
Efficient Weight Learning for
Markov Logic Networks

Daniel Lowd and Pedro Domingos

Department of Computer Science and Engineering
University of Washington, Seattle WA 98195-2350, USA

{lowd,pedrod}@cs.washington.edu

Abstract. Markov logic networks (MLNs) combine Markov networks
and first-order logic, and are a powerful and increasingly popular repre-
sentation for statistical relational learning. The state-of-the-art method
for discriminative learning of MLN weights is the voted perceptron algo-
rithm, which is essentially gradient descent with an MPE approximation
to the expected sufficient statistics (true clause counts). Unfortunately,
these can vary widely between clauses, causing the learning problem to
be highly ill-conditioned, and making gradient descent very slow. In this
paper, we explore several alternatives, from per-weight learning rates
to second-order methods. In particular, we focus on two approaches that
avoid computing the partition function: diagonal Newton and scaled con-
jugate gradient. In experiments on standard SRL datasets, we obtain
order-of-magnitude speedups, or more accurate models given compara-
ble learning times.

1 Introduction

Statistical relational learning (SRL) focuses on domains where data points are
not i.i.d. (independent and identically distributed). It combines ideas from sta-
tistical learning and inductive logic programming, and interest in it has grown
rapidly in recent years [6]. One of the most powerful representations for SRL is
Markov logic, which generalizes both Markov random fields and first-order logic
[16]. Representing a problem as a Markov logic network (MLN) involves simply
writing down a list of first-order formulas and learning weights for those formulas
from data. The first step is the task of the knowledge engineer; the second is the
focus of this paper.

Currently, the best-performing algorithm for learning MLN weights is Singla
and Domingos’ voted perceptron [19], based on Collins’ earlier one [3] for hidden
Markov models. Voted perceptron uses gradient descent to approximately opti-
mize the conditional likelihood of the query atoms given the evidence. Weight
learning in Markov logic is a convex optimization problem, and thus gradient
descent is guaranteed to find the global optimum. However, convergence to this
optimum may be extremely slow. MLNs are exponential models, and their suffi-
cient statistics are the numbers of times each clause is true in the data. Because
this number can easily vary by orders of magnitude from one clause to another,



a learning rate that is small enough to avoid divergence in some weights is too
small for fast convergence in others. This is an instance of the well-known prob-
lem of ill-conditioning in numerical optimization, and many candidate solutions
for it exist [13]. However, the most common ones are not easily applicable to
MLNs because of the nature of the function being optimized. As in Markov ran-
dom fields, computing the likelihood in MLNs requires computing the partition
function, which is generally intractable. This makes it difficult to apply methods
that require performing line searches, which involve computing the function as
well as its gradient. These include most conjugate gradient and quasi-Newton
methods (e.g., L-BFGS). Two exceptions to this are scaled conjugate gradient
[12] and Newton’s method with a diagonalized Hessian [1]. In this paper we
show how they can be applied to MLN learning, and verify empirically that
they greatly speed up convergence. We also obtain good results with a simpler
method: per-weight learning rates, with a weight’s learning rate being the global
one divided by the corresponding clause’s empirical number of true groundings.

Voted perceptron approximates the expected sufficient statistics in the gra-
dient by computing them at the MPE state (i.e., the most likely state of the
non-evidence atoms given the evidence ones, or most probable explanation).
Since in an MLN the conditional distribution can contain many modes, this may
not be a good approximation. Also, using second-order methods requires com-
puting the Hessian (matrix of second-order partial derivatives), and for this the
MPE approximation is no longer sufficient. We address both of these problems
by instead computing expected counts using MC-SAT, a very fast Markov chain
Monte Carlo (MCMC) algorithm for Markov logic [15].

The remainder of this paper is organized as follows. In Section 2 we briefly
review Markov logic. In Section 3 we present several algorithms for MLN weight
learning. We compare these algorithms empirically on real-world datasets in
Section 4, and conclude in Section 5.

