
Learning Arithmetic Circuits

Daniel Lowd and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.
{lowd,pedrod}@cs.washington.edu

Abstract

Graphical models are usually learned without re-
gard to the cost of doing inference with them. As
a result, even if a good model is learned, it may
perform poorly at prediction, because it requires
approximate inference. We propose an alterna-
tive: learning models with a score function that
directly penalizes the cost of inference. Specifi-
cally, we learn arithmetic circuits with a penalty
on the number of edges in the circuit (in which
the cost of inference is linear). Our algorithm is
equivalent to learning a Bayesian network with
context-specific independence by greedily split-
ting conditional distributions, at each step scor-
ing the candidates by compiling the resulting
network into an arithmetic circuit, and using its
size as the penalty. We show how this can be
done efficiently, without compiling a circuit from
scratch for each candidate. Experiments on sev-
eral real-world domains show that our algorithm
is able to learn tractable models with very large
treewidth, and yields more accurate predictions
than a standard context-specific Bayesian net-
work learner, in far less time.

1 INTRODUCTION

Bayesian networks are a powerful language for probabilis-
tic modeling, capable of compactly representing very com-
plex dependences. Unfortunately, the compactness of the
representation does not necessarily translate into efficient
inference. Networks with relatively few edges per node can
still require exponential inference time. As a consequence,
approximate inference methods must often be used, but
these can yield poor and unreliable results. If the network
represents manually encoded expert knowledge, this is per-
haps inevitable. But when the network is learned from data,
the cost of inference can potentially be greatly reduced,
without compromising accuracy, by suitably directing the

learning process.

Bayesian networks can be learned using local search to
maximize a likelihood or Bayesian score, with operators
like edge addition, deletion and reversal (Heckerman et al.,
1995). Typically, the number of parameters or edges in the
network is penalized to avoid overfitting, but this is only
very indirectly related to the cost of inference. Two edge
additions that produce the same improvement in likelihood
can result in vastly difference inference costs. In this case,
it seems reasonable to prefer the edge yielding the lowest
inference cost. In this paper, we propose a learning method
that accomplishes this, by directly penalizing the cost of
inference in the score function.

Our method takes advantage of recent advances in ex-
act inference by compilation to arithmetic circuits (Dar-
wiche, 2003). An arithmetic circuit is a representation of a
Bayesian network capable of answering arbitrary marginal
and conditional queries, with the property that the cost of
inference is linear in the size of the circuit. When context-
specific independences are present, arithmetic circuits can
be much more compact than the corresponding junction
trees. We take advantage of this by learning arithmetic cir-
cuits that are equivalent to Bayesian networks with context-
specific independence, using likelihood plus a penalty on
the circuit size as the score function. Arithmetic circuits
can also take advantage of other structural properties such
as deterministic dependencies and latent variables; utiliz-
ing these in addition to context-specific independence is an
important item of future work.

Previous work on learning graphical models with the ex-
plicit goal of limiting the complexity of inference falls
into two main classes: mixture models with polynomial-
time inference (e.g.: Meila and Jordan (2000); Lowd and
Domingos (2005)) and graphical models with thin junction
trees (e.g.: Srebro (2000); Chechetka and Guestrin (2008)).
The former are limited in the range of distributions that they
can compactly represent. The latter are computationally vi-
able (at both learning and inference time) only for very low
treewidths. Our approach can flexibly and compactly learn
a wide variety of models, including models with very large

treewidth, while guaranteeing efficient inference, by taking
advantage of the properties of arithmetic circuits.

The prior work most closely related to ours is Jaeger et al.’s
(2006). Jaeger et al. define probabilistic decision graphs, a
new language related to binary decision diagrams. In con-
trast, we use standard arithmetic circuits, and our models
are equivalent to standard Bayesian networks. Jaeger et
al. speculate that learning arithmetic circuits directly from
data would be very difficult. In this paper we propose one
approach to doing this.

