcy/n log o). (It may be curigus to mote that the

current bound for fac;orlnf n—digit integers looks

precisely like _ this Dtl; t?e constant ¢

was recently improved Schl. It is actu—
cd/log d

ally the underlyinﬁ o

of “valemecy less than d that

of the clagsification.
Finally we mention

180 bound for graphs
makes significant use

that _somewhat surprisingly,
the moderately exponential IS0 and INT algoritims
both serve gs subroutines im a polynomial time
algorithm, Namely, isomorphism of distributive

lattices can be tested in 93+°(1) steps [Bab6].(Note
that isomorphism of distributive lattices has only
recently been brought down to polyvomial time

[BEL].)

4. Notation and preliminaries

4,1. Basic group theory. We assume that the

reader ~1s familiar with some of the_basic,notfon?

?f_group theory such as  that contained in (Re
simple  groups, compositiom factors,

subgroups, center, conjugate elements and subgroups
(notation: for H a subgroup and g an element of G,

-1 .

=g Hg), c tator subgroup = derived subgroup
?ie%otei G'S, derived series, solvability, d%rect
products, the grojactive linear groups). [Ro} con-
taing some of the basic @ﬂterla% on permutation
groups as well (orbits giab1lxzers ; we shall also
need the begimning of Iwil, A

We briefly review some standard notaticm.

An action of a group G on a set X is a homomor—

Sym(X},
orbit of

Sylow p-

phism gl->

of G onto a subgroug ¢t of
the group o . The

all permutations of
xcX iz xO={x8: geG), where x® is the image of x
under g . Here, 1xG1-IG:Gx! where G is the stabi-

lizer {geG: x®=x}. Let ny dencte erxcy.

If foX then G is said to be transitive on X. In
this situatiom, one looks for G-invariant parti-
tions of X. If there is mo such nontrivial parti-
tion them G 1is called primitive ; otherwise G is
imprimitive. The blocks of a G-invariant partiticn
are called blocks of imprimitivity. G acts transi-
tively om them, Ihis gction is primitive ;gf the
partition is minimal (the blocks are maximal).

For H<G (H a subgroug of G) and geG, the cosets
g and” Hg of H will be called subcosets of G. The
empty set will also be regarded as a subcoset of G.
With this convention, the intersection of subcosets
is always a subcoset. Right and left cosets make mo
difference since a left coset of H is a right coset
of another subgroup, comjugate to BH, For every

subgroup H<G there 1s 2 natural G-action on the set
G/E of (left) cosets.

If 45 G-> Sym{X} and y: G-> Sym(Y) are _two
actions _%f Ehgfs%$? §rgup G then a map f: X->Y is
a G-map i glf= or _every g in G.

Our i:em.‘. ﬁf proof"gmark is §¥¥

4.2, Algorithms, Throughout this paper, X will
denote ~an no~set. e imputs of cur algerithms will
be permutation groups, uaua;l{ acting on X.

Every permutation group will be given by a set of
gen rating permutations. A nounempty subcoset Bg of
ymzxg can be represented by specifying a set of
generatoxrs of H and & representative §. .

Given a permutation group G the following can be
found in polynomial time: the order of G, the
pointwise stabilizer of a given subset, the derived
series, the orbits of ? a m%anatrngtltlon into
blocks of imprimitivity ({si],[at],[FELI).

Our complexity estimates qzil be given in terms
of =n (the degree of the input %roup) rather than
in terms of the imput lemgth. Of course, if an
input group is represented by an uqreasonaﬁly large
number of generators, then the time required to

em edyndant generators has to be added
fS ?ffFELi. ?It 15 _easy to see

i ; that any set of
n log n  permutations  contains redundant omnes. A
more ’nvo}ved argument shows that even 2In 1g too
much [Baj .

Let K be 2 class of finite groups closed under
isomorphisms takl%g subgroups and factor groups.
For any such we shall be Interested ig the [ol-
lowing four problems.

Finding Sylow subgroups (SYLFIND(K}) .
INPUT: 2 permutation group G K and a prime p.
OUTPUT: a Sylow p—subgroup of G.

Sylow comjugacy (SYLCONJ(K}) .

%NPUT: a permutation g:ou? Gek , a grlme
two Sylow p-subgroups P{1} and P(2) of

OUTPUT: g6 such that P(1)% = P(2),

Coset imtersection (INT(K))

8 and

INPUT: a set X, two gubgroups ,H and two ele-
ments g,h of Sym(X) where at least ome of
G,H belongs to .

COUTPUT: the subcoset Gz~ Eh of Sym(¥).



Color automorphism (CAUT(K))
INPUT: a st X, a coloring : X->{colors}, a
group acting on X, and a permutation

ES;m X .
OU%?U : the set of G -auto?nrphlsms of the
coloring, i.e. AUT(Gg,$) =

{heGg: ${x)=¢(x8) for all =zeX}.

CAUT(K) is clearly a subcase of INT(K). They are

ctugll olynomial tjime _equivalent for any
Lu ? t follows from f?a{] 1and fBC?] that " the
INTCK) algoritbm givem by Lul? works in polynomial

time when K is the class of solvable §roups or more
generally a class of éﬁgups with bounded nonabelian
composition factors. 18 resulz will b? crucial
for applications c§ ghe SYLFIND(K) to INT(K) reduc-
tion (see Cor. 8.2).(The gctual restriction on K is
even weaker, cf.Cor. 8.2.

4,3, Complexity classes, By a moderately
exponentia unction of u we mean a fumction

1- .5
bounded by O(exp(u ®) for some positive comstant

C. - -
An algorithm is moderately exponential Iif 1its

running time 1is a moderately exponentisl function
of uslog b where b is the running  time of Cthe
natural

brute force algorithm gssociated with the
problem. If b=n! (as in our exzamples) then log b
can be replaced by n in this definpitiom. .

An algorithm is” subexpomential if its rumning

time is_exp(No(p) where N is the ingut length, This
¢lass is invariant under polynomial reductions, in
contrast to the moderately expomential class.

The best known algorithms for factoring ﬁntegers
{bil],[Sch], graph isomorphism (section 9), Sylow
subgroups and coset intersection for general groups

sections ?,1@ are_moderately expgnential. Pri-
malit ?Pom , isomo gh}sm of preojective planes Mil
and of tournaments f L] are subexponential.

