
Closed-Form Learning of Markov Networks from Dependency Networks
Daniel	
 Lowd,	
 University	
 of	
 Oregon	

<lowd@cs.uoregon.edu>	

Introduc=on	

MNs	
 and	
 DNs	

Compu=ng	
 Rela=ve	
 Probabili=es	
 Experiments	

Inconsistent	
 DNs	

If	
 we	
 can	
 compute	
 the	
 rela=ve	
 probability	
 of	
 any	
 two	
 instances	
 x	
 and	

x’,	
 then	
 we	
 can	
 define	
 a	
 probability	
 distribu=on	
 as	
 follows:	

If	
 we	
 can	
 represent	
 f(x)	
 as	
 a	
 product	
 of	
 factors,	
 then	
 we	
 have	
 a	

Markov	
 network.	

Since	
 we’re	
 conver=ng	
 from	
 a	
 DN,	
 we	
 must	
 express	
 these	
 factors	
 in	

terms	
 of	
 the	
 condi=onal	
 distribu=ons,	
 P(Xi|X-i).	

f(x) =
P (x)
P (x�)

P (x) =
1�

x f(x)
f(x) =

1
Z

f(x)

(x’	
 is	
 an	
 arbitrarily	
 chosen	
 but	
 fixed	
 state.)	

Suppose	
 x	
 and	
 x’	
 only	
 differ	
 in	
 the	
 ith	
 variable:	

If	
 x	
 and	
 x’	
 differ	
 in	
 many	
 variables,	
 construct	
 a	
 sequence	
 of	

intermediate	
 states,	
 x(0)	
 through	
 x(n),	
 each	
 differing	
 in	
 one	
 variable:	
 than training one from scratch. Furthermore, it only applies

to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T) = 4/5

P (X1 = T |X2 = F) = 2/5

P (X2 = T |X1 = T) = 2/3

P (X2 = T |X1 = F) = 1/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · ·× P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · ·× P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T) = 4/5

P (X1 = T |X2 = F) = 2/5

P (X2 = T |X1 = T) = 2/3

P (X2 = T |X1 = F) = 1/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base

Markov	
 networks	
 (MNs)	
 have	
 good	
 seman=cs	
 but	
 are	
 hard	
 to	
 learn	
 	

and	
 awkward	
 to	
 specify	
 by	
 hand.	

Dependency	
 networks	
 (DNs)	
 are	
 easy	
 to	
 learn,	
 but	
 have	
 annoying	

seman=cs	
 based	
 on	
 Gibbs	
 sampling.	

Best	
 of	
 both	
 worlds:	
 Learn	
 a	
 DN	
 and	
 convert	
 it	
 into	
 an	
 equivalent	
 MN	

before	
 running	
 inference.	
 	

We	
 present	
 the	
 first	
 ever	
 method	
 for	
 conver1ng	
 a	
 DN	
 to	
 an	
 MN.	

Our	
 solu=on	
 is:	

•  Flexible	
 –	
 Works	
 with	
 any	
 kind	
 of	
 condi=onal	
 distribu=on.	

•  Accurate	
 –	
 Exact	
 for	
 consistent	
 DNs,	
 very	
 effec=ve	
 on	
 general	
 DNs.	

•  Efficient	
 –	
 Linear	
 =me.	

Dependency	
 network	
 (DN):	
 	

Set	
 of	
 condi=onal	
 probability	
 distribu=ons	
 (CPDs)	

	
 	
 e.g.,	

Seman=cs:	
 Probabili=es	
 are	
 given	
 by	
 the	
 sta=onary	
 distribu=on	
 of	

a	
 Gibbs	
 sampler,	
 which	
 may	
 depend	
 on	
 variable	
 order.	

Learning:	
 Train	
 a	
 probabilis=c	
 classifier	
 (decision	
 tree,	
 logis=c	

regression,	
 etc.)	
 to	
 predict	
 each	
 variable.	

A	
 DN	
 is	
 consistent	
 if	
 its	
 CPDs	
 are	
 consistent	
 with	
 some	
 probability	

distribu=on.	
 	
 When	
 learned	
 from	
 data,	
 this	
 is	
 rarely	
 the	
 case.	