The remainder of our paper is organized as follows. In
Sections 2 and 3, we provide background on Bayesian net-
works and arithmetic circuits, respectively. We describe in
detail our algorithm for learning arithmetic circuits in Sec-
tion 4. Section 5 contains our empirical evaluation on three
real-world datasets, and we conclude in Section 6.

2 BAYESIAN NETWORKS

A Bayesian network encodes the joint probability distribu-
tion of a set of n variables, {X1, . . . , Xn}, as a directed
acyclic graph and a set of conditional probability distribu-
tions (CPDs) (Pearl, 1988). Each node corresponds to a
variable, and the CPD associated with it gives the probabil-
ity of each state of the variable given every possible combi-
nation of states of its parents. The set of parents of Xi, de-
noted Πi, is the set of nodes with an arc to Xi in the graph.
The structure of the network encodes the assertion that each
node is conditionally independent of its non-descendants
given its parents. The joint distribution of the variables is
thus given by P (X1, . . . , Xn) =

∏n
i=1 P (Xi|Πi).

For discrete domains, the simplest form of CPD is a condi-
tional probability table. When the structure of the network
is known, learning reduces to estimating CPD parameters.
When the structure is unknown, it can be learned by start-
ing with an empty or prior network and greedily adding,
deleting and reversing arcs to optimize some score func-
tion (Heckerman et al., 1995). The score function is usu-
ally log-likelihood plus a complexity penalty or a Bayesian
score (product of prior and marginal likelihood).

The goal of inference in Bayesian networks is to answer
arbitrary marginal and conditional queries (i.e., to compute
the marginal distribution of a set of query variables, pos-
sibly conditioned on the values of a set of evidence vari-
ables). One common method is to construct a junction tree
from the Bayesian network and pass messages from the
leaves of this tree to the root and back. A junction tree
is constructed by connecting parents of the same variable,
removing arrows, and triangulating the resulting undirected
graph (i.e., ensuring that all cycles of length four or more
have a chord). Each node in the junction tree corresponds
to a clique (maximal completely connected subset of vari-
ables) in the triangulated graph. Ordering cliques by the

highest-ranked variable they contain, each clique is con-
nected to a predecessor sharing the highest number of vari-
ables with it. The intersection of the variables in two ad-
jacent cliques is called the separator of the two cliques. A
junction tree satisfies two important properties: each vari-
able in the Bayesian network appears in some clique with
all of its parents; and if a variable appears in two cliques,
it appears in all the cliques on the path between them (the
running intersection property). The treewidth of a junction
tree is one less than the maximum clique size. The com-
plexity of inference is exponential in the treewidth. Find-
ing the minimum-treewidth junction tree is NP-hard (Arn-
borg et al., 1987). Inference in Bayesian networks is #P-
complete (Roth, 1996).

Because exact inference is intractable, approximate meth-
ods are often used, of which the most popular is Gibbs sam-
pling, a form of Markov chain Monte Carlo (Gilks et al.,
1996). A Gibbs sampler proceeds by sampling each non-
evidence variable in turn conditioned on its Markov blanket
(parents, children and parents of children). The distribution
of the query variables is then approximated by computing,
for each possible state of the variables, the fraction of sam-
ples in which it occurs. Gibbs sampling can be very slow
to converge, and many MCMC variations have been devel-
oped, but choosing and tuning one for a given application
remains a difficult, labor-intensive task. Diagnosing con-
vergence is also difficult.

2.1 LOCAL STRUCTURE

Table CPDs require exponential space in the number of
parents of the variable. A more scalable approach is to
use decision trees as CPDs, taking advantage of context-
specific independencies (i.e., a child variable is indepen-
dent of some of its parents given some values of the oth-
ers) (Boutilier et al., 1996; Friedman & Goldszmidt, 1996;
Chickering et al., 1997). The algorithm we present in this
paper learns arithmetic circuits that are equivalent to this
type of Bayesian network.

In a decision tree CPD for variable Xi, each interior node
is labeled with one of the parent variables, and each of its
outgoing edges is labeled with a value of that variable.1

Each leaf node is a multinomial representing the marginal
distribution of Xi conditioned on the parent variable values
specified by its ancestor nodes and edges in the tree.