2 Markov Logic

A Markov logic network (MLN) consists of a set of first-order formulas and
their weights, {(wi, fi)}. Intuitively, a formula represents a noisy relational rule,
and its weight represents the relative strength or importance of that rule. Given
a finite set of constants, we can instantiate an MLN as a Markov random field
(MRF) in which each node is a grounding of a predicate (atom) and each feature
is a grounding of one of the formulas (clauses). This leads to the following joint
probability distribution for all atoms:

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)

where ni is the number of times the ith formula is satisfied by the state of the
world x and Z is a normalization constant, required to make the probabilities of
all worlds to sum to one.



The formulas in an MLN are typically specified by an expert, or they can be
obtained (or refined) by inductive logic programming or MLN structure learn-
ing [10]. Many complex models, and in particular many non-i.i.d. ones, can be
very compactly specified using MLNs.

Exact inference in MLNs is intractable. Instead, we can perform approximate
inference using Markov chain Monte Carlo (MCMC), and in particular Gibbs
sampling [7]. However, when weights are large convergence can be very slow, and
when they are infinite (corresponding to deterministic dependencies) ergodicity
breaks down. This remains true even for more sophisticated alternatives like
simulated tempering. A much more efficient alternative, which also preserves
ergodicity in the presence of determinism, is the MC-SAT algorithm, recently
introduced by Poon and Domingos [15]. MC-SAT is a “slice sampling” MCMC
algorithm that uses a modified satisfiability solver to sample from the slice. The
solver is able to find isolated modes in the distribution very efficiently, and as a
result the Markov chain mixes very rapidly. The slice sampling scheme ensures
that detailed balance is (approximately) preserved. In this paper we use MC-SAT
for inference.

3 Weight Learning for MLNs

Given a set of formulas and a database of atoms, we wish to find the formu-
las’ maximum a posteriori (MAP) weights, i.e., the weights that maximize the
product of their prior probability and the data likelihood. Since optimization
is typically posed as function minimization, we will equivalently minimize the
negative log-likelihood.

Richardson and Domingos [16] originally proposed learning weights gen-
eratively using pseudo-likelihood [2]. Pseudo-likelihood is the product of the
conditional likelihood of each variable given the values of its neighbors in the
data. While efficient for learning, it can give poor results when long chains of
inference are required at query time. Singla and Domingos [19] showed that
pseudo-likelihood is consistently outperformed by discriminative training, which
minimizes the negative conditional likelihood of the query predicates given the
evidence ones. Thus, in this paper we focus on this type of learning.1

3.1 Voted Perceptron

Gradient descent algorithms use the gradient, g, scaled by a learning rate, η, to
update the weight vector w in each step:

wt+1 = wt − ηg

In an MLN, the derivative of the negative conditional log-likelihood (CLL)
with respect to a weight is the difference of the expected number of true ground-
1 For simplicity, we omit prior terms throughout; in our experiments, we use a zero-

mean Gaussian prior on all weights with all algorithms.



ings of the corresponding clause and the actual number according to the data:

∂

∂wi
− log P (Y =y|X =x) = Ew[ni]− ni

where y is the state of the non-evidence atoms in the data, and x is the state of
the evidence.

The basic idea of the voted perceptron (VP) algorithm [3] is to approximate
the intractable expectations Ew[ni] with the counts in the most probable ex-
planation (MPE) state, which is the most probable state of non-evidence atoms
given the evidence. To combat overfitting, instead of returning the final weights,
VP returns the average of the weights from all iterations of gradient descent.

Collins originally proposed VP for training hidden Markov models discrimi-
natively, and in this case the MPE state is unique and can be computed exactly
in polynomial time using the Viterbi algorithm. In MLNs, MPE inference is
intractable but can be reduced to solving a weighted maximum satisfiability
problem, for which efficient algorithms exist such as MaxWalkSAT [9]. Singla
and Domingos [19] use this approach and discuss how the resulting algorithm
can be viewed as approximately optimizing log-likelihood. However, the use of
voted perceptron in MLNs is potentially complicated by the fact that the MPE
state may no longer be unique, and MaxWalkSAT is not guaranteed to find it.