Markov	
 network	
 (MN):	
 	

Normalized	
 product	
 of	
 factors	

	
 	
 e.g.,	

Consistent	
 seman=cs	
 and	
 many	
 inference	
 algorithms,	

but	
 weight	
 learning	
 requires	
 itera=ve	
 op=miza=on,	
 even	
 for	

pseudo-­‐likelihood.	

€

{P1(X1 | X3),P2(X2 | X1,X3),P3(X3 | X1,X2)}

€

P(X1,X2,X3) =
1
Z
φ1(X1,X2)φ2(X2,X3)φ3(X1,X3)

Defining	
 a	
 Distribu=on	

Example	

Thus,	
 the	
 resul1ng	
 MN	
 has	
 one	
 factor	
 for	
 each	
 variable	
 Xi,	
 which	

computes	
 the	
 condi1onal	
 probability	
 of	
 that	
 variable’s	
 value	

rela1ve	
 to	
 its	
 base	
 value.	
 	
 All	
 variables	
 that	
 come	
 before	
 Xi	
 in	

the	
 ordering	
 are	
 fixed	
 to	
 their	
 base	
 values	
 in	
 this	
 computa1on.	

Using	
 base	
 instance	
 x’= [T,T]	
 and	
 order	
 [1,2],	
 we	
 obtain	
 two	
 factors:	

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T) = 4/5

P (X1 = T |X2 = F) = 2/5

P (X2 = T |X1 = T) = 2/3

P (X2 = T |X1 = F) = 1/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base

instance, x�. In general, the ith converted factor φi is not a
function of the first i − 1 variables, since they are fixed to
values in x�.

By simplifying the factors, we obtain the following:

X1 X2 φ1(X1, X2)
T T 1
T F 1
F T 1/4
F F 3/2

X2 φ2(X2)
T 1
F 1/2

Multiplying the factors together and renormalizing yields:

X1 X2 P (X1, X2)
T T 0.4
T F 0.2
F T 0.1
F F 0.3

which matches both conditional distributions. Therefore,
an MN with the factors φ1 and φ2 represents the exact
same distribution as a DN with the conditional distributions
P (X1|X2) and P (X2|X1). Since the original DN is con-
sistent, any choice of x� or o will lead to the same result.

4.2 LOG-LINEAR MODELS WITH
CONJUNCTIVE FEATURES

In the previous example, we showed how to convert a DN
to an MN using tables as factors. However, this can be very
inefficient when the conditional distributions have struc-
ture, such as decision trees or logistic regression models.
Rather than treating each type of CPD separately, we dis-
cuss how to convert any distribution that can be represented
as a log-linear model with conjunctive features.

Suppose the CPD for Xi is a log-linear model:

P (Xi|X−i) =
1

Z(X−i)
exp




�

j

wjfj(Dj)





Note that the normalization Z is now a function of the
evidence variables, X−i. To represent P (Xi|x(i)

−o[i]), we

can condition each fj on x(i)
−o[i] separately:

P (Xi|x(i)
−o[i]) =

1

Z(x(i)
−o[i])

exp




�

j

wjfj(Xi,x
(i)
−o[i])





x(i)
−o[i] uses values from x� for the first i variables in o and

x for the rest. The values from x� are constant but those
in x are free variables, so that the resulting distribution is a
function of x. When simplifying fj(x

(i)
−o[i]), if the constant

values in x(i)
−o[i] violate one of the variable tests in fj , then

fj is always zero and it can be removed entirely. Other-
wise, any conditions satisfied by constant values in x(i)

−o[i]
are always satisfied and can be removed.

Table 1: The Basic DN2MN Algorithm
function DN2MN({Pi(Xi|X−i)},x�, o−1)
M ← ∅
for i = 1 to n do

Convert Pi to a set of weighted features, Fi.
for each weighted feature (w, f) ∈ Fi do

fn ← SIMPLIFYFEATURE(i, f,x�, o−1, true)
fd ← SIMPLIFYFEATURE(i, f,x�, o−1, false)
M = M ∪ (w, fn) ∪ (−w, fd)

end for
end for
return M

For example, suppose P (X2|X1, X4) uses the following
three conjunctive features:

f1(X1, X2, X4) = X1 ∧ ¬X2 ∧X4

f2(X1, X2) = X1 ∧X2

f3(X2, X4) = X2 ∧ ¬X4

If x� = [T, T, T, T] and o = [1, 2, 3, 4], then x(2) =

[X1, X2, T, T]. After conditioning f1, f2, and f3 on x(2)
−o[2],

they simplify to:

f1(X1, X2) = X1 ∧ ¬X2

f2(X1, X2) = X1 ∧X2

f3 is removed entirely, since it is inconsistent with x(2)
−o[2].

