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Goal: Large Joint Models 

l  Natural language 
l  Vision 
l  Social networks 
l  Activity recognition 
l  Bioinformatics 
l  Etc. 
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Example: Friends & Smokers 
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The Hardest Part of Learning 
Is Inference 
Inference is subroutine of: 
l  Learning undirected graphical models 
l  Learning discriminative graphical models 
l  Learning w/ incomplete data, latent variables 
l  Bayesian learning 
l  Deep learning 
l  Statistical relational learning 
l  Etc. 
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Inference Is the Bottleneck 

l  Inference is #P-complete 
l  It’s tough to have #P as a subroutine 
l  Approximate inference and parameter 

optimization interact badly 
l  An intractable accurate model is 

in effect an inaccurate model 
l  What can we do about this? 
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One Solution: 
Learn Only Tractable Models 

l  Pro: Inference problem is solved 
l  Con: Insufficiently expressive 
 

Recent development: 
Expressive tractable models 

(theme of this tutorial) 
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Definitions of Tractability 
“Tractable” implies that certain operations are efficient. 
There are many operations that we might want to be 
efficient: 
l  Probabilistic inference – marginal, conditional, etc. 
l  MAP inference – most likely complete configuration 
l  Marginal MAP – most likely partial configuration 
l  Sampling – generate independent samples from the 

posterior distribution (conditioned on evidence). 
l  Maximum Likelihood Estimation 
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Different types of models make 
different operations tractable. 

Primary focus of this tutorial 
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Representation and Inference 
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Earthquake 

l  Advantage: Compact representation 
l  Inference:  P(Burglar | Alarm) = ?? 
l  Need to sum out  Earthquake 
l  Inference cost exponential in treewidth of graph 

Bayesian Networks Markov Networks 

Burglar 

Alarm 

Deep Architectures 



Learning Graphical Models 

l  General idea: 

Empirical statistics = Predicted statistics 

l  Requires inference! 
l  Approximate inference is very unreliable 
l  No closed-form solution (except rare cases) 
l  Hidden variables → Local optima 
l  Result: Learning is very hard 
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Thin Junction Trees 
[Karger & Srebro, SODA-01; Bach & Jordan, NIPS-02; 
Narasimhan & Bilmes, UAI-04; Chechetka & Guestrin, NIPS-07; 
Elidan & Gould, JMLR-08] 

l  Junction tree: obtained by triangulating 
the Markov network 

l  Inference is exponential in treewidth 
(size of largest clique in junction tree) 

l  Solution: Learn only low-treewidth models 
l  Algorithms: Greedily optimize likelihood or 

search for conditional independencies given 
small sets of variables. 

l  Problem: Too restricted 
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Very Large Mixture Models 
[Lowd & Domingos, ICML-05] 

l  Just learn a naive Bayes mixture model with 
lots of components (hundreds or more) 

l  Inference is linear in model size 
(no worse than scanning training set) 

l  Compared to Bayes net structure learning: 
l  Comparable data likelihood; better query 

likelihood; much faster & more reliable inference 
l  Problem: Curse of dimensionality 
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Efficiently Summable Functions 

A function is efficiently summable iff its 
sum over any subset of its scope can be 
computed in time polynomial in the 
cardinality of the subset. 
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The Sum-Product Theorem 

If a function is: 
l  A sum of efficiently summable functions with 

the same scope, or 
l  A product of efficiently summable functions 

with disjoint scopes, 
Then it is also efficiently summable. 
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Corollary 

Every low-treewidth distribution is efficiently 
summable, but not every efficiently 
summable distribution has low treewidth. 
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Compactly Representable 
Probability Distributions 

Graphical 
Models 

Sum-Product 
Models 

Standard 
Tractable 
Models 
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Compactly Representable 
Probability Distributions 

Graphical 
Models 

Sum-Product 
Models 

Standard 
Tractable 
Models 

Polynomial-time 
exact inference 
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Arithmetic Circuits 
[Darwiche, JACM, 2003] 

l  Inference consists of sums and products 
l  Can be represented as an arithmetic circuit 
l  Complexity of inference = Size of circuit 
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Arithmetic Circuit 
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l  Rooted DAG of sums and products 
l  Leaves are indicator variables 
l  Computes marginals in linear time 
l  Graphical models can be compiled into ACs 