The following two definitions will be useful in describing
our algorithm.

1In general, each outgoing edge can be labeled with any subset
of the variable’s values, as long as the sets of labels assigned to
all child edges include every variable value and are disjoint with
each other. For simplicity, we limit our discussion to the case
in which each edge has a single label, which Chickering et al.
(1997) refer to as a complete split. For Boolean variables, as in
our experiments, all types of splits are equivalent.

Definition 1. For leaf node D and k-valued variable Xj ,
the split S(D,Xj) replaces D with k new leaves, each con-
ditioned on a particular value of Xj in addition to the par-
ent values on the path to D.

Definition 2. Let D be a leaf from the tree CPD for Xi.
Split S(D,Xj) is valid iff Xj is not a descendant of Xi in
the Bayesian network and no decision tree ancestor of D is
labeled with Xj

The first definition describes a structural update to the
Bayesian network; the second one gives the conditions nec-
essary for that update to be consistent and meaningful.

A Bayesian network can now be learned by greedily apply-
ing the best valid splits according to some criterion, such
as the likelihood of the data penalized by the number of
parameters. This is one version of Chickering et al.’s algo-
rithm (1997). A number of other methods have also been
proposed, such as merging leaves to obtain decision graphs
(Chickering et al., 1997) or searching through Bayesian
network structures and inducing decision trees conditioned
on the global structure (Friedman & Goldszmidt, 1996).

3 ARITHMETIC CIRCUITS

The probability distribution represented by a Bayesian net-
work can be equivalently represented by a multilinear func-
tion known as the network polynomial (Darwiche, 2003):

P (X1 = x1, . . . , Xn = xn)

=
∑
X

n∏
i=1

I(Xi = xi)P (Xi = xi|Πi = πi)

where the sum ranges over all possible instantiations of the
variables, I() is the indicator function (1 if the argument
is true, 0 otherwise), and the P (Xi|Πi) are the parameters
of the Bayesian network. The probability of any partial in-
stantiation of the variables can now be computed simply by
setting to 1 all indicators consistent with the instantiation,
and to 0 all others. This allows arbitrary marginal and con-
ditional queries to be answered in time linear in the size of
the polynomial.

Unfortunately, the size of the network polynomial is ex-
ponential in the number of variables, but it can be more
compactly represented using an arithmetic circuit. An
arithmetic circuit is a rooted, directed acyclic graph whose
leaves are numeric constants or variables, and whose inte-
rior nodes are addition and multiplication operations. The
value of the function for an input tuple is computed by set-
ting the variable leaves to the corresponding values and
computing the value of each node from the values of its
children, starting at the leaves. In the case of the net-
work polynomial, the leaves are the indicators and net-
work parameters. The arithmetic circuit avoids the re-
dundancy present in the network polynomial, and can be

Figure 1: Arithmetic circuit to represent P (A,B) =
P (A)P (B), a product of marginals distribution over
two variables. Indicator functions I(X) and parameters
P (Y |X) are written as λX and θY |X , following Darwiche
(2003).

exponentially more compact. Figure 1 shows a simple
circuit that represents the simple probability distribution
P (A,B) = P (A)P (B)

Every junction tree has a corresponding arithmetic circuit,
with an addition node for every instantiation of a separa-
tor, a multiplication node for every instantiation of a clique,
and an addition node as the root. Thus one way to compile a
Bayesian network into an arithmetic circuit is via a junction
tree. However, when the network contains context-specific
independences, a much more compact circuit can be ob-
tained. Darwiche (2003) describes one way to do this, by
encoding the network into a special logical form, factoring
the logical form, and extracting the corresponding arith-
metic circuit.