To compute φ2, we must additionally condition the func-
tion in the denominator on X2 = x�

2 = T . If the weights
of f1 and f2 are w1 and w2, respectively, then:

φ2(X1, X2)

=
P (X2|X1, X4 = T)

P (X2 = T |X1, X4 = T)

=
exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2))/Z(x(2)

−o[2])

exp(w2(X1 ∧X2))/Z(x(2)
−o[2])

= exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2)− w2X1)

Note that the final factor φi is always a log-linear model
where each feature is a subset of one of the features in
the original conditional distribution. Therefore, converting
each conditional distribution in this manner yields an MN
represented as a log-linear model.

We summarize our complete method for consistent DNs
with the algorithms in Tables 1 and 2. DN2MN takes a
set of conditional probability distributions, {Pi(Xi|X−i)},
a base instance x�, and an inverse variable ordering o−1.
The inverse variable ordering is a mapping from variables
to their corresponding indices in the desired ordering o, so
that o−1[o[i]] = i. DN2MN first converts the conditional

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T) = 4/5

P (X1 = T |X2 = F) = 2/5

P (X2 = T |X1 = T) = 2/3

P (X2 = T |X1 = F) = 1/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�) =
P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x
(0)

= x

x
(i)

= (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�) =
P (x(0))

P (x(n))

=
P (x(0))

P (x(n)) ×
P (x(1))

P (x(1)) × · · · ×
P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1)) ×
P (x(1))

P (x(2)) × · · · ×
P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i)) =
n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�) P (x)

P (x�) = P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T) = 4/5

P (X1 = T |X2 = F) = 2/5

P (X2 = T |X1 = T) = 2/3

P (X2 = T |X1 = F) = 1/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x

(1)
−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x

(2)
−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

Note that φ2 is not a function of x1. This is because x
(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the baseinstance, x�. In general, the ith converted factor φi is not a

function of the first i − 1 variables, since they are fixed to
values in x�.

By simplifying the factors, we obtain the following:

X1 X2 φ1(X1, X2)
T T 1
T F 1
F T 1/4
F F 3/2

X2 φ2(X2)
T 1
F 1/2

Multiplying the factors together and renormalizing yields:

X1 X2 P (X1, X2)
T T 0.4
T F 0.2
F T 0.1
F F 0.3

which matches both conditional distributions. Therefore,
an MN with the factors φ1 and φ2 represents the exact
same distribution as a DN with the conditional distributions
P (X1|X2) and P (X2|X1). Since the original DN is con-
sistent, any choice of x� or o will lead to the same result.

4.2 LOG-LINEAR MODELS WITH
CONJUNCTIVE FEATURES

In the previous example, we showed how to convert a DN
to an MN using tables as factors. However, this can be very
inefficient when the conditional distributions have struc-
ture, such as decision trees or logistic regression models.
Rather than treating each type of CPD separately, we dis-
cuss how to convert any distribution that can be represented
as a log-linear model with conjunctive features.

Suppose the CPD for Xi is a log-linear model:

P (Xi|X−i) =
1

Z(X−i)
exp




�

j

wjfj(Dj)





Note that the normalization Z is now a function of the
evidence variables, X−i. To represent P (Xi|x(i)

−o[i]), we

can condition each fj on x(i)
−o[i] separately:

P (Xi|x(i)
−o[i]) =

1

Z(x(i)
−o[i])

exp




�

j

wjfj(Xi,x
(i)
−o[i])





x(i)
−o[i] uses values from x� for the first i variables in o and

x for the rest. The values from x� are constant but those
in x are free variables, so that the resulting distribution is a
function of x. When simplifying fj(x

(i)
−o[i]), if the constant

values in x(i)
−o[i] violate one of the variable tests in fj , then

fj is always zero and it can be removed entirely. Other-
wise, any conditions satisfied by constant values in x(i)

−o[i]
are always satisfied and can be removed.