5. Simplicity test and composgition factors
We show

Theorem 5.1. (CFSG) Testing simplicity of permuta-
tion groups is in P.

We describe a polynomial-time algorithm
which accepts, as 1n§ut, generators of a
subgroup, G, of S X), where 15 a et of size
n a?d o%éputs exactly“one of the following:

i

Proof.
HEDUTE

ig simple.
Generators of a proper normal subgrogp of G.
A faithful action of G on & set of size < n.

(ii
{1iii

It is then clear b repeated application  of
REDUCE in case (1113wguarnntees a2 polynomial-time
simplicity test, o

At several points in REDUCE it is useful to con—
sider indnceg repregsentations of G, In the fol-
lowing Erccedure, .is a_set, with 17> 71, on
which acts transitively.  (G,Z,n are global.)

procedure TEST_ACTION(Y) .

Y" <- a minimdl G-block system in Y
N <- the kernel of the G-action on Y
if EH 1) tgen (ouEput N; stop)
if (|¥°| < n) then {(cutput Y¥"; stop)
return )

REDUCE

has seven major steps:
Step 1.

Let Y be a%¥ n-trivial orbit
Call TEST_ACTION(Y)
1f (¢ £ ¢°) ghen
if (6 # 1) then (out%ut 673 %top
else (output "Simple {abelian)™;
Let W be any subget of G of size n+
furHE%Ch g,h in W

-
it 1 closure of <gh >
if (N g Gi then (output ﬁ; stop)

Step 2.

)
stop)
Step 3.

wa

Step 4. x # v

Z <- the set of fixed points of G
for egch z in o
if (for some g in G, =% =y, v% = 2)

then flx such
¥ < (x,y,z,...), the cycle of g
c%ntalnlng X )
¥ <= the set of G-images og Y (iden-
tif i

cal

Choose amy x,¥ fin X with
Z

ing cyclie rmutations
rﬁsrfgcrzoﬁfY")
Chooge any =x In %
for each "y in X-{x} .
Y < G-orbit _of {x,y} (in the set of
unordered Ra;rs}
call TEST ACTION(Y)

Step 5.

Choose any "x in X
for each "v,z,v in X
H < <g |

Step 6.

Zw

if (H # G) then call TEST_ACTION(G/H)
Step 7. Output "Simple ?non—abelianj“
Commentg on proving the correctness of REDUCE:
It is easy to check that, if REDUCE(G) outputs a
subgroup them it has correctly identified a proper
normal subgroup of G and if it outputs a set them
it has constructed a smaller permytation domain,
It is neceseary t¢ show that, if the output is
Simple” then 18, indeed, simple. Sgep 1
reduces the preb}em to the primitive case Enow -3
standard technique). Hence, if G 1s abeliam, it
necegsarily has prime order, easily justifying the
proclamation "Simple” within Step 2. “The proglem,

then, is to  prove that, if the algorithm reaches
Step 7 then G _is simple. Passing Step 2 also means
that G = G This was a natural test to perform
since thi easy to

derived group is normal and 1is

FHLT. However, when all is sszid and done,
this step played a more subtle role,
the presemce of a normal subgroup of
% n), covering a few special cases.

compute
we”ll see that
Steg 3 detects
small index

Steps,  4,5,6 are motivated by . (non-
clagsification-de¢pendent) results on primitive per-
mutation groups ?$e, egpecially, the 0 Nan-Scott
Theorem in (Call]).  Such results establish rela—
tions between the structure of a primitive action
of G and the nature of N _ where N is the socle
of G; Since N is necessarily transitive, n =
INIIIEXF. If we can force an action in which the
point stabilizers in N

reduce the
pose N =1,
algorithm

: afe increased, we

size of the domain.
We show, 1im_ such

terminates in Step 4.

thereby
For example, sup~

case, that tEe
The reason is:

There is a unique element h in ¥ such that " = ¥

and them z = yh is left fixed by ny' When we
have
con=

process 2z, g will exist. Thou%h we ma¥ not
g
¥ will

.=.h, one can show that the cycle, ¥, o
Eaining =x is glse a cycle of "h, The set
then comnsist of cycles of elements of N. Since
the action of h o " has a fixed peint (namely
Y), TEST_ACTION(I") will either output a kernel or
?NTrlmltlve action on a set of size less thanm n =

Steps 5 and 6 play analqgous roles in reducing
the domain for other possible actioms of )
Without reference to the classificaticn, one ver—

ifies that the algorithm cam get to Step 7 only if
N is_ simple wh}c? puts between N_ " and
Aut(N), and G = G recall, we passed Step 2), At

that point the classification—dependent Schreier”s
conJecturﬁ #; invoked. It implies, in such case,

that™ ¢ = N,

The simplicity test is more tham the langusge
recognition algorithm announced in Theorem 5.1, %u
the non-simple case a witness, a proper normal sub-

group, is output. We can expioit this observation.
Theorem 5.2 (CFSG) Given generators for a permuta—
tion group, G, a4 composition series for G, includ-
ing permutation representatioms of the gquotients,
can be comstructed in polynomial time,

Proof. It suffices to be able to exhibit a

maximal
Bormal subgroup, N, of

and a representation of



G/N. If G is simple, then ¥ = l. Otherwise, the
simplicity test returns a prIOpPer (not necessarily
mﬂxlmalﬁ normal subgroup, N, of G. One cam comr
struct a nmpon~trivial actign of G whose kernel
containe N: Let be the least index such that
Gli+1IN < G(i?ﬁ %herg G(3j) demotes the point gta-
biljizer of the first j points im X); tEgn G =
G%i scts on the 1eft coset space G/G(i+l1)N, N
acting trivially. 1If the kermel of this action 1s
larger than N, them replace N by the kermel and
repeat. Otherwise, we haye comstructed a faithful
actiom of G}N. If G/N is mot sim le, find a
proper normal subgroup, replace N by lthe pullback
in Sym(gga of) that subgroup and repeat. Other—
e have the required N representation

BN

We remark on three
above methods and

wige and

of

other applications of the
0 results which are needed else-
where in this paper.