Learning Bounded-Inference 
Graphical Models [L. & D., UAI-08] 

l  Use standard Bayes net structure learner 
(with context-specific independence) 

l  Key idea: Instead of using representation 
complexity as regularizer: 

 
   Use inference complexity: 
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score(M,T) = log P(T|M) – kp np(M) 
                     (log-likelihood – #parameters)  

score(M,T) = log P(T|M) – kc nc(M)  
                     (log-likelihood – circuit size) 



 
Learning Bounded-Inference 
Graphical Models (contd.) 
l  Incrementally compile circuit as structure added 

(splits in decision trees): 

l  Compared to Bayes nets w/ Gibbs sampling: 
Comparable data likelihood; better query likelihood; 
much faster & more reliable inference 

l  Large treewidth (10’s – 100’s) 
24 
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Learning Bounded-Inference 
Undirected Models (ACMN) 
[L. & Rooshenas, AISTATS-13] 

l  Greedy Markov network feature induction: 

l  Adapt complexity regularizer and incremental 
compilation to learn MN with compact circuit 

l  Can directly optimize likelihood rather than 
approximations (BP, MCMC) or surrogates (PL). 

l  More flexible than BNs à Better accuracy 

A∧B 

A∧B∧C	
  
A∧B∧D	
  …	
  

1.  Generate candidate features. 
2.  Score each candidate. 
3.  Add the best one and update weights. 

A∧B∧M	
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Feature Trees 
[Gogate, Webb & D., NIPS-10] 

l  Thin junction tree learners work by repeatedly 
finding a subset of variables A such that   

 P(B,C|A) ≈ P(B|A) P(C|A) 
where A,B,C is a partition of the variables 

l  LEM algorithm: Instead find a feature F s.t. 
     P(B,C|F) ≈P(B|F) P(C|F) 
and recurse on variables and instances 

l  Result is a tree of features 
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A Feature Tree 
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Feature Trees (contd.) 

l  High treewidth because of context-specific 
independence 

l  More flexible than decision tree CPDs 
l  PAC-learning guarantees 
l  Outperforms thin junction trees and other 

algorithms for learning Markov networks 
l  More generally: Feature graphs 
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A Univariate Distribution 
Is an SPN 

X	



Gaussian 
...	



Poisson Multinomial 
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A Product of SPNs over 
Disjoint Variables Is an SPN 

X	

 Y	
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Sums out a mixture 
variable"

A Weighted Sum of SPNs over 
the Same Variables Is an SPN 

X	

 Y	

 X	

 Y	



w"1" w"2"
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Recurse Freely . . . 
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All Marginals Are Computable 
in Linear Time 

0.4" 0.6"

Evidence Evidence Marginalize Marginalize 
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 X	
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1" 1"
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Evidence Mode 
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What Does an SPN Mean? 

Products = Features 
     Sums = Clusters 
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Special Cases of SPNs 

l  Hierachical mixture models 
l  Thin junction trees 

(e.g.: hidden Markov models) 
l  Non-recursive probabilistic 

context-free grammars 
l  Etc. 
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Discriminative SPNs 
[Gens & D., NIPS-12; Best Student Paper Award] 
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Discriminative Training 

Best guess"Correct label"
Tractable!"
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Backpropagation 
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Problem: Gradient Diffusion 
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Solution: Hard Inference 

Hard Inference 
(MAP States) 

Soft Inference 
(Marginals) 
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Hard Gradient 
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Number with "
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Empirical Evaluation: 
Object Recognition 

CIFAR-10"
"

32x32 pixels"
50k training exs."
10k test exs."
"

STL-10"
"

96x96 pixels"
5k training exs."
8k test exs."
100k unlabeled exs."
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SVM 

