Closed-Form Learning of Markov Networks from Dependency Networks

Daniel Lowd, University of Oregon
<lowd@cs.uoregon.edu>

Introduction

Markov networks (MNs) have good semantics but are hard to learn
and awkward to specify by hand.

Dependency networks (DNs) are easy to learn, but have annoying
semantics based on Gibbs sampling.

Best of both worlds: Learn a DN and convert it into an equivalent MN
before running inference.

We present the first ever method for converting a DN to an MN.
Our solution is:

e Flexible — Works with any kind of conditional distribution.

e Accurate — Exact for consistent DNs, very effective on general DNs.
e Efficient — Linear time.

MNs and DNs

Dependency network (DN):
Set of conditional probability distributions (CPDs)
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Semantics: Probabilities are given by the stationary distribution of
a Gibbs sampler, which may depend on variable order.

Learning: Train a probabilistic classifier (decision tree, logistic
regression, etc.) to predict each variable.

A DN is consistent if its CPDs are consistent with some probability
distribution. When learned from data, this is rarely the case.

Markov network (MN):
Normalized product of factors
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Consistent semantics and many inference algorithmes,
but weight learning requires iterative optimization, even for
pseudo-likelihood.

If we can compute the relative probability of any two instances x and
x’, then we can define a probability distribution as follows:

(x” is an arbitrarily chosen but fixed state.)
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If we can represent f(x) as a product of factors, then we have a
Markov network.

Since we’re converting from a DN, we must express these factors in
terms of the conditional distributions, P(X.X_,).

Computing Relative Probabilities

Suppose x and x’ only differ in the ith variable:
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If x and x’ differ in many variables, construct a sequence of
intermediate states, x(9 through x{", each differing in one variable:
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Thus, the resulting MN has one factor for each variable X;, which
computes the conditional probability of that variable’s value
relative to its base value. All variables that come before X; in
the ordering are fixed to their base values in this computation.
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Suppose we have the following two CPDs:

P(X1=T|Xo=T)=4/5 —T)=2/3
P(X1=F|X.=T)=1/5 = =T)=1/3
P(X1=T|X,=F)=2/5 F)=1/4
P (X1 = F|Xs = F) = 3/5 X, =F|X; =F) =3/4

Using base instance x’= [T,T] and order [1,2], we obtain two factors:
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Problem: For inconsistent DNs, the conversion may depend on the
variable ordering and the base instance x'.

Solution: Average over multiple orders and base instances.

e \We can average over all base instances, weighted by the marginal
distribution in the data. No increase in asymptotic running time!

e \We can average over all rotations of an ordering. Increases running
time by factor of m, where m is max number of parents.

See the paper for details!

Experiments

Methods

 We learned DNs with decision tree (DT) or logistic regression (LR)
CPDs on 12 standard datasets.

 We converted each DN to an MN in two ways:
— DN2MN with several different averaging strategies

— Maximum pseudo-likelihood weight learning
(Used by [Lowd & Davis, 2010] and [Ravikumar et al., 2009] to learn MNs.)

 We computed pseudo-log-likelihood (PLL) and conditional marginal
log-likelihood (CMLL) on held out test data. Marginals for CMLL
were computed via Gibbs sampling.

Results

1. Averaging helps a lot! Typically reduces the difference between
MN and DN PLL by >90% with DT CPDs and >50% with LR CPDs.

2. With DT CPDs, DN2MN has similar accuracy to weight learning
and is 60 times faster.
3. With LR CPDs, DN2MN is more accurate and 360 times faster.
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Table 4: Test set PLL and CMLL of converted DNs with tree and logistic regression CPDs.

P R CPD

PLL CMLL PLL CMLL 1. NLTCS 16
Dataset LW DN2MN LW DN2MN LW DN2MN LW DN2MN | |2. MSNBC 17
NLTCS 5.02 -4.93 5.25 -5.20 ~4.96 -4.95 523 -5.23 | | 3.KDD Cup 64
MSNBC -4.32 -4.31 -5.75 -5.80 -6.06 -6.06 -6.28 -6.28 | | 4. plants =
KDDCup 2000 -2.05 -2.05 -2.08 -2.07 -2.06 2.07 2.11 202 || 100
Plants -8.75 9.17 | -10.00 -10.67 -9.39 950 | -10.76 -10.91 '
Audio -38.01 -37.77 | -38.25 3835 | -36.17 -36.11 | -36.93 -36.88 | | 6. Jester 100
Jester -51.42 5077 | -51.49 5142 | -49.01 48.81 | -49.83 -49.76 | | 7. Netflix 100
Netflix -54.32 -53.60 | -54.62 -54.50 | -51.15 5110 | -52.37 -52.31 | | 8. MSWeb 294
MSWeb -8.20 -8.33 -8.72 -8.77 -8.70 -8.64 -8.96 893 | |5 Book 500
Book -34.60 35.14 | -34.49 35.44 | -33.86 3341 | -34.75 -34.09
WebKB 214937  -148.42 | -149.99  -151.88 | -153.13  -139.39 | -158.51  -143.05 | | 10- WebKB 839
Reuters-52 -82.57 82,67 | -82.53 -85.16 | -81.44 77.62 | -81.82 -79.60 | | 11. Reuters-52 889
20 Newsgroups | -159.14  -152.84 | -156.08  -154.06 | -151.53  -147.76 | -151.93  -148.82 | | 12. 20 Newsgroups 910

DN2MN performs exact conversion of consistent DNs, and very
accurate conversion of inconsistent DNs learned from data.

Combines with any DN learner to produce some of the fastest and
most accurate methods for learning an MN.

With decision trees, DN2MN is often more accurate than the DN.

With logistic regression CPDs, DN2MN is often more accurate than
weight learning.

Source code: http://libra.cs.uoregon.edu
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