Table 1: The Basic DN2MN Algorithm
function DN2MN({Pi(Xi|X−i)},x�, o−1)
M ← ∅
for i = 1 to n do

Convert Pi to a set of weighted features, Fi.
for each weighted feature (w, f) ∈ Fi do

fn ← SIMPLIFYFEATURE(i, f,x�, o−1, true)
fd ← SIMPLIFYFEATURE(i, f,x�, o−1, false)
M = M ∪ (w, fn) ∪ (−w, fd)

end for
end for
return M

For example, suppose P (X2|X1, X4) uses the following
three conjunctive features:

f1(X1, X2, X4) = X1 ∧ ¬X2 ∧X4

f2(X1, X2) = X1 ∧X2

f3(X2, X4) = X2 ∧ ¬X4

If x� = [T, T, T, T] and o = [1, 2, 3, 4], then x(2) =

[X1, X2, T, T]. After conditioning f1, f2, and f3 on x(2)
−o[2],

they simplify to:

f1(X1, X2) = X1 ∧ ¬X2

f2(X1, X2) = X1 ∧X2

f3 is removed entirely, since it is inconsistent with x(2)
−o[2].

To compute φ2, we must additionally condition the func-
tion in the denominator on X2 = x�

2 = T . If the weights
of f1 and f2 are w1 and w2, respectively, then:

φ2(X1, X2)

=
P (X2|X1, X4 = T)

P (X2 = T |X1, X4 = T)

=
exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2))/Z(x(2)

−o[2])

exp(w2(X1 ∧X2))/Z(x(2)
−o[2])

= exp(w1(X1 ∧ ¬X2) + w2(X1 ∧X2)− w2X1)

Note that the final factor φi is always a log-linear model
where each feature is a subset of one of the features in
the original conditional distribution. Therefore, converting
each conditional distribution in this manner yields an MN
represented as a log-linear model.

We summarize our complete method for consistent DNs
with the algorithms in Tables 1 and 2. DN2MN takes a
set of conditional probability distributions, {Pi(Xi|X−i)},
a base instance x�, and an inverse variable ordering o−1.
The inverse variable ordering is a mapping from variables
to their corresponding indices in the desired ordering o, so
that o−1[o[i]] = i. DN2MN first converts the conditional

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · ·× P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · ·× P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P (X1 = T |X2 = T) = 4/5

P (X1 = T |X2 = F) = 2/5

P (X2 = T |X1 = T) = 2/3

P (X2 = T |X1 = F) = 1/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

Note that φ2 is not a function of x1. This is because x(2)
1 =

x�
1, so the value of X1 in the evidence is defined by the base

Suppose	
 we	
 have	
 the	
 following	
 two	
 CPDs:	

Problem:	
 For	
 inconsistent	
 DNs,	
 the	
 conversion	
 may	
 depend	
 on	
 the	

variable	
 ordering	
 and	
 the	
 base	
 instance	
 x’.	

Solu1on:	
 Average	
 over	
 mul=ple	
 orders	
 and	
 base	
 instances.	

• We	
 can	
 average	
 over	
 all	
 base	
 instances,	
 weighted	
 by	
 the	
 marginal	

distribu=on	
 in	
 the	
 data.	
 	
 No	
 increase	
 in	
 asympto=c	
 running	
 =me!	

• We	
 can	
 average	
 over	
 all	
 rota=ons	
 of	
 an	
 ordering.	
 	
 Increases	
 running	

=me	
 by	
 factor	
 of	
 m,	
 where	
 m	
 is	
 max	
 number	
 of	
 parents.	

See	
 the	
 paper	
 for	
 details!	

Vars	

1.	
 NLTCS	
 16	

2.	
 MSNBC	
 17	

3.	
 KDD	
 Cup	
 64	

4.	
 Plants	
 69	

5.	
 Audio	
 100	

6.	
 Jester	
 100	

7.	
 Neilix	
 100	

8.	
 MSWeb	
 294	

9.	
 Book	
 500	

10.	
 WebKB	
 839	

11.	
 Reuters-­‐52	
 889	

12.	
 20	
 Newsgroups	
 910	

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.0025 0.0007 0.0003 0.0057 0.0007 0.0032 0.0027 0.0002 0.0014 0.0076 0.0120 0.0299

1

5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L,
 re

sc
al

ed

Dataset

 !0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.003 0.001 0.000 0.006 0.001 0.003 0.003 0.000 0.001 0.008 0.012 0.030

1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

Figure 1: Difference in normalized PLL between the original DNs and converted MNs with different orderings and base
instances, divided by largest difference. Results from decision tree DNs are on the left; logistic regression DNs are on the
right. Smaller values indicate better MN performance. Largest difference values are listed above each dataset’s results,
rounded to nearest 1/1000th.

Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.
Tree CPDs LR CPDs

PLL CMLL PLL CMLL
Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN
NLTCS -5.02 -4.93 -5.25 -5.20 -4.96 -4.95 -5.23 -5.23
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 -2.07 -2.11 -2.12
Plants -8.75 -9.17 -10.00 -10.67 -9.39 -9.50 -10.76 -10.91
Audio -38.01 -37.77 -38.25 -38.35 -36.17 -36.11 -36.93 -36.88
Jester -51.42 -50.77 -51.49 -51.42 -49.01 -48.81 -49.83 -49.76
Netflix -54.32 -53.60 -54.62 -54.50 -51.15 -51.10 -52.37 -52.31
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 -8.93
Book -34.60 -35.14 -34.49 -35.44 -33.86 -33.41 -34.75 -34.09
WebKB -149.37 -148.42 -149.99 -151.88 -153.13 -139.39 -158.51 -143.05
Reuters-52 -82.57 -82.67 -82.53 -85.16 -81.44 -77.62 -81.82 -79.60
20 Newsgroups -159.14 -152.84 -156.08 -154.06 -151.53 -147.76 -151.93 -148.82

Table 5: Total running time for learning MNs from DNs. DN2MN method uses 2n orderings and marginals.
Tree CPDs LR CPDs

Dataset LW DN2MN Speedup LW DN2MN Speedup
NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
Plants 67.9s 1.6s 42.7 71.4s 0.17s 427.6
Audio 147.4s 1.8s 80.3 139.3s 0.40s 344.0
Jester 56.6s 1.2s 46.6 311.7s 0.32s 974.1
Netflix 109.8s 2.0s 54.7 534.3s 0.43s 1245.6
MSWeb 452.8s 16.0s 28.3 308.6s 0.65s 472.0
Book 361.6s 1.4s 252.6 224.8s 1.10s 203.5
WebKB 177.5s 1.8s 128.6 386.3s 1.71s 225.9
Reuters-52 798.2s 3.3s 242.7 951.0s 2.66s 357.7
20 Newsgroups 1952.9s 7.6s 257.9 3830.5s 7.61s 503.0
Geom. mean 149.3s 2.5s 59.9 145.4s 0.38s 363.9

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.0025 0.0007 0.0003 0.0057 0.0007 0.0032 0.0027 0.0002 0.0014 0.0076 0.0120 0.0299

1

5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L,
 re

sc
al

ed

Dataset

 !0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.003 0.001 0.000 0.006 0.001 0.003 0.003 0.000 0.001 0.008 0.012 0.030

1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

Figure 1: Difference in normalized PLL between the original DNs and converted MNs with different orderings and base
instances, divided by largest difference. Results from decision tree DNs are on the left; logistic regression DNs are on the
right. Smaller values indicate better MN performance. Largest difference values are listed above each dataset’s results,
rounded to nearest 1/1000th.

Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.
Tree CPDs LR CPDs

PLL CMLL PLL CMLL
Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN
NLTCS -5.02 -4.93 -5.25 -5.20 -4.96 -4.95 -5.23 -5.23
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 -2.07 -2.11 -2.12
Plants -8.75 -9.17 -10.00 -10.67 -9.39 -9.50 -10.76 -10.91
Audio -38.01 -37.77 -38.25 -38.35 -36.17 -36.11 -36.93 -36.88
Jester -51.42 -50.77 -51.49 -51.42 -49.01 -48.81 -49.83 -49.76
Netflix -54.32 -53.60 -54.62 -54.50 -51.15 -51.10 -52.37 -52.31
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 -8.93
Book -34.60 -35.14 -34.49 -35.44 -33.86 -33.41 -34.75 -34.09
WebKB -149.37 -148.42 -149.99 -151.88 -153.13 -139.39 -158.51 -143.05
Reuters-52 -82.57 -82.67 -82.53 -85.16 -81.44 -77.62 -81.82 -79.60
20 Newsgroups -159.14 -152.84 -156.08 -154.06 -151.53 -147.76 -151.93 -148.82