SPN 

Pooling 

4x4xK 

Autoencoder 
RBM 

CIFAR-10 Results	
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STL-10 Results 

without 
unlabeled data"
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Generative Weight Learning 
[Poon & D., UAI-11; Best Paper Award] 

l  Model joint distribution of all variables 
l  Algorithm: Online hard EM 

l  Sum node maintains counts for each child 

l  For each example 
l  Find MAP instantiation with current weights 
l  Increment count for each chosen child 
l  Renormalize to set new weights 

l  Repeat until convergence 



Empirical Evaluation: 
Image Completion 

l  Datasets: Caltech-101 and Olivetti 
l  Compared with DBNs, DBMs, PCA and NN 
l  SPNs reduce MSE by ~1/3 
l  Orders of magnitude faster than DBNs, DBMs 
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Structure Learning 
[Gens & D., ICML-13; no best paper award] 

LearnSPN: Top-down learning of SPN structure. 
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Empirical Evaluation 

l  20 varied real-world datasets 
l  10s-1000s of variables 
l  1000s-100,000s of samples 

l  Compared with state-of-the-art Bayesian 
network and Markov random field learners 

l  Likelihood: typically comparable 
l  Query accuracy: much higher 
l  Inference: orders of magnitude faster 
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ID-SPN: Learn an SPN with 
Indirect and Direct Variable Interactions 

+ + 

* 

0.7 0.3 

A,B,C A,B,C 

MN 

D,E,F 

MN 

D,E,F 

0.4 0.1 0.5 

•  ID-SPN learns a tree of bounded-inference Markov networks. 
•  LearnSPN and ACMN are both special cases. 
•  ID-SPN is more accurate than LearnSPN and ACMN 

(20 and 17 datasets, respectively) 

MN 

+ 

E MN 

D,F 

MN 

D,F 

0.8 0.2 

* 

Indirect interactions 
through mixtures 

(LearnSPN) 

Direct interactions 
through leaf nodes 

(ACMN) 

MN MN 
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[Rooshenas & L., ICML-14] 

Source code: 
http://libra.cs.uoregon.edu/  
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Tractable Markov Logic 
[D. & Webb, AAAI-12] 

l  Tractable representation for statistical 
relational learning 

l  Three types of weighted rules and facts 
l  Subclass:  Is(Family,SocialUnit) 

                  Is(Smiths,Family) 
l  Subpart:    Has(Family,Adult,2) 

       Has(Smiths,Anna,Adult1)  
l  Relation:  Parent(Family,Adult,Child) 

   Married(Anna,Bob) 
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Restrictions 

l  One top class 
l  One top object (all others are subparts) 
l  Relations must be among subparts of 

some object 
l  Subclasses are mutually exclusive 
l  Objects do not share subparts 
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TML Semantics 

Subclasses 

Subparts 

Relations  
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Object Class 

Sub-Partition Function 
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Tractability 

   Theorem: The partition function of every 
TML knowledge base can be computed in 
time and space polynomial in the size of 
the knowledge base. 

 
Time = Space = O(#Rules X #Objects) 
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KB structure is isomorphic to Z computation: 
•  Parts = Products 
•  Classes = Sums 
 

Why TML Is Tractable 
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Expressiveness 

 
l  Junction trees 
l  Sum-product networks 
l  Probabilistic context-free grammars 
l  Probabilistic inheritance hierarchies 
l  Etc. 
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The following can be compactly represented 
in TML: 



Learning Tractable MLNs 

Alternate between: 
l  Dividing / aggregating the domain into 

subparts 
l  Inducing class hierarchies over similar 

subparts 
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Other Sum-Product Models 

l  Relational sum-product networks 
l  Tractable probabilistic knowledge bases 
l  Tractable probabilistic programs 
l  Etc. 
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What If This Is Not Enough? 

68 

Use variational inference, with the most 
expressive tractable representation 
available as the approximating family 
  
[L. & D., NIPS-10] 
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Other Tractable Models 

l  Symmetry 
l  Liftable models 
l  Exchangeable models 

l  Submodularity 
l  Determinantal point processes 
l  Etc. 
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Liftable Models 
l  Example: Consider a distribution over the friendships 

and smoking habits of n people. 

l  Key insight: Without evidence, we have identical 
information about each individual, so they must have 
identical marginals. 

l  Lifted inference: Polynomial in n 
71 

Each person is a smoker 
or a non-smoker 

Friendships more likely with 
matching smoking habits. 

x1 

What is the probability 
that x1 smokes? 



