
Closed-Form Learning of Markov Networks from Dependency Networks 
Daniel	
  Lowd,	
  University	
  of	
  Oregon	
  

<lowd@cs.uoregon.edu>	
  

Introduc=on	
  

MNs	
  and	
  DNs	
  

Compu=ng	
  Rela=ve	
  Probabili=es	
   Experiments	
  

Inconsistent	
  DNs	
  
If	
  we	
  can	
  compute	
  the	
  rela=ve	
  probability	
  of	
  any	
  two	
  instances	
  x	
  and	
  
x’,	
  then	
  we	
  can	
  define	
  a	
  probability	
  distribu=on	
  as	
  follows:	
  

If	
  we	
  can	
  represent	
  f(x)	
  as	
  a	
  product	
  of	
  factors,	
  then	
  we	
  have	
  a	
  
Markov	
  network.	
  

Since	
  we’re	
  conver=ng	
  from	
  a	
  DN,	
  we	
  must	
  express	
  these	
  factors	
  in	
  
terms	
  of	
  the	
  condi=onal	
  distribu=ons,	
  P(Xi|X-i).	
  

f(x) =
P (x)
P (x�)

P (x) =
1�

x f(x)
f(x) =

1
Z

f(x)

(x’	
  is	
  an	
  arbitrarily	
  chosen	
  but	
  fixed	
  state.)	
  

Suppose	
  x	
  and	
  x’	
  only	
  differ	
  in	
  the	
  ith	
  variable:	
  

If	
  x	
  and	
  x’	
  differ	
  in	
  many	
  variables,	
  construct	
  a	
  sequence	
  of	
  
intermediate	
  states,	
  x(0)	
  through	
  x(n),	
  each	
  differing	
  in	
  one	
  variable:	
  than training one from scratch. Furthermore, it only applies

to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i] )

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T ) = 4/5

P (X1 = T |X2 = F ) = 2/5

P (X2 = T |X1 = T ) = 2/3

P (X2 = T |X1 = F ) = 1/4

Let x� = [T, T ] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T )

P (X2 = T |X1 = T )

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base
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Markov	
  networks	
  (MNs)	
  have	
  good	
  seman=cs	
  but	
  are	
  hard	
  to	
  learn	
  	
  
and	
  awkward	
  to	
  specify	
  by	
  hand.	
  

Dependency	
  networks	
  (DNs)	
  are	
  easy	
  to	
  learn,	
  but	
  have	
  annoying	
  
seman=cs	
  based	
  on	
  Gibbs	
  sampling.	
  

Best	
  of	
  both	
  worlds:	
  Learn	
  a	
  DN	
  and	
  convert	
  it	
  into	
  an	
  equivalent	
  MN	
  
before	
  running	
  inference.	
  	
  

We	
  present	
  the	
  first	
  ever	
  method	
  for	
  conver1ng	
  a	
  DN	
  to	
  an	
  MN.	
  
Our	
  solu=on	
  is:	
  
•  Flexible	
  –	
  Works	
  with	
  any	
  kind	
  of	
  condi=onal	
  distribu=on.	
  
•  Accurate	
  –	
  Exact	
  for	
  consistent	
  DNs,	
  very	
  effec=ve	
  on	
  general	
  DNs.	
  
•  Efficient	
  –	
  Linear	
  =me.	
  

Dependency	
  network	
  (DN):	
  	
  
Set	
  of	
  condi=onal	
  probability	
  distribu=ons	
  (CPDs)	
  
	
  	
  e.g.,	
  

Seman=cs:	
  Probabili=es	
  are	
  given	
  by	
  the	
  sta=onary	
  distribu=on	
  of	
  
a	
  Gibbs	
  sampler,	
  which	
  may	
  depend	
  on	
  variable	
  order.	
  

Learning:	
  Train	
  a	
  probabilis=c	
  classifier	
  (decision	
  tree,	
  logis=c	
  
regression,	
  etc.)	
  to	
  predict	
  each	
  variable.	
  

A	
  DN	
  is	
  consistent	
  if	
  its	
  CPDs	
  are	
  consistent	
  with	
  some	
  probability	
  
distribu=on.	
  	