3.2 Contrastive Divergence

The contrastive divergence (CD) algorithm is identical to VP, except that it
approximates the expectations Ew[ni] from a small number of MCMC samples
instead of using the MPE state. Using MCMC is presumably more accurate and
stable, since it converges to the true expectations in the limit. While running
an MCMC algorithm to convergence at each iteration of gradient descent is
infeasibly slow, Hinton [8] has shown that a few iterations of MCMC yield enough
information to choose a good direction for gradient descent. Hinton named this
method contrastive divergence, because it can be interpreted as optimizing a
difference of Kullback-Leibler divergences. Contrastive divergence can also be
seen as an efficient way to approximately optimize log-likelihood.

The MCMC algorithm typically used with contrastive divergence is Gibbs
sampling, but for MLNs the much faster alternative of MC-SAT is available.
Because successive samples in MC-SAT are much less correlated than successive
sweeps in Gibbs sampling, they carry more information and are likely to yield
a better descent direction. In particular, the different samples are likely to be
from different modes, reducing the error and potential instability associated with
choosing a single mode.

In our experiments, we found that five samples were sufficient, and additional
samples were not worth the time: any increased accuracy that 10 or 100 samples
might bring was offset by the increased time per iteration. We avoid the need for
burn-in by starting at the last state sampled in the previous iteration of gradient
descent. (This differs from Hinton’s approach, which always starts at the true
values in the training data.)



3.3 Per-Weight Learning Rates

VP and CD are both simple gradient descent procedures, and as a result highly
vulnerable to the problem of ill-conditioning. Ill-conditioning occurs when the
condition number, the ratio between the largest and smallest absolute eigenvalues
of the Hessian, is far from one. On ill-conditioned problems, gradient descent is
very slow, because no single learning rate is appropriate for all weights. In MLNs,
the Hessian is the negative covariance matrix of the clause counts. Because some
clauses can have vastly greater numbers of true groundings than others, the vari-
ances of their counts can be correspondingly larger, and ill-conditioning becomes
a serious issue.

One solution is to modify both algorithms to have a different learning rate
for each weight. Since tuning every learning rate separately is impractical, we
use a simple heuristic to assign a learning rate to each weight:

ηi =
η

ni

where η is the user-specified global learning rate and ni is the number of true
groundings of the ith formula. (To avoid dividing by zero, if ni = 0 then ηi = η.)
When computing this number, we ignore the groundings that are satisfied by
the evidence (e.g., A ⇒ B when A is false). This is because, being fixed, they
cannot contribute to the variance.

We refer to the modified versions of VP and CD as VP-PW and CD-PW.

3.4 Diagonal Newton

When the function being optimized is quadratic, Newton’s method can move to
the global minimum or maximum in a single step. It does so by multiplying the
gradient, g, by the inverse Hessian, H−1:

wt+1 = wt −H−1g

When there are many weights, using the full Hessian becomes infeasible.
A common approximation is to use the diagonal Newton (DN) method, which
uses the inverse of the diagonalized Hessian in place of the inverse Hessian. DN
typically uses a smaller step size than the full Newton method. This is important
when applying the algorithm to non-quadratic functions, such as MLN negative
CLL, where the quadratic approximation is only good within a local region.

The Hessian of the negative CLL for an MLN is simply the covariance matrix:

∂

∂wi∂wj
− log P (Y =y|X =x) = Ew[ninj ]− Ew[ni]Ew[nj ]

Like the gradient, this can be estimated using samples from MC-SAT. In each
iteration, we take a step in the diagonalized Newton direction:

wi = wi − α
Ew[ni]− ni

Ew[n2
i ]− (Ew[ni])2



The step size α could be computed in a number of ways, including keeping it
fixed, but we achieved the best results using the following method. Given a search
direction d and Hessian matrix H, we compute the step size as follows:

α =
−dT g

dT Hd + λdT d

where d is the search direction. For a quadratic function and λ = 0, this step
size would move to the minimum function value along d. Since our function is
not quadratic, a non-zero λ term serves to limit the size of the step to a region
in which our quadratic approximation is good. After each step, we adjust λ to
increase or decrease the size of the so-called model trust region based on how well
the approximation matched the function. Let ∆actual be the actual change in
the function value, and let ∆pred be the predicted change in the function value
from the previous gradient and Hessian and our last step, dt−1:

∆pred = dT
t−1gt−1 + 1/2 dT

t−1Ht−1dt−1

A standard method for adjusting λ is as follows [5]:

if (∆actual/∆pred > 0.75) then λt+1 = λt/2
if (∆actual/∆pred < 0.25) then λt+1 = 4λt

Since we cannot efficiently compute the actual change in negative CLL, we ap-
proximate it as the product of the step we just took and the gradient after taking
it: ∆actual = dT

t−1gt. Since the negative CLL is a convex function, this product
is an upper bound on the actual change. When this value is positive our CLL
may be worse than before, so the step is rejected and redone after adjusting λ.

In models with thousands of weights or more, storing the entire Hessian
matrix becomes impractical. However, when the Hessian appears only inside a
quadratic form, as above, the value of this form can be computed simply as:

dT Hd = Ew[(
∑

idini)2]− (Ew[
∑

idini])2

The product of the Hessian by a vector can also be computed compactly [14].
Note that α is computed using the full Hessian matrix, but the step direction is
computed from the diagonalized approximation which is easier to invert.

Our per-weight learning rates can actually be seen as a crude approximation
of the diagonal Newton method. The number of true groundings not satisfied by
evidence is a heuristic approximation to the count variance, which the diagonal
Newton method uses to rescale each dimension of the gradient. The diagonal
Newton method, however, can adapt to changes in the second derivative at
different points in the weight space. Its main limitation is that clauses can be
far from uncorrelated. The next method addresses this issue.

3.5 Scaled Conjugate Gradient

Gradient descent can be sped up by, instead of taking a small step of constant size
at each iteration, performing a line search to find the optimum along the chosen



descent direction. However, on ill-conditioned problems this is still inefficient,
because line searches along successive directions tend to partly undo the effect
of each other: each line search makes the gradient along its direction zero, but
the next line search will generally make it non-zero again. In long narrow valleys,
instead of moving quickly to the optimum, gradient descent zigzags.

A solution to this is to impose at each step the condition that the gradient
along previous directions remain zero. The directions chosen in this way are
called conjugate, and the method conjugate gradient [18]. We used the Polak-
Ribiere method for choosing conjugate gradients since it has generally been
found to be the best-performing one. Conjugate gradient methods are some of
the most efficient available, on a par with quasi-Newton ones. Unfortunately,
applying them to MLNs is difficult, because line searches require computing
the objective function, and therefore the partition function Z, which is highly
intractable. (Computing Z is equivalent to computing all moments of the MLN,
of which the gradient and Hessian are the first two.)

Fortunately, we can use the Hessian instead of a line search to choose a
step size. This method is known as scaled conjugate gradient (SCG), and was
originally proposed by Møller [12] for training neural networks. In our imple-
mentation, we choose a step size the same way as in diagonal Newton.

Conjugate gradient is usually more effective with a preconditioner, a linear
transformation that attempts to reduce the condition number of the problem
(e.g., [17]). Good preconditioners approximate the inverse Hessian. We use the
inverse diagonal Hessian as our preconditioner. We refer to SCG with the pre-
conditioner as PSCG.

4 Experiments

4.1 Datasets

Our experiments used two standard relational datasets representing two im-
portant relational tasks: Cora for entity resolution, and WebKB for collective
classification.

The Cora dataset consists of 1295 citations of 132 different computer science
papers, drawn from the Cora Computer Science Research Paper Engine. This
dataset was originally labeled by Andrew McCallum2. We used a cleaned version
from Singla and Domingos [20], with five splits for cross-validation.

The task on Cora is to predict which citations refer to the same paper, given
the words in their author, title, and venue fields. The labeled data also specifies
which pairs of author, title, and venue fields refer to the same entities. In our
experiments, we evaluated the ability of the model to deduplicate fields as well
as citations. Since the number of possible equivalances is very large, we used the
canopies found by Singla and Domingos [20] to make this problem tractable.