In some instances, it is useful to go beyond the
ermutation representations guaranteed by Theorem
.2 and comstruct the "natural®™ representation of &

simple group. For e;xmplﬁ, the improved graph
isomorphism test (section 9), requires the natural
action of a permutation grou% which is Lsomorphﬁt
to the full altermating group (on some other set).
This can be done efficrently:

Proposition 5.3. Given a permutation group, G <
S EK;, 1t is possible to detect %n polynomial time
whether G is isomorphic to Alt Y}, for some X,

and, if so, to comatruct such Y.

to smaller
ume that G
. Then

Proof. The aigorithm employs reductions
gets as_ in REDUCE. As ususal, we ma{ %a
is primitive. Suppose that G & AlclY

- . . T
must be G-isomorphic either to () , for some k,

or to the set of partitions of Y into m equal
parts. We indicate the procedure for detecting and
converting the former; the other case is gimilar.
If k =1, then we k?ov it and take Y = X. Assume
then that k > 1 (and we may suppose 0 >3 and
k < n/2). It is not difficult to s that there
exist _ k-typles a,b,¢ in ¥ equivalently,
points in Kg such that B = <Gab’Gbc’Gca> is pre—

cisely the stablilizer in Ale(¥) of a (k-l)-set.
Thus, G/H is G-isomorphigc to the set of all umor—
dered (k—lgrtuples in Y. Hence, trying all tri-
ples a,? e in X, we should find "an  instance
where é!EI‘< !XT, so that G/H is a smaller per—
mntatiii domain; replace X by G/H and start
over.

More gemerally, see Theorem 6.1. .

The graph isomorphism test also requires the pro-
duction of the socle of a certain permutation
group. Lt happens, at that point, that the socle
ig knmown to be non—abelian and to be the unique
minimal normal subgroug of G. In such a case, 1t
is precigely the normsl closure of the last term in
a compoeition series of G and so it 1s computable
in poggnomial time. However, more gemerally

Proposition 5.4 (CFSG) Givem a permutation grogp,
G, . the sub roug generated by the  non-abelian
minimal normal subgroups (the "nom-abelian part” of
the socle) can be found in_golynomzal time.

Proof, The fqllow1n§ algorithm” can be shown to pro—
duce the desired subgroup:

procedure NA_SOC(G)
¥ <= a maximal normal subgroup of G |
K <= the last term in the derived series of the
centralizer in G of N
if (K is simple) then output <K,NA _SOC(N)>
else output NA_SOC(N)

The complexity of findin% the azbelian factor of
the socle is open (see ll.I). We do note, however,
that techniques like those in the
can be used for

simplicity test

Proposition 5.5. Given %enerators for a permutation
BTOu , the presence of an abelian normal subgroup
of can be detected im polymomial time. In
fact, 1if such exist, then generators for at least
one can be determined.

B

There is a reduction So the primitive case (a bit
trickier than usual whereupon the algorithm
that

Erqceeds much like Steﬁ 4 of REDUCE, We note
his result is indepemdent of the classification,
Complete proofs o% the results in this

section
Luld

will appear in

6. The Replacement Theorem

In many situations, one actually reduces to the
case of s simple subgroup G of Sym(X). (Examples
are found in Sections 7,8,9.) The following theorem
cgn be used to switch to the most natural permuta-
tion representation of G in that case.

Theorem 6.1 ( Replacement Theorem )(CFSG), There is
3 polynomial-time algorithm which, when given a
simple group G<Sym(X) with [GI[ > u36, produces a
set W with |W/< n on which G acts such that one of
the fq&law;ng_holds i,
i} G is isomorphic to the alternating group on

¥, qu acts on W _as that group; or .

(ii) G is isomorphic to a2 classical grou
defined om  a_ vector space V, and G acts on
exactly as it does on the set of all l-spaces of V.

s, if G ® PSL(d,q), PSpld,q), p0*(d,q)  or
P$§?§,é) thenp W is e’ set of pgints of a 530jec—
tive space PG{d-1,q).

Ourline of the precof. A4s usual, we may assume that
18 primitive on the n-set X. We may also assume

that G is not a sporadic simple group, and there—

fore 1ias an alternmating group or a group of Lie
type.

et _x:X, Sigce |Gi>n resylts due to Bochert
(see fﬁi,p.hl?g and in [Ral] lead to the conclusiom

that for some k,m,d,q either

a) G#A , and G is the stabilizer of an -
suhs?t of the k—set; or .
b) G=A , and G 1is the stabilizer of a parti-

m equal parts of the k-set; or

. is a classical group (ef. Sectiomn 1)
defined on & vector space V of dimension d over the
field of order q, and G 1is the stabilizer of an
r=subspace of V, i .

Thus, we can idemtify X with a very natural
X. HNamely, in case (a is the set of sll r—
subsets of the k-set; in case (b) X is the set of
Eaftzt;ans of the k—set into m equal parts; in case

¢) X is an orbit of the set of all r—subspaces of
V. These cases can be dealt with indepen nsly of
?ng assumption on the order of G, In cases ?a and
b} we have to replace X by the k-set. An algoritim

yu

tion ipto
(c? G

set

achieving this has been indicated i1n Prop. 5.3.

case {c} we have to reglace.r by r=l. Once this
has been done, the new set X might only comsist of
one of the G-orbits of l-gpaces oI V, in which
case the remalnlng orbits of l-spaces also must be
f;;g?st§§CtEd' etails of (¢} can be found in

It seems likely that, in the near future, anale-
gues of [Kal] "will Ee proved for the exceptionmal
groups of Lie type., This would produce a signifi-
cant reduction” of the exponent 36 in Theorem 6.1
(and , consequently, of the expoment 37 in the
proof’of Theorem 721).

7. Elements of prime order

The following result is an algorithmic version
an elementary theorem of Cauchy:

Theorem 7.1. Given a group G<Sym(X) and a
dividing ]G}, an element of order p can be
polynomial time.

of

time p
pund

Proof. We begin with a reduction to the case of a
simple group G. Use Theorem 5.1 to find a set X7 on
[X7 a3
Erintwi e stabilizer of X7, If pl| [H],

(By [Ba5l, sucg a replacement can
most 2p times.} Thus, we may assume

which G acts such that GX‘ is

let M be the
reElace G by
take place at

simple and



that p divides the order of G . If geG and
Ig:{l'p then some power of g has order p. Conse-

quently, we can replace G by G:( and assume that G
15_a nonabelian simple group. :
In this situation, much more can be said [Ra3]:

Theorem 7.2. Given a simgle groug G<Sym(X) and a
prime p,_ &_ Sylow p—subgroup of G can be found in
polynomial time.