Liftable Models (cont.) 
[Jaimovich et al.,UAI-07; Van Haaren et al., LTPM-14] 
l  Such symmetries commonly occur in statistical 

relational models (e.g., Markov logic networks) 
l  Domain-lifted inference algorithms run in time 

polynomial in the domain size (number of objects). 
[Van Den Broeck, NIPS-11] 

 
    Predicted statistics are tractable  

 è  Weight learning is tractable 
  è  Structure learning is tractable 

l  Learn bounded-inference first-order graphical models 
(See tutorial by Guy Van den Broeck and Dan Suciu this afternoon.) 
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•  Variables are finitely exchangeable if probability 
distribution invariant under variable permutations  

•  Parameterization as mixture of independent urns: 

•  Partial finite exchangeability is similarly defined over 
any statistic T 

•  Inference: For many statistics T, MAP and marginal 
inference is polynomial in number of values of T. 

Exchangeable Variable Models 
[Niepert & D., ICML-14] 

Urn Ut represents assignments 
with exactly t ones (black balls) 
 
1.  Select an urn Ui according to 

mixture probabilities P(t) 
2.  Draw one assignment from 

Ui uniformly at random U0 U1 U2 U3 
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Exchangeable Variable Models 
(Cont.) 
l  EVM mixture model 

l  Conditioned on class C, attributes are partitioned  
into mutually independent exchangeable blocks 

l  Leads to spectrum of probabilistic models: 

l  Learning: Structural EM (faster than NB mixture) 
l  Experiments 

l  Competitive likelihood with other tractable models 
l  Faster and easier to tune 

Naïve Bayes  Fully exchangeable 
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Submodular Potentials 
l  Consider a pairwise binary Markov network: 

 
l  A pairwise energy is submodular (attractive) if: 

l  Exact MAP inference in polynomial time with graph cuts 
l  Marginal inference remains intractable 
l  Applications: image segmentation, denoising, stereo 

reconstruction 
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Determinantal Point Processes 

l  Given a collection of items 
define distribution over subsets 

l  Define similarity matrix L: 
l  Probabilities: 

l  Marginals: 
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Y = {1, . . . , N}
Y ⇢ Y

Lij = g(i)T g(j)

P (A ⇢ Y ) = det(KA)

K = L(L+ I)�1

P (Y ) = det(LY )/ det(L+ I)
Volume of submatrix 

Normalization 



Determinantal Point Processes 
(cont.) 
l  Intuition: determinant is the volume of the 

transformation, which is larger for diverse sets. 

 

 
l  Applications: search results, document 

summarization 
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det(          ) = 

det(          ) = 



Ongoing Work 
Sample of topics from ICML 2014 workshop on Learning Tractable 
Probabilistic Models: 
l  Tractable conditioning and marginalization by learning directed 

model for any variable order. [Uria & al., ICML-2014] 
l  Chow-Liu trees with cut-set conditioning. [Rahman & al., ECML-2014] 

l  Learning sum-product networks with mutually exclusive children. 
[Perharz & al., LTPM-2014] 

l  Sentential decision diagrams for learning with logical constraints 
[Kisa & al., KR-2014] 

l  Using sum-product theorem for non-convex optimization 
[Friesen & D., LTPM-2014] 

l  …and many more… 
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Open Questions 
l  Defining and exploiting new kinds of tractable structures 
l  Combining existing tractable structures 

(e.g., exchangeability and lifting [Van den Broeck & Niepert, AAAI-14], best 
paper nominee) 

l  Better methods to fit tractable structures to data 
l  Combining with approximate inference to get 

approximate inference with guaranteed time and error 
bounds (e.g., high-girth graphical models [Heinemann & 
Globerson, ICML-14]) 

l  Much more! 
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