  When	
  learned	
  from	
  data,	
  this	
  is	
  rarely	
  the	
  case.	
  

Markov	
  network	
  (MN):	
  	
  
Normalized	
  product	
  of	
  factors	
  
	
  	
  e.g.,	
  

Consistent	
  seman=cs	
  and	
  many	
  inference	
  algorithms,	
  
but	
  weight	
  learning	
  requires	
  itera=ve	
  op=miza=on,	
  even	
  for	
  
pseudo-­‐likelihood.	
  

€ 

{P1(X1 | X3),P2(X2 | X1,X3),P3(X3 | X1,X2)}

€ 

P(X1,X2,X3) =
1
Z
φ1(X1,X2)φ2(X2,X3)φ3(X1,X3)

Defining	
  a	
  Distribu=on	
  

Example	
  

Thus,	
  the	
  resul1ng	
  MN	
  has	
  one	
  factor	
  for	
  each	
  variable	
  Xi,	
  which	
  
computes	
  the	
  condi1onal	
  probability	
  of	
  that	
  variable’s	
  value	
  
rela1ve	
  to	
  its	
  base	
  value.	
  	
  All	
  variables	
  that	
  come	
  before	
  Xi	
  in	
  
the	
  ordering	
  are	
  fixed	
  to	
  their	
  base	
  values	
  in	
  this	
  computa1on.	
  

Using	
  base	
  instance	
  x’= [T,T]	
  and	
  order	
  [1,2],	
  we	
  obtain	
  two	
  factors:	
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−1)

P (x�
1|x

(1)
−1)
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P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)
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P (x2|X1 = T )

P (X2 = T |X1 = T )

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base

instance, x�. In general, the ith converted factor φi is not a
function of the first i − 1 variables, since they are fixed to
values in x�.

By simplifying the factors, we obtain the following:

X1 X2 φ1(X1, X2)
T T 1
T F 1
F T 1/4
F F 3/2

X2 φ2(X2)
T 1
F 1/2

Multiplying the factors together and renormalizing yields:

X1 X2 P (X1, X2)
T T 0.4
T F 0.2
F T 0.1
F F 0.3

which matches both conditional distributions. Therefore,
an MN with the factors φ1 and φ2 represents the exact
same distribution as a DN with the conditional distributions
P (X1|X2) and P (X2|X1). Since the original DN is con-
sistent, any choice of x� or o will lead to the same result.

4.2 LOG-LINEAR MODELS WITH
CONJUNCTIVE FEATURES

In the previous example, we showed how to convert a DN
to an MN using tables as factors. However, this can be very
inefficient when the conditional distributions have struc-
ture, such as decision trees or logistic regression models.
Rather than treating each type of CPD separately, we dis-
cuss how to convert any distribution that can be represented
as a log-linear model with conjunctive features.

Suppose the CPD for Xi is a log-linear model:

P (Xi|X−i) =
1

Z(X−i)
exp




�

j

wjfj(Dj)





Note that the normalization Z is now a function of the
evidence variables, X−i. To represent P (Xi|x(i)

−o[i]), we

can condition each fj on x(i)
−o[i] separately:

P (Xi|x(i)
−o[i]) =

1

Z(x(i)
−o[i])

exp




�

j

wjfj(Xi,x
(i)
−o[i])





x(i)
−o[i] uses values from x� for the first i variables in o and

x for the rest. The values from x� are constant but those
in x are free variables, so that the resulting distribution is a
function of x. When simplifying fj(x

(i)
−o[i]), if the constant

values in x(i)
−o[i] violate one of the variable tests in fj , then

fj is always zero and it can be removed entirely. Other-
wise, any conditions satisfied by constant values in x(i)

−o[i]
are always satisfied and can be removed.