4 LEARNING ARITHMETIC CIRCUITS

4.1 SCORING AND SEARCHING

Instead of learning a Bayesian network and then compil-
ing it into a circuit, we induce an arithmetic circuit directly
from data using a score function that penalizes circuits with
more edges. The score of an arithmetic circuit C on an i.i.d.
training sample T is

score(C, T) = log P (T |C)− kene(C)− kpnp(C)

where the first term is the log-likelihood of the training
data, P (T |C) =

∏
X∈T P (X|C), ke ≥ 0 is the per-edge

penalty, ne(C) is the number of edges in the circuit, kp ≥ 0
is the per-parameter penalty, and np(C) is the number of
parameters in the circuit. The last two allow us to easily
combine our inference-cost penalty with a more traditional
one based on model complexity.

We use this formulation for simplicity; our algorithm
would work equally well with a Bayesian Dirichlet score
(Heckerman et al., 1995), with a prior of the form
exp(−kene(C) − kpnp(C)), since the computation of the
marginal likelihood would be the same as in standard
Bayesian network learning. Aside from its practical util-
ity, a prior penalizing inference cost is meaningful if we

Table 1: Greedy algorithm for learning arithmetic circuits.

function LearnAC(T)
initialize circuit C as product of marginals
loop

Cbest ← C
for each valid split S(D,V) do

C ′ ← SplitAC(C,S(D,V))
if score(C ′, T) > score(Cbest, T) then

Cbest ← C ′

end if
end for
if score(Cbest, T) > score(C, T) then

C ← Cbest

else
return C

end if
end loop

believe the inference task being modeled can be carried out
quickly, for example because humans do it. Either way,
the main difficulty is that the penalty (or prior) is no longer
node-decomposable, and repeatedly computing it might be
very expensive. Reducing this cost is one of the key tech-
nical issues addressed in this paper.

Arithmetic circuits can be learned in the same way as
Bayesian networks with local structure, by starting with an
empty network and greedily applying the best splits, except
that candidate structures are scored by compiling them into
arithmetic circuits. However, compiling an arithmetic cir-
cuit can be computationally costly, and doing so for every
candidate structure would be prohibitive. A better approach
is to incrementally compile the circuit as splits are applied.
Table 1 shows pseudo-code for this algorithm.

The algorithm begins by constructing the initial arithmetic
circuit C as a product of marginal distributions:

C =
∏

i

∑
j

I(Xi = xij)P (Xi = xij)

This initial circuit is equivalent to a Bayesian network with
no edges. In each iteration, the algorithm greedily chooses
and applies the best valid split, where split validity is de-
fined according to the equivalent Bayesian network. Each
split is scored by applying it to the current circuit and
counting the edges and parameters.2 Learning ends when
the algorithm reaches a local optimum, where no valid split
improves the score.

4.2 SPLITTING DISTRIBUTIONS
2All model parameters are MAP estimates, using a Dirichlet

prior with all hyperparameters αijk = 1, where k ranges over the
leaves of the decision tree for variable Xi.

Table 2: Subroutine that updates an arithmetic circuit C by
splitting distribution D on variable V .

function SplitAC(C,S(D,V))
let M be the set of mutual ancestors of D and V
let N be the set of nodes between M and V or D
for i ∈ Domain(V) do

create new parameter nodes dij

Ni ← copy of all nodes in N
for each n ∈ N do

let ni be the copy of n in Ni

for each child c of n do
if c = vi or c is inconsistent with vi then

skip
else if c is some parameter node dj then

insert edge from ni to dij

else if c ∈ N then
let ci be the copy of c in Ni

insert edge from ni to ci

else
insert edge from ni to c

end if
end for

end for
end for
for m ∈M do

let nV be the child of m that is a V -ancestor
let nD be the child of m that is a D-ancestor
for i ∈ Domain(V) do

let n′V be the copy of nV in Ni

let n′D be the copy of nD in Ni

create n×i := vi × n′V × n′D
end for
create n+ :=

∑
i n×i

replace m’s children nV and nD with n+

end for
delete unreachable nodes, including all dj

The key subroutine is SplitAC, which updates an arithmetic
circuit without recompiling it from scratch. Given an arith-
metic circuit C that is equivalent to a Bayesian network B
and a valid split S(D,V), SplitAC returns a modified cir-
cuit C ′ that is equivalent to B after applying split S(D,V).
We will use the following notation to refer to distributions,
parameter nodes, and indicator nodes:

dj: Parameter node corresponding to the jth probability in
the multinomial distribution D.