Table 5: Total running time for learning MNs from DNs. DN2MN method uses 2n orderings and marginals.
Tree CPDs LR CPDs

Dataset LW DN2MN Speedup LW DN2MN Speedup
NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
Plants 67.9s 1.6s 42.7 71.4s 0.17s 427.6
Audio 147.4s 1.8s 80.3 139.3s 0.40s 344.0
Jester 56.6s 1.2s 46.6 311.7s 0.32s 974.1
Netflix 109.8s 2.0s 54.7 534.3s 0.43s 1245.6
MSWeb 452.8s 16.0s 28.3 308.6s 0.65s 472.0
Book 361.6s 1.4s 252.6 224.8s 1.10s 203.5
WebKB 177.5s 1.8s 128.6 386.3s 1.71s 225.9
Reuters-52 798.2s 3.3s 242.7 951.0s 2.66s 357.7
20 Newsgroups 1952.9s 7.6s 257.9 3830.5s 7.61s 503.0
Geom. mean 149.3s 2.5s 59.9 145.4s 0.38s 363.9

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.0025 0.0007 0.0003 0.0057 0.0007 0.0032 0.0027 0.0002 0.0014 0.0076 0.0120 0.0299

1

5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L,
 re

sc
al

ed

Dataset

 !0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

0.063 0.019 0.001 0.071 0.049 0.074 0.063 0.005 0.005 0.039 0.038 0.109

0.003 0.001 0.000 0.006 0.001 0.003 0.003 0.000 0.001 0.008 0.012 0.030

1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11 12

D
N

 N
PL

L
!

M
N

 N
PL

L

Dataset

1 order, fixed base
2 orders, fixed base
1 order, marginals
2 orders, marginals
n orders, marginals
2n orders, marginals

Figure 1: Difference in normalized PLL between the original DNs and converted MNs with different orderings and base
instances, divided by largest difference. Results from decision tree DNs are on the left; logistic regression DNs are on the
right. Smaller values indicate better MN performance. Largest difference values are listed above each dataset’s results,
rounded to nearest 1/1000th.

Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.
Tree CPDs LR CPDs

PLL CMLL PLL CMLL
Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN
NLTCS -5.02 -4.93 -5.25 -5.20 -4.96 -4.95 -5.23 -5.23
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 -2.07 -2.11 -2.12
Plants -8.75 -9.17 -10.00 -10.67 -9.39 -9.50 -10.76 -10.91
Audio -38.01 -37.77 -38.25 -38.35 -36.17 -36.11 -36.93 -36.88
Jester -51.42 -50.77 -51.49 -51.42 -49.01 -48.81 -49.83 -49.76
Netflix -54.32 -53.60 -54.62 -54.50 -51.15 -51.10 -52.37 -52.31
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 -8.93
Book -34.60 -35.14 -34.49 -35.44 -33.86 -33.41 -34.75 -34.09
WebKB -149.37 -148.42 -149.99 -151.88 -153.13 -139.39 -158.51 -143.05
Reuters-52 -82.57 -82.67 -82.53 -85.16 -81.44 -77.62 -81.82 -79.60
20 Newsgroups -159.14 -152.84 -156.08 -154.06 -151.53 -147.76 -151.93 -148.82

Table 5: Total running time for learning MNs from DNs. DN2MN method uses 2n orderings and marginals.
Tree CPDs LR CPDs

Dataset LW DN2MN Speedup LW DN2MN Speedup
NLTCS 4.9s 0.3s 17.3 2.3s 0.01s 162.4
MSNBC 73.3s 9.4s 7.8 7.6s 0.04s 189.6
KDDCup 2000 121.3s 3.8s 31.5 32.0s 0.12s 251.7
Plants 67.9s 1.6s 42.7 71.4s 0.17s 427.6
Audio 147.4s 1.8s 80.3 139.3s 0.40s 344.0
Jester 56.6s 1.2s 46.6 311.7s 0.32s 974.1
Netflix 109.8s 2.0s 54.7 534.3s 0.43s 1245.6
MSWeb 452.8s 16.0s 28.3 308.6s 0.65s 472.0
Book 361.6s 1.4s 252.6 224.8s 1.10s 203.5
WebKB 177.5s 1.8s 128.6 386.3s 1.71s 225.9
Reuters-52 798.2s 3.3s 242.7 951.0s 2.66s 357.7
20 Newsgroups 1952.9s 7.6s 257.9 3830.5s 7.61s 503.0
Geom. mean 149.3s 2.5s 59.9 145.4s 0.38s 363.9

•  DN2MN	
 performs	
 exact	
 conversion	
 of	
 consistent	
 DNs,	
 and	
 very	

accurate	
 conversion	
 of	
 inconsistent	
 DNs	
 learned	
 from	
 data.	