Howeyer, we will continue the proof of Theorem

7.1. 1f_I6[<n>® ther the order of each element of G
can be found., (This part of the algorithm rums in

time O(nS?). The. remainder of the algorithm iz much
&
faster.) Now assume that IG!>n3 and apgly the
Replacement Theorem in order to replace X by a new
set, which we will again call X. At this point, G
acts on X in an_esgegxxlly natural manner. .
For example, if 18 an alternating group then it
ig mDow . If we identify X with %1,...,n}, then
tl ...,g) g order Y. i
much more typical example is provided by the
group G-gSL?d q).. Here, X can be regarded as the
set of (qd-1)/{q-1) l-spaces of the vector space V
used to define G, Use Prop. 5.5 to find a non~-
trivial elementary abelian normal subgroup Q of G

for some xcW. This ig a froup of order qd 1. If p
divides q, any nontrivial element of Q has order p.
Now suppose p does not divide q. ,

First fin XLy 000, X eX corresponding to

d
independent set of l-spaces of V. Then find ¢ G
indueing the cycle xl,...,xd) On X ,.s0yTyke en

an

the coset Qc comsists of all elements of G axising

-1 .
menic poly-

from ccmg?ngon matrices of all the q
t. q) having constant

nomials of degree d over GF

term (-1)%. (Note that IQcIfqd_l<;WE<n2, so that

all elementz of Qc can be listed. I?en some power
element of Qc has order p. Hamely, when

E

mftﬁn is the minimal polynomial of a matrix of mul-

tiplicative order p,lt?? glement of Q¢ correspond-
tk

ing to the polynomia
. d-deg m s g
wle)(E=1) has order divisible bg p.y .
The argument used in the case of  the remaining
clagsica groups is fairly similar. However,

instead of linear algebra, it "~ dependa on results
gofiﬁrging algebraic groups [5t, Thms. 9.4, 9.5,

Note, that, in fact, in the case of G=PSL(d,q),

every element of G of order relatively prime to g
is 3 conjugate in G to a power of an element of Qe.
s;u;lgrl{ strong results hold for the remaining
flas?fca groups (again using [8t]; see (11.4) in
Ka2l).
8. Sylow subgroups
In this section we reduce the Sylow subgroup

problems to coset intersection. K defotes an arbi-
trary class of finite groups, closed under isomor-
phisme taking subgroups and factor groups.
the definitions see subsection 4.2,

Theorem 8.1. (i% SYLCONJ(K) is polynomial time
teducible to INT(K) : :

SYEFIND(K) is polynomisl
J(KD) .

For

(ii) (CFsG)
time reducible to SYLCON
In fact we shoz that if we have an 0(T(n)) algo-
rittm for INT(K) (n is the degree of the input
gfou s, ¢f, 4.2}, then SYLC NJ?K can be s?l ed in
(nT n}+ut) steps, and an O(T°(n g SYLOONJ(K) algo-
rithm can be turned into an 0(nT"(n)+n®) algorithm
for SILFIND(K), In particular, moderately eXponen-

tial INT algorithms result in _moderately exponen-—
tial SYLFI see Cor, 10.9), 1 ontTast to the
150 _to, INT reduction Lul) where T(n) 1is replaced

by T(n%).

%;%gﬁil(i} We are given a subgroup G of Sym(X),
elonging Eo K, "a prime number p, and Sylow
subgroups P(1l) and P(2) of G ; we want to find fsgﬁ

with P(1)F=P(2). The algorithm will
steps and will refer to an INT(K
(Sgor 5%G let Orb S denote the set

roceed in five
subroutine.,
of orbits of

1. 1f orb P(1)40rb P(2), use INT(K) to find geG

that (0rb P(1)% = ord »(2),

It is straightforward to determine the
all elements of Sym(X) sending Orb P(i)
to 1itself, and also to find g7cS %X sending
Orb P(1) to Orb P(2).Now find gcGMHg .(This inter-
section is nonempty because of Sylow s theorem.

Them Orb P(1)% = orb P(2).
2. Replage P(l) by P(1)® and them replace G b
&%1?,?(2}& 4 P 7
Comment, Now Orb P(1) = Orb P(2) = Orb G.
3. If G is intransitive, divide and conquer.
Comment. If Y is an orbit of G, find g G such

that (P(1)7)8 = 2(2) and return to 2. Repeat this
for all Y.

such
Comments.
group H of

4. (We may now assumg that G, P(1) and P(2) are
;rans%tiyg on X.
Pind Z(P(1i g the center of P(i). Pick
2(1Xx2 3~

Riih 1
Use INT to test each z(2X% Z(P(2)) to see

if there is a g¢G such that z(1)®=z(2).
Find such a g and return to

Comment. Since P(2) is tramsitive, 2(P(2)) is
Bemxreﬁulax gnd so it has opder <n. It Lg gtraight-
forward to find the centralizer ¥ of z{l) in Sym(X)

and to find g% Sym(X) such that z(1¥ =z(2) fo
z?Zk:Z(P%2§)§ Figglly, GAHg” cogsists of thos: e

e% Es of g of G for which z(1F =z(2). For some
zl2)el 2) this intersection must be nonempty by
Sylow” 8. theor

5. Let z-z%gj and ¥=0rb z, Find £ G such that

(e(NE = 2(2)X, Then 2(1) =P(2)
Comments. By 4, zezgrhgsln z(P%z}}gz%ci, so that
G acts on X, Then f can be found‘recursively. The
kernel of the howomorphism G->G\

Therefore, the second sentence
third.

is_ a p—group.
of 5 implies the

Timing. Step 1 is invoked at most once. At step 3,

we agﬁ up the time needed to_handle each orbit. For

each recursive call at step 5, PF(1) 7emains trangi—
o

tiv? ?nd the value of n changes to _n/p or leas. The
INT(K) subroutine is invoked once in step l; and in
step & at most m times for each orbit of size n.