Di: Leaf distribution resulting from split S(D,V) that re-
places D when V = i.

dij: Parameter node corresponding to the jth probability
in Di.

Figure 2: Visual representation of applying SplitAC to a circuit. On the left is the original circuit. On the right is the circuit
after the distribution over variable A has been split on variable B. Regions of the circuit are colored to show analogous
regions in the circuit. Dotted lines indicate portions of the circuit that are not shown in full detail.

vi: Indicator node I(V = i).

Table 2 contains pseudo-code for the splitting algorithm.
Figure 2 uses a visual representation to more intuitively il-
lustrates the operations SplitAC performs. It might at first
appear that to split D on V it suffices to replace references
to each dj with a sum of products,

∑
i dijvi. However, the

resulting circuit would then be correct only when V is fixed
to a particular value, and summing out V would produce in-
consistent results. Intuitively, the circuit must maintain the
running intersection property of the corresponding junction
tree, so that no variable can take on different values in dif-
ferent subcircuits. SplitAC maintains a consistent probabil-
ity distribution by preserving three properties, analogous to
those defined by Darwiche (2002) for logical circuits.

Definition 3. For an arithmetic circuit, C:

• C is smooth if, for each addition node, all children are
ancestors of indicator nodes for the same variables
and parameter nodes from distributions of the same
variables.

• C is decomposable if, for each multiplication node, no
two children are ancestors of indicator nodes for the
same variable or parameter nodes from distributions
of the same variable.

• C is deterministic if, for each addition node, there is a
variable V such that each child is the ancestor of some
non-empty set of indicator nodes for V , and their sets
are disjoint.

The network polynomial for a Bayesian network contains
one term for each configuration of its variables; each term
includes exactly one indicator variable and one conditional
probability parameter per variable. Intuitively, if C is not
smooth, then some terms in the polynomial it computes

may not have an indicator variable and a conditional prob-
ability parameter for every variable. If C is not decompos-
able, then some terms in the polynomial may have more
than one indicator variable or conditional probability pa-
rameter for some variable. If C is not deterministic, then
there may be multiple terms for the same set of indicator
variables.
Definition 4. We define three special types of node in the
circuit as follows:

• A D-ancestor is any leaf dj corresponding to a param-
eter of D, or any parent of a D-ancestor.

• A V -ancestor is any leaf vi corresponding to an indi-
cator of V , or any parent of a V -ancestor.

• A mutual ancestor (MA) of D and V is a node that is
both a D-ancestor and a V -ancestor, and has no child
that is both a D-ancestor and a V -ancestor.

Note that every MA must be a multiplication node, or the
circuit would not be smooth. Furthermore, from decompos-
ability, each MA must have exactly one D-ancestor child,
nD, and one V -ancestor child, nV . Naively replacing dj

with
∑

i dijvi would cause both nV and nD to be ances-
tors of vi, violating decomposability.

To avoid this, SplitAC duplicates the subcircuits between
the MAs and the parameter nodes dj , and between the MAs
and the indicator nodes vi, “conditioning” each copy on a
different value of V . Each nV and nD are replaced by a
new addition node, n+, that sums over products of vi and
copies of nV and nD conditioned on vi. This duplication
of subcircuits is the reason different splits can have widely
different edge costs. We now describe the details of which
nodes are duplicated and how they are connected.

Let N be the set of all D-ancestors and V -ancestors that
are also descendants of a mutual ancestor. These are all the

nodes “in between” D and V that must agree on the value
of V . For each value i in the domain of V , SplitAC creates
a copy Ni of the nodes in N .

Let ni ∈ Ni be the copy of node n ∈ N . SplitAC inserts
edges from ni to its children as follows. If n has a child
c ∈ N , then it inserts an edge from ni to the corresponding
copy ci. If n has a child c 6∈ N , then it inserts an edge
from ni to c. This minimizes node duplication by linking
to existing nodes or copies whenever possible.