•  Combines	
 with	
 any	
 DN	
 learner	
 to	
 produce	
 some	
 of	
 the	
 fastest	
 and	

most	
 accurate	
 methods	
 for	
 learning	
 an	
 MN.	

•  With	
 decision	
 trees,	
 DN2MN	
 is	
 oken	
 more	
 accurate	
 than	
 the	
 DN.	

•  With	
 logis=c	
 regression	
 CPDs,	
 DN2MN	
 is	
 oken	
 more	
 accurate	
 than	

weight	
 learning.	

Source	
 code:	
 hGp://libra.cs.uoregon.edu	

Conclusion	

Methods	

Results	

1.   Averaging	
 helps	
 a	
 lot!	
 Typically	
 reduces	
 the	
 difference	
 between	

MN	
 and	
 DN	
 PLL	
 by	
 >90%	
 with	
 DT	
 CPDs	
 and	
 >50%	
 with	
 LR	
 CPDs.	

2.  With	
 DT	
 CPDs,	
 DN2MN	
 has	
 similar	
 accuracy	
 to	
 weight	
 learning	

and	
 is	
 60	
 1mes	
 faster.	

3.  With	
 LR	
 CPDs,	
 DN2MN	
 is	
 more	
 accurate	
 and	
 360	
 1mes	
 faster.	

•  We	
 learned	
 DNs	
 with	
 decision	
 tree	
 (DT)	
 or	
 logis=c	
 regression	
 (LR)	

CPDs	
 on	
 12	
 standard	
 datasets.	

•  We	
 converted	
 each	
 DN	
 to	
 an	
 MN	
 in	
 two	
 ways:	

– DN2MN	
 with	
 several	
 different	
 averaging	
 strategies	

– Maximum	
 pseudo-­‐likelihood	
 weight	
 learning	

(Used	
 by	
 [Lowd	
 &	
 Davis,	
 2010]	
 and	
 [Ravikumar	
 et	
 al.,	
 2009]	
 to	
 learn	
 MNs.)	

•  We	
 computed	
 pseudo-­‐log-­‐likelihood	
 (PLL)	
 and	
 condi=onal	
 marginal	

log-­‐likelihood	
 (CMLL)	
 on	
 held	
 out	
 test	
 data.	
 	
 Marginals	
 for	
 CMLL	

were	
 computed	
 via	
 Gibbs	
 sampling.	

References:	

1. Heckerman,	
 D.,	
 Chickering,	
 D.	
 M.,	
 Meek,	
 C.,	
 Rounthwaite,	
 R.,	
 &	
 Kadie,	
 C.	
 (2000).	
 Dependency	
 networks	
 for	
 inference,	
 collabora=ve	
 filtering,	
 and	
 data	

visualiza=on.	
 JMLR,	
 1,	
 49-­‐75.	

2. Lowd,	
 D.,	
 &	
 Davis,	
 J.	
 (2010).	
 Learning	
 Markov	
 network	
 structure	
 with	
 decision	
 trees.	
 ICDM	
 2010.	
 Sydney,	
 Australia:	
 IEEE	
 Computer	
 Society	
 Press.	

3. Ravikumar,	
 P.,	
 Wainwright,	
 M.	
 J.,	
 &	
 Lafferty,	
 J.	
 (2009).	
 High-­‐dimensional	
 ising	
 model	
 selec=on	
 using	
 L1-­‐regularized	
 logis=c	
 regression.	
 Annals	
 of	
 Sta>s>cs.	

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · · × P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · · × P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P1(X1 = T |X2 = T) = 4/5

P1(X1 = F |X2 = T) = 1/5

P1(X1 = T |X2 = F) = 2/5

P1(X1 = F |X2 = F) = 3/5

P2(X2 = T |X1 = T) = 2/3

P2(X2 = F |X1 = T) = 1/3

P2(X2 = T |X1 = F) = 1/4

P2(X2 = F |X1 = F) = 3/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

than training one from scratch. Furthermore, it only applies
to DNs with tree CPDs.