Table 1: The Basic DN2MN Algorithm
function DN2MN({Pi(Xi|X−i)},x�, o−1)
M ← ∅
for i = 1 to n do

Convert Pi to a set of weighted features, Fi.
for each weighted feature (w, f) ∈ Fi do

fn ← SIMPLIFYFEATURE(i, f,x�, o−1, true)
fd ← SIMPLIFYFEATURE(i, f,x�, o−1, false)
M = M ∪ (w, fn) ∪ (−w, fd)

end for
end for
return M

For example, suppose P (X2|X1, X4) uses the following
three conjunctive features:

f1(X1, X2, X4) = X1 ∧ ¬X2 ∧X4

f2(X1, X2) = X1 ∧X2

f3(X2, X4) = X2 ∧ ¬X4

If x� = [T, T, T, T ] and o = [1, 2, 3, 4], then x(2) =

[X1, X2, T, T ]. After conditioning f1, f2, and f3 on x(2)
−o[2],

they simplify to:

f1(X1, X2) = X1 ∧ ¬X2

f2(X1, X2) = X1 ∧X2

f3 is removed entirely, since it is inconsistent with x(2)
−o[2].

To compute φ2, we must additionally condition the func-
tion in the denominator on X2 = x�

2 = T . If the weights
of f1 and f2 are w1 and w2, respectively, then:

φ2(X1, X2)

=
P (X2|X1, X4 = T )

P (X2 = T |X1, X4 = T )

=
exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2))/Z(x(2)

−o[2])

exp(w2(X1 ∧X2))/Z(x(2)
−o[2])

= exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2)− w2X1)

Note that the final factor φi is always a log-linear model
where each feature is a subset of one of the features in
the original conditional distribution. Therefore, converting
each conditional distribution in this manner yields an MN
represented as a log-linear model.

We summarize our complete method for consistent DNs
with the algorithms in Tables 1 and 2. DN2MN takes a
set of conditional probability distributions, {Pi(Xi|X−i)},
a base instance x�, and an inverse variable ordering o−1.
The inverse variable ordering is a mapping from variables
to their corresponding indices in the desired ordering o, so
that o−1[o[i]] = i. DN2MN first converts the conditional
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−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i] )

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):
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φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T ) = 4/5

P (X1 = T |X2 = F ) = 2/5

P (X2 = T |X1 = T ) = 2/3

P (X2 = T |X1 = F ) = 1/4

Let x� = [T, T ] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T )

P (X2 = T |X1 = T )

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.
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We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:
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=
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P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x
(0)

= x

x
(i)

= (x�
o[i],x

(i−1)
−o[i] )

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�) =
P (x(0))

P (x(n))

=
P (x(0))

P (x(n)) ×
P (x(1))

P (x(1)) × · · · ×
P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1)) ×
P (x(1))

P (x(2)) × · · · ×
P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i)) =
n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):
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φi(x) = P (x�) P (x)

P (x�) = P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T ) = 4/5

P (X1 = T |X2 = F ) = 2/5

P (X2 = T |X1 = T ) = 2/3

P (X2 = T |X1 = F ) = 1/4

Let x� = [T, T ] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x

(1)
−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x

(2)
−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T )

P (X2 = T |X1 = T )

Note that φ2 is not a function of x1. This is because x
(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the baseinstance, x�. In general, the ith converted factor φi is not a

function of the first i − 1 variables, since they are fixed to
values in x�.

By simplifying the factors, we obtain the following:

X1 X2 φ1(X1, X2)
T T 1
T F 1
F T 1/4
F F 3/2

X2 φ2(X2)
T 1
F 1/2

Multiplying the factors together and renormalizing yields:

X1 X2 P (X1, X2)
T T 0.4
T F 0.2
F T 0.1
F F 0.3

which matches both conditional distributions. Therefore,
an MN with the factors φ1 and φ2 represents the exact
same distribution as a DN with the conditional distributions
P (X1|X2) and P (X2|X1). Since the original DN is con-
sistent, any choice of x� or o will lead to the same result.

4.2 LOG-LINEAR MODELS WITH
CONJUNCTIVE FEATURES

In the previous example, we showed how to convert a DN
to an MN using tables as factors. However, this can be very
inefficient when the conditional distributions have struc-
ture, such as decision trees or logistic regression models.
Rather than treating each type of CPD separately, we dis-
cuss how to convert any distribution that can be represented
as a log-linear model with conjunctive features.