The MLN we used for this is very similar to the “MLN(B+C+T)” model
used by Singla and Domingos [20]. Its formulas link words to citation identity,

2 http://www.cs.umass.edu/∼mccallum/data/cora-refs.tar.gz



words to field identity, and field identity to citation identity. In this way, word
co-occurrence affects the probability that two citations are the same both indi-
rectly, through field similarities, and directly. These rules are repeated for each
word appearing in the database so that individualized weights can be learned,
representing the relative importance of each word in each context. This model
also features transitive closure for all equivalence predicates.

We did two things differently from Singla and Domingos. First, we added
rules that relate words to field identity but apply equally to all words. Because
these rules are not specific to particular words, they can potentially improve
generalization and reduce overfitting. Secondly, we learned weights for all rules.
Singla and Domingos set the weights for all word-specific rules using a naive
Bayes model, and only learned the other rules’ weights using VP. Our learn-
ing problem is therefore much harder and more ill-conditioned, but our more
powerful algorithms enabled us to achieve the best results to date on Cora.

In our version, the total number of weights is 6141. During learning, the
number of ground clauses exceeded 3 million.

The WebKB dataset consists of labeled web pages from the computer science
departments of four universities. We used the relational version of the dataset
from Craven and Slattery [4], which features 4165 web pages and 10,935 web
links, along with the words on the webpages, anchors of the links, and neighbor-
hoods around each link.

Each web page is marked with some subset of the categories: person, stu-
dent, faculty, professor, department, research project, and course. Our goal is to
predict these categories from the web pages’ words and link structures.

We used a very simple MLN for this model, consisting only of formulas linking
words to page classes, and page classes to the classes of linked pages. The “word-
class” rules were of the following form:

Has(page,word)⇒ Class(page,class)

¬Has(page,word)⇒ Class(page,class)

We learned a separate weight for each of these rules for each (word, class)
pair. Classes of linked pages were related by the formula:

Class(page1,class1) ∧ LinksTo(page1,page2)⇒ Class(page2,class2)

We learned a separate weight for this rule for each pair of classes. When instanti-
ated for each word and class, the model contained 10,891 weights. While simple
to write, this model represents a complex, non-i.i.d. probability distribution in
which query predicates are linked in a large graph. During learning, the number
of ground clauses exceeded 300,000.

We estimated the condition number for both Cora and WebKB at the point
where all weights are zero. (Because our learning problem is not quadratic, the
condition number depends on the current weights.) The size of these problems
makes computing the condition number of the full Hessian matrix difficult, but
we can easily compute the condition number of the diagonalized Hessian, which is



simply the largest ratio of two clause variances. For Cora, this was over 600,000,
while for WebKB it was approximately 7000. This indicates that both learning
problems are ill-conditioned, but Cora is much worse than WebKB.

4.2 Metrics

To score our models, we ran MC-SAT for 100 burn-in and 1000 sampling it-
erations on the test data. The marginal conditional probability of each query
atom is the fraction of samples in which the atom was true with a small prior
to prevent zero counts.

From these marginal probabilities, we estimate conditional log-likelihood
(CLL) by averaging the log marginal probabilities of the true values of the query
predicates. CLL is the metric all of the algorithms attempt to optimize. However,
in cases such as entity resolution where the class distribution is highly skewed,
CLL can be a poor metric. For this reason, we also look at AUC, the area under
the precision-recall curve. The disadvantage of AUC is that it ignores calibra-
tion: AUC only considers whether true atoms are given higher probability than
false atoms.

4.3 Methodology

We ran our experiments using five-way cross-validation for Cora and four-way
cross-validation for WebKB. For each train/test split, one of the training datasets
was selected as a validation set and the remaining ones formed the tuning set.
The tuning procedure consisted of training each algorithm for four hours on
the tuning sets with various values of the learning rate. For each algorithm on
each split, we chose the learning rates that worked best on the corresponding
validation set for each evaluation metric.