Thus, there are a totsl of < m + g +
Zm calls in the case of an orbit of size m,
ling at < 1 + Zn calls to Inthﬁ.

+ sae <
total-

(ii) This time we sre given G and p, and we w ng
te find a-Sylow p—subgroup of G, using a SYLCONJ?K
subroutine,

. Find a set Y such that G acts on Y, |Y|<n,

and GY i8 simple. Let M be the kernel

of G—)GY.
Co?me%g. Use Theoreg 5,%- 16/ .
. P g not divide M|, replace G .
3. If g#i&?ﬂl, find a_Sylow p-subgroup of E/u
an
H in G. Then replace G by H.

ind 1ts complete inverse image

Comments. Simce G!H?GY is simple, Theorem 7.2 can
be used. Note that H contains a Syiow p—subgroup of

4, Recursively find z Sylow p-subgroup P of M.

5. Let geG-M. Find meM such that (P5)"=p,
Comments. At least one of the generators of G
outside M, s
the StLooni(’S

is
let one of them be g. To find m, use
subroutine.



6. Let <g”> be a Sylow _p-subgroup of the cyclic
groug <gm>, Ihgn <P?;'> %s a Sylow

£
CommengtsT<§fg§§I°~ gIPI.

Timing. Since p™ does not divide n!, there are
ewer tham n recursive calls for stLrinD ?step_4 .
Each time, SYLCONJ(K 1;*lnvoked once. This gives
the stated time bound.
For more detailed proofs, see [KT}.

In subsection 4,2 we pnoted that _INT(K) can be

solved in polynomial time for certain classes K. In
fact, by [Eulf 9661} and [BCP], we have the follow-
ing

Corollary 8.2. SYLFIND(K) and SYLCONJ(K) have poly-
nomial time algorithms if K is the class of groups
all of whose nomcyclic composition factors are of
bounded order or of Lie type of bounded dimemsion.

Note that this corellary does not depend on CFSG,
since the use of the COMP subroutine and the refer-
nce to finding Sylow subg%ﬁga %n simple ggoups
%steps 1 and 3 im the IND(K) algorithm) are
restricted to groups from the class K. | .

In KT? it is shown that, for G restricted as_in
Cor. 8.2, a givem p-subgroup can be embedded in a
Sylow  p—subgroup in polynomial t:l.me5 and
olynomial-time versions of other group-theoretic
ghecrems are also obtained. For example, for_ such
roupg G the largest normal p-subgroup of G is
ound in polynomial time. Even this problem remain
open[ fTr general G, in spite of attempts im [KaZ
and |ET].

9. Graph isomorphism
The main result is

Theorem 9.1 (CFSG) Isomorphism of n—vertex, d—

cd/log d

valent graphs can be tested in n steps.

Note, in particular, that the exponent is o(d) “as
d =2,

For geneval graph _isogorphism, a_ Zemlyachenko~
valances rednc%iog ([ZKITO gee also [Ba§T§ breaks

the problem into a4 n/log Toroblems on v log.n-
valent graphs. Hence

Corollary 9.2 (CPSG) Graph isomorphism can be
Yen/log d

tested in n steps.
In [Lul], the isomorphism R ob}em for d-valent
grapha was reduced to CAU L, where T, 1is the

class of groups all of whose composition factors
lie in Sd 13. It would appear that the cost associ=

ated with that approach is already prohibitive,
considering the above goal, for it involves a set
blow~up from o to nd, Nevertheless, it is instruc—
tive to consider am improved C&UT(%,) algorithm

cd/log d
which achieves the time bound n % on gets of
size n, We refer the reader ro [BL] for an indica-
tiom on how to ayoid the set blow-up. We point out
below that a similar trick yields an applicatiem to

We refer the reader to [Lul] for the
cedure. A fundamental observatiom is
able permutation Eroup procedures  [FEL
‘feasible to work "locally”, stabilizing colors om
ome orbit at a time. Thus, a natura] and efficient
divide—and-conquer reduces the problem to the case
when the group, G, sets tranmsitively on the set, X,
At that point, the idea is to restore intransi-
Eivit by ropg1 g down to a suitable subgroup.
. emnz 10, .?_

basic pro-
hat avajil-
make it

Cf. This subgroup reduction ig guided
the induced primitive action on a minimal
black system, B, in’X, There is a comstructible
subgroup, P, of “small” index which acts as a p-
group on B (the efficacy of p~group? having bT?n
established in the trivalemt case [Lul,sec.2[).
The s8ize of this index gavern? the timing of the
algoritim. For the purposes of [Lul] it was suffi-
cient and easy to observe that, for some funmction

f(d

£, 16:21 <t D (2 =13I= the mumber of blocks),

. . . ot

for this implies an n £(a) bound on color automor-
phism, review of the comstructionm of f, citing
only elementary %rgup th 0;{ and number theory,
reveals that "fld) "= 0(d’log d). We can now show
that estimates available oglyofggoug?Nthe classifi~

cation reduce this to £(d ote: the
latter implies an upper bound of qu on the origi-
Furthermgre,

nal d-valent gzagh igomorphism test,) rth
digging a 1little deeper into classification—
dependent results, ome can show that the index of P

ad/108 d in_ all but ‘ome
case has sufficient combina-
to allow one more divide—and-

is agtuallg bounded b
case”, That specia
torial structure
conquer trick,

Lemma 9.3. (CFSG) Let G be a primitive subgroup of
Sym{B), [Bl|=m, with G in T, . Then either

(i) G has a p~subgroup, P, iof index <
mZd/log d
(ii) the soele, N, of € 1is %somorphic to =
t t’co

irect ?roduﬁt a pies of Alt(D), for some t,D
with [D] < d) Moreover, with this identification,

there is sn N-isomorphism B -> ( z)t.
The proof of Lemma 9.3 involves analyses of each

Tf The cases of the O"Nan—Scott Theorem (as in
Call, but taking into consideration number—

theoretic consequences of the restriction to
groupa). (We conjecture that a much smpaller bound
1g possible in case (i); see 11.3), For algo~

rithmie gqrpcses, it is necessary to construct the
aforementioned subgrougs_an? isgmorphisms. The p—
subgroup was constructed im [Lul]l in time [G:Plm
?nd as mentioned, the problem was decomposed into
G:$) pfohl s for P. We now avoid this_ route for
large [G:P], decompoa;ng instead into [G:N] prob-
ems for N. One can find N in polynomial time
?rggosxtxon 5.4) Again, number-theoretic estimates
yie

Lemma 9.4. Let G,N be as in case(ii) in Lemms 9.3.
Then [G:N] < g © 1089,

Thus, it is mot particularly costly to gasg
3

te H.
Now, although N is still transitive on

it has,
Dy
B->{(}, a

Furthermore,
Extending Proposition

by virtue of the observed bijectiom
ga:txcularly transparent structure,
his structure is available.