A few additional changes are required for Ni to properly
depend on vi. If ni ∈ Ni has some parameter node dj

as a child, SplitAC replaces it with dij . This is how the
new leaf distributions, conditioned on V , are integrated into
the circuit. Secondly, if ni has vi as a child, it should be
omitted: every node in Ni will depend on vi, so this is
redundant. Finally, if ni has a child that is an ancestor of
some vj but not of vi, then that child is inconsistent with
conditioning on vi and must be removed.

Finally, SplitAC connects each mutual ancestor, m, to a
sum over these copies. SplitAC removes the D-ancestor,
nD, and the V -ancestor, nV , as children of m and replaces
them with an addition node with one child for each value
of V . The ith child of the addition node is a product of vi,
the copy of nD from Ni, and the copy of nV from Ni. (If
m was an ancestor of only certain values of V , the addition
node sums only over those values.)

Intuitively, the resulting circuit represents the correct prob-
ability distribution because D has been replaced with the
split distributions Di, each conditioned on vi, and because
the circuit satisfies the running intersection property, since
all nodes between V and D now depend on V .

Theorem 1. After each iteration of LearnAC, C computes
the network polynomial of a Bayesian network constructed
by starting with an empty network and applying the same
splits that were applied to C up to that iteration.

The proof can be found in the appendix.

4.3 OPTIMIZATIONS

We now discuss optimizations necessary to make this algo-
rithm practical for real-world datasets with many variables.

Consider once again the high-level overview in Table 1.
Scoring every possible circuit in every iteration would be
very expensive. Choosing the split that leads to the best
scoring circuit is equivalent to choosing the split that leads
to the greatest increase in score, so we can store changes
in score instead. The improvement in log-likelihood is not
affected by other splits, and so this only needs to be com-
puted once for each potential split. Unfortunately, the num-
ber of edges that a split adds to the circuit can increase or
decrease due to other splits. For convenience, we will refer
to the number of edges added by the application of a split

as its edge cost.

As a simple example, consider a chain-structured junction
tree of 5 variables: AB-BC-CD-DE-EF. If we add an arc
from A to F, then A is added to every other cluster: AB-
ABC-ACD-ADE-AEF. However, this also reduces the cost
of adding an arc from A to E, since the two variables now
appear together in a cluster. As a second example, suppose
that we instead added an arc from B to F: AB-BC-BCD-
BDE-BEF. Now the cost of adding an arc from A to F is
greatly increased, since adding a variable to a larger cluster
costs more edges than adding a variable to a smaller cluster.

Evaluating the edge cost of every potential split in every
iteration is expensive. The number of potential splits is lin-
ear in the number of splits that have been performed so far,
leading to a time complexity that is at least quadratic in the
total number of splits. Further, computing the edge cost for
a single candidate may be linear in the size of the current
circuit. With a non-zero edge cost, circuit size tends to be
linear in the number of iterations, leading to an O(n3) al-
gorithm. While this is still polynomial, it makes learning
models with thousands of splits intractable in practice.

Fortunately, most splits only change a fraction of edge
costs. Determining exactly which costs need to be updated
is difficult, but we can rule out many splits whose costs
do not need to be updated using the following conservative
rule. Applying one split may change the edge cost of an-
other split S(D,V) if the applied split changes a node that
is an ancestor of D and not V , or of V and not D. This
covers all nodes that lie between D or V and their mutual
ancestors, and thus all nodes that are copied by the split-
ting procedure. An applied split changes a node when it
copies that node or reduces the number of children it has.
In practice, this single heuristic lets us avoid recomputing
over 95% of the edge costs.

As an alternative to this optimization, we have found a
heuristic that leads to even larger speed-ups, but at the cost
of no longer being perfectly greedy. We noticed that when
edge costs changed, they rarely decreased. If a split’s last
computed edge cost was always a valid lower bound on the
true value, then we could ignore any split whose total es-
timated score was worse than the best split found so far in
this iteration. This assumption is often not valid in practice,
but it lets us learn models that are nearly as effective in an
order of magnitude less time.