We used the implementation of voted perceptron for MLNs in the Alchemy
package [11], and implemented the other algorithms as extensions of Alchemy.
For DN, SCG, and PSCG, we started with λ = 1 and let the algorithm adjust it
automatically. For algorithms based on MC-SAT, we used 5 samples of MC-SAT
for each iteration of the learning algorithm. The width of the Gaussian prior was
set for each dataset based on preliminary experiments.

After tuning all algorithms, we reran them for 10 hours with their respective
training sets, including the held-out validation data. For the gradient descent
algorithms, we averaged the weights from all iterations.

4.4 Results

Our results for the Cora and WebKB datasets are shown in Figure 1. Error
bars are omitted for clarity; at the final data point, all differences exceed twice
the standard error. For AUC, we computed the standard deviation using the
technique of Richardson and Domingos [16].

PSCG is the most accurate of all the algorithms compared, obtaining the
best CLL and AUC on both Cora and WebKB. It converges relatively quickly as



-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

100k10k1k100101

P
e

r-
a
to

m
 C

L
L

Learning time (s)

VP
VP-PW

CD
CD-PW

DN
SCG

PSCG

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100k10k1k100101

A
U

C

Learning time (s)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

100k10k1k100101

P
e
r-

a
to

m
 C

L
L

Learning time (s)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100k10k1k100101

A
U

C

Learning time (s)

Fig. 1. CLL and AUC for Cora (above) and WebKB (below). Learning times are shown
on a logarithmic scale.

well: on WebKB, the PSCG learning curve dominates all others after 2 minutes;
on Cora, it dominates after 15 minutes. DN is consistently close behind PSCG
in CLL and AUC, briefly doing better when PSCG starts to overfit. In contrast,
VP and CD consistently converge more slowly to worse AUC and CLL.

On Cora, the algorithms that adjust the search direction using true clause
counts or count variance do much better than those that do not. This suggests
that these techniques help greatly in cases of extreme ill-conditioning. Without
a preconditioner, even SCG does poorly. This is because, like VP and CD, the
first step it takes is in the direction of the gradient. On a very ill-conditioned
dataset like Cora, the gradient is a very poor choice of search direction.

The AUC results we show for Cora are for all query predicates—SameAuthor,
SameVenue, SameTitle, and SameBib. When computing the AUC for just the
SameBib predicate, PSCG reaches a high of 0.992 but ends at 0.990 after overfit-
ting slightly. DN and CD-PW do about the same, ending at AUCs of 0.992 and
0.991, respectively. All of these algorithms exceed the 0.988 AUC reported by
Singla and Domingos [20], the best previously published result on this dataset,
and they do so by more than twice the standard error.

On WebKB, the ill-conditioning is less of an issue. PSCG still does better
than SCG, but not drastically better. VP-PW and CD-PW actually do worse
than VP and CD. This is because the per-weight learning rates are much smaller



for the relational rules than the word-specific rules. This makes the relational
rules converge much more slowly than they should.

The performance of some of the algorithms sometimes degrades with ad-
ditional learning time. For some of the algorithms, such as PSCG, DN, and
VP-PW on Cora, this is simply a symptom of overfitting. More careful tuning
or a better prior could help correct this. But for other algorithms, such as SCG
and VP on Cora, the later models perform worse on training data as well. For
SCG, this seems to be the result of noisy inference and very ill-conditioned prob-
lems, which cause even a slight error in the step direction to potentially have
a significant effect. Our lower bound on the improvement in log-likelihood pre-
vents this in theory, but in practice a noisy gradient may still cause us to take
bad steps. PSCG suffers much less from this effect, since the preconditioning
makes the learning problem better behaved. For VP and CD, the most likely
cause is learning rates that are too high. Our tuning experiments selected the
learning rates that worked best after four hours on a smaller set of data. The
increased amount of data in the test scenario increased the magnitude of the
gradients, making these learning rates less stable than they were in the tuning
scenario. This extreme sensitivity to learning rate makes learning good models
with VP and CD much more difficult. We also experimented with the stochastic
meta-descent algorithm [21], which automatically adjusts learning rates in each
dimension, but found it to be too unstable for these domains.