5.3, the following holds.

Lemma 9.5. Let N be as in Lemma 9.3(ii). A suita-
ble set D and N-isomorphism B -> ( E)E is com-
structible in polynomial time. b

The additional divide=and—conquer exploits this

identification. We describe the idea in the case
k=t=] and then outline fhe extensionm,

Divide the set B %5 D) in half arbitrarily, B =
BluB2. Let Nl be the stabilizer in § of B{. Then
the number of stepa needed to find generators for
Nl is bounded by a polynomial times %H:NI . Note

that [N:W1] < 2IB . We have again restored
lntt&uﬂ;tlv%ti' and we exploit the fact, treating
the orbits (which gre, at most, half as large as
the original sgec focusing on an

A ser;allg. In

orbit, once again we split the set in half . ete.,

continuing until the target subset has cardimality
» The end result is the re?l cement of a problem

on & union of a set of m (= JE] £ d) equal-sized

blocks by less tham 4% (< p 24/10g d

the individual blecks,

. For geueral k,t we make gse
induced action of N ¥ Alt(D)t

by the disjoint umiom of

} problems on

of the naturally
.on a set, C, formed
t copies of D. Each ele-

D
went of () is a subset of D and so the bijection



og of Lemmua 9.5 induces a G-map Y:B -> {subsets of
C}. As in the special case, the goal is to cut the
group down so as to shrink orbits, zeroing in on a

single element of B. i
the general case, jnefficient. Instead, we look to
the N-orbits in in the first round, WlEh the
full group N, these are just the copies of D). For
purposes of recursiom, we extract some essential
aspects of the present problem, The present %roup
? acts tranalglvelz on a collection, B, of blocks

the underl 1n§ arget set, X, is the umiom of
these blocksg; acts also on an auxxllar{ set, C,
and there 1s an N-injection, ¥, from B to the set
of subsets of C. We proceed as follows, Fix x in
B zn? defi?e' £t éy-orklgﬁ n. Cf =~> {natural
numbers} by £(C7) = [C'n ¥a since N is trap-
sitive on ?ﬁlf>is independent pf the choice of x}.

Simply halving B appears, 1in

As long as 1 thgre mug? be some N-orbit, C
such that 0 < £(G”) < [C*]. We choose any such

- orbit, halve it, pass to cosets of he stabllize
of the Jhalves then treat N-orbits (for the new N
in B senall{._ One shows, inductively, that the
effect of this recursive procedure 18 to replace
the problem for N on ¥y less than

iBIr1(4£(c'))lc‘|problgms on individual bloecks in
B, where the pr?dugt lT taken over all orbits, C
for which ¢ < £(C7) < C’?. Thus, the initial N,ﬁ

problem leads to less than {4k
m blocks, where g3 = [D]| < d.

that (4)3t < p2d/1og 3

we assume k < d/2).

)dt Eroblems on the
Finally, one shows

for 3>6 (m=( g)‘ and

Hence, the problem om X
involves less thanm mzd!log d¥c
size m L .

He remark, finally that the abov? t?chnzqugs are
incorperable, also, into the INT(T .} algorithm of
tLul,p.ﬁl , Tesulting in d

problems or sets of

Theorem 9.6 (CFSG) Given subgroups G,H and ele-
ments g,h of Sym(¥X) with G in Pd the intersection
of the cosets Gg and Hh can be found in D;Q!log d.

T Details will épgéér-i; fi;;}.
10. Coset intersectiom

T Ehe grevious section we gave anm outline of an
INT?K algorithm for certain classes K of groups.
The methods described there do not appear to vyield
& general INT algorithm faster than ¢ ,

%n this section we _give a mofiﬁately exponential

algorithm (ecf. 4.3) for INT where K comprises
all finite groups and will therefore be omitted.
First we have to treat CAUT, an important subcase

of INT, separately.

Let G be 2 tr?nsitive E rmutation grong acting on
a set &, Let B=1{Al,...,A e a system of blocks of
impgimltivity for G with block size b ; bt=n. Let
L(i) denote the restrictionm to Ai of the (setwise)
These groups are isomorphic as
groupe. There is a natural actiom f:
Let K denote the kermel and R the image
[ . us, is a subgroup of % (B) and K is a
s?b Toup ?f the direct product L X ... X
1(t); RAG/E.
. The situation where the methods
immediately give a goderatelz
algorithm 15 characterized by the

is small ( } and R contains
group Alt?B). We begin wirh the
that enables us to handle this case.

[Bab] for the proofs of 10.2 and 10.3.

Definitiop 10.l1. A gubgroup H of G is a strong
[3 ent to % if
1 =G} .
(1i) for any h in H and any block 4 in B, if A

is invariant under h then it i% fixed peintwise.

{1}

stabilizer of Ai.
ermut t&on
f>5 ?B .

of [Lull dom’t
exponential CAUT
property that b

the alterpating
structure theorem
We refer to

Remark, (ii) clearly implies that ENK = and
thus H *

[

Lemma 10,2, If R = ALt(B) and t > 4b, then K has s
gtrong complement H. Such an B can be constructed
in polynomial time.

Note that a strong complement does unot neces-
sarl}; exist if B = Sym(B), even if t is as large
as n/l.