Suppose the CPD for Xi is a log-linear model:

P (Xi|X−i) =
1

Z(X−i)
exp




�

j

wjfj(Dj)





Note that the normalization Z is now a function of the
evidence variables, X−i. To represent P (Xi|x(i)

−o[i]), we

can condition each fj on x(i)
−o[i] separately:

P (Xi|x(i)
−o[i]) =

1

Z(x(i)
−o[i])

exp




�

j

wjfj(Xi,x
(i)
−o[i])





x(i)
−o[i] uses values from x� for the first i variables in o and

x for the rest. The values from x� are constant but those
in x are free variables, so that the resulting distribution is a
function of x. When simplifying fj(x

(i)
−o[i]), if the constant

values in x(i)
−o[i] violate one of the variable tests in fj , then

fj is always zero and it can be removed entirely. Other-
wise, any conditions satisfied by constant values in x(i)

−o[i]
are always satisfied and can be removed.

Table 1: The Basic DN2MN Algorithm
function DN2MN({Pi(Xi|X−i)},x�, o−1)
M ← ∅
for i = 1 to n do

Convert Pi to a set of weighted features, Fi.
for each weighted feature (w, f) ∈ Fi do

fn ← SIMPLIFYFEATURE(i, f,x�, o−1, true)
fd ← SIMPLIFYFEATURE(i, f,x�, o−1, false)
M = M ∪ (w, fn) ∪ (−w, fd)

end for
end for
return M

For example, suppose P (X2|X1, X4) uses the following
three conjunctive features:

f1(X1, X2, X4) = X1 ∧ ¬X2 ∧X4

f2(X1, X2) = X1 ∧X2

f3(X2, X4) = X2 ∧ ¬X4

If x� = [T, T, T, T ] and o = [1, 2, 3, 4], then x(2) =

[X1, X2, T, T ]. After conditioning f1, f2, and f3 on x(2)
−o[2],

they simplify to:

f1(X1, X2) = X1 ∧ ¬X2

f2(X1, X2) = X1 ∧X2

f3 is removed entirely, since it is inconsistent with x(2)
−o[2].

To compute φ2, we must additionally condition the func-
tion in the denominator on X2 = x�

2 = T . If the weights
of f1 and f2 are w1 and w2, respectively, then:

φ2(X1, X2)

=
P (X2|X1, X4 = T )

P (X2 = T |X1, X4 = T )

=
exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2))/Z(x(2)

−o[2])

exp(w2(X1 ∧X2))/Z(x(2)
−o[2])

= exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2)− w2X1)

Note that the final factor φi is always a log-linear model
where each feature is a subset of one of the features in
the original conditional distribution. Therefore, converting
each conditional distribution in this manner yields an MN
represented as a log-linear model.

We summarize our complete method for consistent DNs
with the algorithms in Tables 1 and 2. DN2MN takes a
set of conditional probability distributions, {Pi(Xi|X−i)},
a base instance x�, and an inverse variable ordering o−1.
The inverse variable ordering is a mapping from variables
to their corresponding indices in the desired ordering o, so
that o−1[o[i]] = i. DN2MN first converts the conditional

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.
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We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:
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Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i] )

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:
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The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T ) = 4/5

P (X1 = T |X2 = F ) = 2/5

P (X2 = T |X1 = T ) = 2/3

P (X2 = T |X1 = F ) = 1/4

Let x� = [T, T ] and o = [1, 2]. Following the earlier
construction:
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Figure 1: Difference in normalized PLL between the original DNs and converted MNs with different orderings and base
instances, divided by largest difference. Results from decision tree DNs are on the left; logistic regression DNs are on the
right. Smaller values indicate better MN performance. Largest difference values are listed above each dataset’s results,
rounded to nearest 1/1000th.

Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.
Tree CPDs LR CPDs

PLL CMLL PLL CMLL
Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN
NLTCS -5.02 -4.93 -5.25 -5.20 -4.96 -4.95 -5.23 -5.23
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 -2.07 -2.11 -2.12
Plants -8.75 -9.17 -10.00 -10.67 -9.39 -9.50 -10.76 -10.91
Audio -38.01 -37.77 -38.25 -38.35 -36.17 -36.11 -36.93 -36.88
Jester -51.42 -50.77 -51.49 -51.42 -49.01 -48.81 -49.83 -49.76
Netflix -54.32 -53.60 -54.62 -54.50 -51.15 -51.10 -52.37 -52.31
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 -8.93
Book -34.60 -35.14 -34.49 -35.44 -33.86 -33.41 -34.75 -34.09
WebKB -149.37 -148.42 -149.99 -151.88 -153.13 -139.39 -158.51 -143.05
Reuters-52 -82.57 -82.67 -82.53 -85.16 -81.44 -77.62 -81.82 -79.60
20 Newsgroups -159.14 -152.84 -156.08 -154.06 -151.53 -147.76 -151.93 -148.82

Table 5: Total running time for learning MNs from DNs. DN2MN method uses 2n orderings and marginals.
Tree CPDs LR CPDs

Dataset LW DN2MN Speedup LW DN2MN Speedup
NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
Plants 67.9s 1.6s 42.7 71.4s 0.17s 427.6
Audio 147.4s 1.8s 80.3 139.3s 0.40s 344.0
Jester 56.6s 1.2s 46.6 311.7s 0.32s 974.1
Netflix 109.8s 2.0s 54.7 534.3s 0.43s 1245.6
MSWeb 452.8s 16.0s 28.3 308.6s 0.65s 472.0
Book 361.6s 1.4s 252.6 224.8s 1.10s 203.5
WebKB 177.5s 1.8s 128.6 386.3s 1.71s 225.9
Reuters-52 798.2s 3.3s 242.7 951.0s 2.66s 357.7
20 Newsgroups 1952.9s 7.6s 257.9 3830.5s 7.61s 503.0
Geom. mean 149.3s 2.5s 59.9 145.4s 0.38s 363.9

  0

  0.2

  0.4

  0.6

  0.8

  1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L 
! 

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.0025 0.0007 0.0003 0.0057 0.0007 0.0032 0.0027 0.0002 0.0014 0.0076 0.0120 0.0299

1

5 6 7 8 9 10 11 12

D
N

 N
PL

L 
! 

M
N

 N
PL

L,
 re

sc
al

ed

Dataset

  !0.2

  0

  0.2

  0.4

  0.6

  0.8

  1

1 2 3 4

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.003 0.001 0.000 0.006 0.001 0.003 0.003 0.000 0.001 0.008 0.012 0.030

1

  0

  0.2

  0.4

  0.6

  0.8

  1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L 
! 

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

Figure 1: Difference in normalized PLL between the original DNs and converted MNs with different orderings and base
instances, divided by largest difference. Results from decision tree DNs are on the left; logistic regression DNs are on the
right. Smaller values indicate better MN performance. Largest difference values are listed above each dataset’s results,
rounded to nearest 1/1000th.

Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.
Tree CPDs LR CPDs

PLL CMLL PLL CMLL
Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN
NLTCS -5.02 -4.93 -5.25 -5.20 -4.96 -4.95 -5.23 -5.23
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 -2.07 -2.11 -2.12
Plants -8.75 -9.17 -10.00 -10.67 -9.39 -9.50 -10.76 -10.91
Audio -38.01 -37.77 -38.25 -38.35 -36.17 -36.11 -36.93 -36.88
Jester -51.42 -50.77 -51.49 -51.42 -49.01 -48.81 -49.83 -49.76
Netflix -54.32 -53.60 -54.62 -54.50 -51.15 -51.10 -52.37 -52.31
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 -8.93
Book -34.60 -35.14 -34.49 -35.44 -33.86 -33.41 -34.75 -34.09
WebKB -149.37 -148.42 -149.99 -151.88 -153.13 -139.39 -158.51 -143.05
Reuters-52 -82.57 -82.67 -82.53 -85.16 -81.44 -77.62 -81.82 -79.60
20 Newsgroups -159.14 -152.84 -156.08 -154.06 -151.53 -147.76 -151.93 -148.82

Table 5: Total running time for learning MNs from DNs. DN2MN method uses 2n orderings and marginals.
Tree CPDs LR CPDs