In sum, the MLN weight learning methods we have introduced in this paper
greatly outperform the voted perceptron. Given similar learning time, they learn
much more accurate models; and, judging from the curves in Figure 1, running
VP until it reaches the same accuracy as the better algorithms would take an
extremely long time.

5 Conclusion

Weight learning for Markov logic networks can be extremely ill-conditioned,
making simple gradient descent-style algorithms very slow to converge. In this
paper we studied a number of more sophisticated alternatives, of which the
best-performing one is preconditioned scaled conjugate gradient. This can be
attributed to its effective use of second-order information. However, the simple
heuristic of dividing the learning rate by the true clause counts for each weight
can sometimes give very good results. Using one of these methods instead of
gradient descent can yield a much better model in less time.

Acknowledgments. This research was funded by a Microsoft Research fellow-
ship awarded to the first author, DARPA contract NBCH-D030010/02-000225,
DARPA grant FA8750-05-2-0283, NSF grant IIS-0534881, and ONR grant N-
00014-05-1-0313. The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily representing the offi-
cial policies, either expressed or implied, of DARPA, NSF, ONR, or the United
States Government. Thanks to Hoifung Poon for formula corrections.



References

1. S. Becker and Y. Le Cun. Improving the convergence of back-propagation learning
with second order methods. In Proc. 1988 Connectionist Models Summer School,
pages 29–37, 1989. Morgan Kaufmann.

2. J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statis-
tical Society, Series B, 48:259–302, 1986.

3. M. Collins. Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In Proc. CEMNLP-2002, 2002.

4. M. Craven and S. Slattery. Relational learning with statistical predicate invention:
Better models for hypertext. Machine Learning, 43(1/2):97–119, 2001.

5. R. Fletcher. Practical Methods of Optimization. Wiley-Interscience, New York,
NY, second edition, 1987.

6. L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT
Press, 2007.

7. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte
Carlo in Practice. Chapman and Hall, London, UK, 1996.

8. G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8):1771–1800, 2002.

9. H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving
problems with hard and soft constraints. In D. Du, J. Gu, and P. M. Parda-
los, editors, The Satisfiability Problem: Theory and Applications, pages 573–586.
American Mathematical Society, New York, NY, 1996.

10. S. Kok and P. Domingos. Learning the structure of Markov logic networks. In
Proc. ICML-2005, pages 441–448, 2005. ACM Press.

11. S. Kok, P. Singla, M. Richardson, and P. Domingos. The Alchemy sys-
tem for statistical relational AI. Technical report, Department of Com-
puter Science and Engineering, University of Washington, Seattle, WA, 2005.
http://alchemy.cs.washington.edu/.

12. M. Møller. A scaled conjugate gradient algorithm for fast supervised learning.
Neural Networks, 6:525–533, 1993.

13. J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, NY, 2006.
14. B. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,

6(1):147–160, 1994.
15. H. Poon and P. Domingos. Sound and efficient inference with probabilistic and de-

terministic dependencies. In Proc. AAAI-2006, pages 458–463, 2006. AAAI Press.
16. M. Richardson and P. Domingos. Markov logic networks. Machine Learning,

62:107–136, 2006.
17. F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proc.

ACL-2003, 2003.
18. J. Shewchuck. An introduction to the conjugate gradient method without the

agonizing pain. Technical Report CMU-CS-94-125, School of Computer Science,
Carnegie Mellon University, 1994.

19. P. Singla and P. Domingos. Discriminative training of Markov logic networks. In
Proc. AAAI-2005, pages 868–873, 2005. AAAI Press.

20. P. Singla and P. Domingos. Entity resolution with Markov logic. In Proc. ICDM-
2006, pages 572–582, 2006. IEEE Computer Society Press.

21. S. Vishwanathan, N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated train-
ing of conditional random fields with stochastic gradient methods. In Proc. ICML-
2006, 2006.