Before stating the structure theorem, we need
some more notation. Let G be as above, Assume a
strong complement H of K has been selected. Them H
defines a unique bijection between each pair of
blocks. This permits @s to identify X with the

ga duct s?t A .§ T for some ~set ?, where
Iieessstt, A x {i}=mAi and the sets a} x T
(acA)’"aré the orbits of H, For a permutation
gaSym(A , let g(i) denote the corresponding permu—
t?ggo? of Aji:r and for a group F<§ %A), let
F(i)={£(i) :£cF} §0;e that our groups I({? do arise
from some Lijmzé in this way. For a subset § of

the product of

. -
?ﬁ(%ge dlﬁfCt P e on UtAL meg? Now we can say,

1ie5}, acting on W{Ai:ic$s
that K is a subgroup of the direct power LT.
By_the restrictiom of the group G to a subset Y

of "X we mean the restriction to Y of the setwise
stabilizer of Y in G.

Let ¢ and E denote the restrictions of G and K,
Tesp., to I-Al.

Theorem 10.3. Let G be sg above and let S=T-{l}.
seume R contains Alt(B) and a strong complement H
of K iz given. Then L has s normal subgroup M such

ety WS

(1) &/ is isomorphic to a subgroup of L/M.
M can be comstructed im polynomial time.

is a normal subgroup of ¢ , and

We shall use INT(G,E) to denote the coset inter-
section problem restricted to those cases where the
input groups are G and H. The following two tricks
will be used frequently.

Lemms 10.4. Climbing Down. If K is 2 subgroup of
index k of T then a 1ngt?%ce ?f gﬂg(G,H§ rﬁg ces
+(We climb down to K.

to k instances of INT(K,B

Lemma 10.5. Climbing Up, If G is a subgroup of
index k of K then an inmstance of INT(G,H} fesuces
to_one instance of INTEK, plus a number of steps,
polynomial in n and k.(We climb up to K.

a coset of G as
or 10.5, let the
intersection

a unlon of k cose f K. As
inatance be the determination of Ehe

of the subcosets G% and Hh of Sym(X). Find Kgr Hh;
this is either emp g or of the form Dd where
D=KnH. Find C=GMH, a recognizable subgroup of
index at most % in D, and represent D as CR where R
iz a set of rxghtj coget representatives of C in
?. is_can be done in time, polynomial in n and k
FHL]. If rd Gg for some Tek thed GgNBh=Crd. Check
this for §§Ch . If every r is rejected then GgmEh
is empty.

Proof, 10.4 follows bz representin:
s 0

We start with an important subcase, iuvolving
wreath products.
Defipition 10.6. Let P<Sym(A), Q<Sym(T). Let us

think of Q as acting on the Cartesian groduct AxT
by permuting the second components. The wreath

product (cf.[Re]) P wr Q is defined as PIQ, acting
on A x T.(Both P and Q act on A x T.)

Lemma 10,7, If C,D<S¥§(A), G = C wr Sym(T), H =

Dwr SymET), g, SymlX) where X = 4 x° T then the

2

determination of GgNHh reduces to t° instances of

INT(C,D).

Qutline of the proof. Thig situation _is analogous
to  the reductien of the isomorphism problem of
disconnected graphs to pairwise comparisons of



-1
comnected components. If gh ¢ Sym(A) wr
Sym then Gg Eh is emg;{. So we may assume g=l
heSym(A) wr Sym(T We sball use the ~language o©
b-ary relatiom gsubsets of the Db-th Cartesian
power, where b=|Al), Let w be the list of elements

of A x {1} in any order, and let R(l) = wG, BR(2) =

ng, $(1)= wH, $(2)= w'P, It is easzwto see that G

is the aytomgrphism group of the bwary relatiomal
itructﬁre IR 1?9 andgiheg fgge Gg is ghe g t of
isomorphisma between (X;R(1 and _(X;R(2 and
similarly for Hh. It follows that GgMHh is the set

the%§

£ i hisms etween the structures
?X;R(l):gf?ggpsnd (X;R?Z 28(2)). Both structures
are disconnected and their connected compoments

share the same underlying sets Al,...,At. .pair—
wise comparlso? o§ *iwo such components is an
instance of INT(C,D).

The main procedure has two phages. In the first
phase, we Bglve the pubcase CAUT Gg. The input is a
subcoset Gg of Sym(X) and & coloring f of X.

Procedure CAUT(C) .
1, If G is intramsitive, divide an? cOnquUer.
2, Find a minimal block system B. (We shall use
the notation of Lemma’ 10.2.
3. If t<4b or R does not contain A1t(B) then

limb d to K. .
&, I% §ESymEBg then climb down to the inverse
image” 0of Alt{B) under the homomorphism

K, ]
5. {Now R=alt(B) and t>4b, so_10.2 apg;xes.}

Find a strong comglement H to K. Find M

as in Theorem 10.3. | . .
6. Climb down to the setwise stabilizer of Al in

Gf?This group has two orbits: Al and Z-Al.
7. (Divide and conquer; first solve om X-Al.

This is an instance of GAUT(E).) Let E be
=S
the restriction of E to Z-Al and H¥=
(s=T-{1}). Climb down to H¥*,

onment . The index of H* in G is
iL?M . by Theorem 10.3, and H¥ = M wr
8. Climb up to ¥ wr 5%?(5 .
9. Use Lemma 10.7 to Finish on Z-Al.
10. Use brute force om Al.

not more than
&1:(5?.

Timing., Let m=_ [27nl. Let p(n) denote the wmaxioum
order of primitive permutation groups of degree n
not containing the alternating group A . Set p(n)=
i no such froups’ exist. Let
q?n)'mxx{ml,p(l},.., E(n} . It iz easy to see _tha
the run?ing time will be lesz than qlen). By [BaZ

A
anc. (2 q(n)<exp(4vn logzn)

for large n.This estimate does mnot require CFSG.
Using C%SG one obtains

q(n)<n{5- {for lar%e n) .
{Cal]. Moreover, it follows from CFSG that im the

bottleneck case, R has to be essentially an 1nduggg
alternating group. More Erec1gely, Lemma 9.3(ii
must holdnﬁor B. This well defined structure raises
the hope of a possible improvement.

the actual INT gﬁ%gor%;hm. The

How we turm to e I

input  is a pair of subcosets Gi.
Sym(X).

Procedure INT(Gl,G2)

1, Use CAUT(Gi) to reduce to the case whem the
orbits of Gl and G2 coincide. Then, by
divide-and-conquer, redice tg the case
when both groups are trameitive. = |

2. Find minimal block systems Bi for Gi (i=1,2).
tﬂe shall use the notation of Lemma 10.2
for both groups, augmenting each gymbol to
indicate Eb corresponding group.)