Dataset LW DN2MN Speedup LW DN2MN Speedup
NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
Plants 67.9s 1.6s 42.7 71.4s 0.17s 427.6
Audio 147.4s 1.8s 80.3 139.3s 0.40s 344.0
Jester 56.6s 1.2s 46.6 311.7s 0.32s 974.1
Netflix 109.8s 2.0s 54.7 534.3s 0.43s 1245.6
MSWeb 452.8s 16.0s 28.3 308.6s 0.65s 472.0
Book 361.6s 1.4s 252.6 224.8s 1.10s 203.5
WebKB 177.5s 1.8s 128.6 386.3s 1.71s 225.9
Reuters-52 798.2s 3.3s 242.7 951.0s 2.66s 357.7
20 Newsgroups 1952.9s 7.6s 257.9 3830.5s 7.61s 503.0
Geom. mean 149.3s 2.5s 59.9 145.4s 0.38s 363.9
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NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
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•  DN2MN	
  performs	
  exact	
  conversion	
  of	
  consistent	
  DNs,	
  and	
  very	
  
accurate	
  conversion	
  of	
  inconsistent	
  DNs	
  learned	
  from	
  data.	
  

•  Combines	
  with	
  any	
  DN	
  learner	
  to	
  produce	
  some	
  of	
  the	
  fastest	
  and	
  
most	
  accurate	
  methods	
  for	
  learning	
  an	
  MN.	
  

•  With	
  decision	
  trees,	
  DN2MN	
  is	
  oken	
  more	
  accurate	
  than	
  the	
  DN.	
  
•  With	
  logis=c	
  regression	
  CPDs,	
  DN2MN	
  is	
  oken	
  more	
  accurate	
  than	
  
weight	
  learning.	
  

Source	
  code:	
  hGp://libra.cs.uoregon.edu	
  

Conclusion	
  

Methods	
  

Results	
  
1.   Averaging	
  helps	
  a	
  lot!	
  Typically	
  reduces	
  the	
  difference	
  between	
  

MN	
  and	
  DN	
  PLL	
  by	
  >90%	
  with	
  DT	
  CPDs	
  and	
  >50%	
  with	
  LR	
  CPDs.	
  
2.  With	
  DT	
  CPDs,	
  DN2MN	
  has	
  similar	
  accuracy	
  to	
  weight	
  learning	
  

and	
  is	
  60	
  1mes	
  faster.	
  
3.  With	
  LR	
  CPDs,	
  DN2MN	
  is	
  more	
  accurate	
  and	
  360	
  1mes	
  faster.	
  

•  We	
  learned	
  DNs	
  with	
  decision	
  tree	
  (DT)	
  or	
  logis=c	
  regression	
  (LR)	
  
CPDs	
  on	
  12	
  standard	
  datasets.	
  

•  We	
  converted	
  each	
  DN	
  to	
  an	
  MN	
  in	
  two	
  ways:	
  
– DN2MN	
  with	
  several	
  different	
  averaging	
  strategies	
  
– Maximum	
  pseudo-­‐likelihood	
  weight	
  learning	
  
(Used	
  by	
  [Lowd	
  &	
  Davis,	
  2010]	
  and	
  [Ravikumar	
  et	
  al.,	
  2009]	
  to	
  learn	
  MNs.)	
  

•  We	
  computed	
  pseudo-­‐log-­‐likelihood	
  (PLL)	
  and	
  condi=onal	
  marginal	
  
log-­‐likelihood	
  (CMLL)	
  on	
  held	
  out	
  test	
  data.	
  	
  Marginals	
  for	
  CMLL	
  
were	
  computed	
  via	
  Gibbs	
  sampling.	
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than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i] )

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P1(X1 = T |X2 = T ) = 4/5

P1(X1 = F |X2 = T ) = 1/5

P1(X1 = T |X2 = F ) = 2/5

P1(X1 = F |X2 = F ) = 3/5

P2(X2 = T |X1 = T ) = 2/3

P2(X2 = F |X1 = T ) = 1/3

P2(X2 = T |X1 = F ) = 1/4

P2(X2 = F |X1 = F ) = 3/4

Let x� = [T, T ] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T )

P (X2 = T |X1 = T )
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