4 CONVERTING CONSISTENT

DEPENDENCY NETWORKS

We now discuss how to construct a joint distribution from a
set of positive conditional distributions. To begin with, we
assume that the conditional distributions, P (Xi|X−i), are
the conditionals of some unknown joint probability distri-
bution P . Later, we will relax this assumption and discuss
how to find the most effective approximation.

Consider two instances, x and x�, that only differ in the
state of one variable, Xj . In other words, xi = x�

i for all
i �= j, so x−j = x�

−j . We can express the ratio of their
probabilities as follows:

P (x)

P (x�)
=

P (xj ,x−j)

P (x�
j ,x−j)

=
P (xj |x−j)P (x−j)

P (x�
j |x−j)P (x−j)

=
P (xj |x−j)

P (x�
j |x−j)

(3)

Note that the final expression only involves a conditional
distribution, P (Xj |X−j), not the full joint. The condi-
tional distribution must be positive in order to avoid divi-
sion by zero.

If x and x� differ in multiple variables, then we can express
their probability ratio as the product of multiple single-
variable transitions. We construct a sequence of instances
{x(0),x(1), . . . ,x(n)}, each instance differing in at most
one variable from the previous instance in the sequence.
Let order o ∈ Sn be a permutation of the numbers 1 to n
and let o[i] refer to the ith number in the order. We define
x(i) inductively:

x(0) = x

x(i) = (x�
o[i],x

(i−1)
−o[i])

In other words, the ith instance x(i) simply changes the
o[i]th variable from xo[i] to x�

o[i] and is otherwise identical
to the previous element, x(i−1). Thus, in x(i) the first i
variables in the order are set to their values in x� and the
latter n− i are set to their values in x. Note that x(n) = x�,
since all n variables have been changed to their values in
x�.

We can use these intermediate instances to express the ratio

P (x)/P (x�) as a product:

P (x)

P (x�)
=

P (x(0))

P (x(n))

=
P (x(0))

P (x(n))
× P (x(1))

P (x(1))
× · · ·× P (x(n−1))

P (x(n−1))

=
P (x(0))

P (x(1))
× P (x(1))

P (x(2))
× · · ·× P (x(n−1))

P (x(n))

=
n�

i=1

P (x(i−1))

P (x(i))
=

n�

i=1

P (xo[i]|x
(i)
−o[i])

P (x�
o[i]|x

(i)
−o[i])

(4)

The last equality follows from substituting (3), since x(i−1)

and x(i) only differ in the o[i]th variable, Xo[i].

Letting φi(X = x) = P (xo[i]|x
(i)
−o[i])/P (x�

o[i]|x
(i)
−o[i]) and

Z = 1/P (x�):

1

Z

�

i

φi(x) = P (x�)
P (x)

P (x�)
= P (x)

Therefore, a Markov network with the factors {φi} exactly
represents the probability distribution P (X). Since the fac-
tors are defined only in terms of conditional distributions
of one variable given evidence, any consistent dependency
network can be converted to a Markov network represent-
ing the exact same distribution. This holds for any ordering
o and base instance x�.

Note that, unlike x�, x is not a fixed vector of values but
can be set to be any instance in the state space. This is nec-
essary for φi to be a function x. The following subsection
will make this clearer with an example.

4.1 EXAMPLE

We now show how this idea can be applied to a simple,
consistent DN. Consider the following conditional distri-
butions over binary variables X1 and X2:

P1(X1 = T |X2 = T) = 4/5

P1(X1 = F |X2 = T) = 1/5

P1(X1 = T |X2 = F) = 2/5

P1(X1 = F |X2 = F) = 3/5

P2(X2 = T |X1 = T) = 2/3

P2(X2 = F |X1 = T) = 1/3

P2(X2 = T |X1 = F) = 1/4

P2(X2 = F |X1 = F) = 3/4

Let x� = [T, T] and o = [1, 2]. Following the earlier
construction:

φ1(x1, x2) =
P (x1|x(1)

−1)

P (x�
1|x

(1)
−1)

=
P (x1|x2)

P (X1 = T |x2)

φ2(x2) =
P (x2|x(2)

−2)

P (x�
2|x

(2)
−2)

=
P (x2|X1 = T)

P (X2 = T |X1 = T)