3. If ¢t i§<ﬁb x? or Ri does not g¢ontain
A1t(BiJ then ¢limb d??? to 5?1) (i=1,2).,

4, (Now Ri>Alt(Bi) and S i)24b(i)., Our goal is

to align Bl and B2.) View Bl and BZ as
equivalence relations. Consider the graphs

W=(X;BL,B2) snd W=(x;818(1) 128(2))  (rhe
edges of these graphs have colors 1,2 or

both. Isomorphisms preserve colors dafi-
nitiom, Cleggly, Glgflgf\GEg?2§5ISO?E,H§§
where the right s1d§ denotes the set of
W->W" isomorphiems. ,
Use CAUT(Gi) to reduce Gi.g(i) unless every
component of W and W has equal size,
5. (Now each component of W and W° has the same

size wv. These compoments are umions of
blo?E of Gi,) po
If b(i

<w<n_then reduCe_Gi.§{i) to the sub=-
coset sending components of W to components
of W, Thlf_ an be done in linear time by
adjusting g(i) and reducing Ri.

6. If b(1)=b(2)=w (i.e. Bl=B2 and 3B (D) B2,
hen Esrf?rm steps 4 to 8 of CAUT(Gi)
i=1,2). (These steps of CAUT(Gi) do mot

tefer to the co%orlnf f,) Use Lemma 10.7 to
finish on X=-Al (Al=AJl=4l2)},
Use brute force on Al.

7. If w=n (i.e. W, are connected) then choose
xeX and climb down to Gi . Let us define the
quduct relations Pj bz settxn% Pl=Bl;

j+1)=PjB2 if j is"odd and PjEL if j is
eyen. Find j such that x has valence between
o and n/2 in th _%raph__x,§j . (Sugh j
exiats because b(i) < /n/2,) Let Pj° be the
?crresgond1ng relation defined by %’.
Clearly, the’1n§ersection af cur cosets
sends Pj to Pj”. .

Let i=j mod 2. Reduce Gi.g(i) to its subcoset
sending ¥xPj to x"Pj” where zPj is the set of
Pé;gei hbore of x, and x=xB)

(This takes linesr time.)

, Comment, This takes wus back to the case of

lotransitive Gi. Observe, however, that the orbits

of Gi bhave lemgths < n=- ?. Hence this step will not
be repeated more than O(,@) times. It costs a fac—
toxr ¢f n each time, because of climbing down to the

stabilizer of x.

Timing., Sim%lagly to CAUT, the number_of steps is
bounded by q(cn).” The effect of step 7 is only a

factor of n'" (see the Comment), We thus comclude:
Ihg%rem_lo.s. The intersection of two subcosets of

/ 18 computable in
= d Eig exp(ec,/m logzn) steps;
(ii)(crse) 25" ateps.

Combining this result with Theorem 8.1 we obtain
Corollary 10.9. (CFSG) SYLFIND and SYLCONJ are

solvable for general groups in nc/; steps.

11, Problems and comments.

11.1. In Section 5 we indicated how to find, in
polynomial time, the non-abelian part of the socle
as well ag how to test fo t?e non-triviality of
the abelian part. I T 31 it is shown that the
algorithm for Proposition 5.5 cam be extended to
produce, 13 golynomla;—tlme a8 normal p-subgroup (if
one exigts) for an§ %Iveg P- However, the com—
plexity of the tollowing related problems remain

openj . ]
C; Find the abelian part of the socle.
(C}} Find a minimal normal p-subgroup.
1ii

. Find a maximsl normal p—spbgrqup. (Surpris—
1ng%g, this is reducible to %il) ?KEB?S? i
1v) Find the maximal solvable normal subgroup.

11.2 Investigations of 11,1(ii) lead naturally to
matriz group problems for we may assume we already

have an elementary abelian normal p-sub TOup,
whence the containing group acrs on it via lineas
trapsformations. Though we suspect 11,1(ii) is

actually esgier than the following, we wonder about
the complexity of .

i) Find an jrreducible ?ubspace of & linear
groug over a finite field (given again by genera-
tors). In fact, test irreducibility,



This preblem and 11.1 inspire

£i {ii)f?i?g the radical of a matrix ring over a
inite field.

1
11.3 The estimate m cd/log:d in Lewma 9.3(i) comes

from bounding the product of all prime factors < d

- 2 4 , .

in (p~1)(p" =1)..(p =1l) where is prime and
ma= : %ueg %Lul,B?Z]%. It seemg_likely, however,
that a smaller bound can be established

(m© 1087 dgy Note,that this would still leave ome
o cd/10g d bottleneck in d—va%gq grazh isomorphism,
but that corresponds to casel{ii) in lemma 9.3 where
we already know a lot about the group.

11.4 We pointed out (section Z) that the following
problem iz in NP~coNP.

Let p° be the highest p-power dividing 1G|.
Does G have an element of order P’ ?

Is there a subexponential determimistic slgo-
titlm?  Suppese r is not maximsl. Is the problem
still im HPn coNP? Another problem in  NPricoNP
is _ testing whether the Sglo& p—subgroups are
abelian. Can this be done subexponentially?

STLCONJ does not

11.5 An oracle for does
in finding al1

seem to gffer much h%lg find coniggatin§
e%em ts (if P(1) = P(2}, this is the normalizer o
F l}g? This apgears unusual for permutation group
problems. Are Sylow normalizers computable, say,
given an oracle for INI?

in itself,

11.6 Problems put in P omnly through CFSG are can-

didates for future investigation. Is there a more
elementary agproach to fxndlnﬁ a p-element? The
s:mgllclty est seems awfully <¢lose to avoiding
CFSG. Can one bypass Schreier”s comjecture?
11.7 An essential tool in studying permutation
groups 1is the use of representations for quotient
groups, G/N. These are available if N is maximal
normal  (Theorem 5,2} Can ome find a “small”
repregentation for G?H'La general? The slgorithmic
interpretation of this gquestion clearly must be
preceded by the theoretical ome. This, we  editori-
alize, is= t{ngal of what is mow going om in this
subject. Complexity comcerns have motivated new
t?goret%cal problems as well as new perspectives on
o tools.
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