Two other optimizations combine well with either of the
above to offer further gains. First, we can reduce the num-
ber of computations by placing potential splits in order of
decreasing likelihood gain, so that we consider the splits
with the highest possible scores first. Since the likelihood
gain is an upper bound on the score gain, once the score of
the best split found so far is greater than the next likelihood
gain, this split is guaranteed to be the highest-scoring one
overall.

Table 3: Summary of experimental datasets.

Domain Vars. Train Exs. Test Exs. Density
KDD Cup 65 199,999 34,955 0.0079
MSWeb 294 32,711 5,000 0.0102
EachMovie 500 6,117 591 0.0581

Second, we can exit the edge calculation procedure once
we know that the edge cost is sufficient to make the overall
score negative. It is also possible to exit once we know that
the score of the current split will be worse than the best split
so far, but this interferes with the other optimizations. If we
only compute an upper bound on the score, we will often
have to recompute the edge cost when the next iteration
requires a slightly lower upper bound.

5 EXPERIMENTS

5.1 DATASETS

We evaluated our methods on three widely used real-
world datasets. The KDD Cup 2000 clickstream predic-
tion dataset (Kohavi et al., 2000) consists of web session
data taken from an online retailer. Using the subset of
Hulten and Domingos (2002), each example consists of
65 Boolean variables, corresponding to whether or not a
particular session visited a web page matching a certain
category. Anonymous MSWeb is visit data for 294 areas
(Vroots) of the Microsoft web site, collected during one
week in February 1998. It can be found in the UCI ma-
chine learning repository (Blake & Merz, 2000). Each-
Movie3 is a collaborative filtering dataset in which users
rate movies they have seen. We took a 10% sample of the
original dataset, focused on the 500 most-rated movies, and
reduced each variable to “rated” or “not rated”. For KDD
Cup and MSWeb, we used the training and test partitions
provided with the datasets. For EachMovie, we randomly
selected 10% of the data for the test set and used the re-
mainder for training.

Basic statistics for each dataset are shown in Table 3. Den-
sity refers to the fraction of non-zero entries across all ex-
amples and all variables.

5.2 LEARNING

For each dataset, we randomly split the training data into
tuning and validation sets, corresponding to 90% and 10%
of the training data, respectively. All parameters were
tuned by training models on the tuning data and selecting

3Provided by Compaq at http://research.compaq.com/SRC/-
eachmovie/; no longer available for download, as of October
2004.

the parameter sets that led to the highest log likelihood of
the validation set. Finally, models were retrained using the
full training set. All experiments were run on CPUs with 4
GB of RAM running at 2.8 GHz.

We used two versions of the algorithm for learning arith-
metic circuits from Section 4: AC-Greedy, which guaran-
tees that we pick the best split in each iteration, and AC-
Quick, which uses a heuristic to avoid recomputing edge
costs but may sometimes choose worse splits. We varied
the per-edge cost ke from 1.0 to 0.01. Not surprisingly,
our models were most accurate on the validation set with
low per-edge costs (0.01 or 0.02). We also tuned the per-
parameter cost kp. For KDD Cup, the best cost was 0.0; for
MSWeb and EachMovie, the best costs were 1.0 for greedy
ACs and 0.5 for quick ACs.

We used the WinMine Toolkit (Chickering, 2002) as a
baseline. WinMine implements the algorithm for learning
Bayesian networks with local structure described in Sec-
tion 2 (Chickering et al., 1997), and has a number of other
state-of-the-art features. We tuned WinMine’s multiplica-
tive per-parameter penalty κ; the best values were: 1 (no
penalty) for KDD Cup, 0.1 for MSWeb, and 0.01 for Each-
Movie. We looked into using thin junction trees as a second
baseline, but they do not scale to datasets of these dimen-
sions.

A summary of the learned models appears in Table 4. For
each dataset, we report the log-likelihood per example on
the test data, the number of edges in the arithmetic circuit,
the number of leaves across all decision trees, the average
and maximum number of parents across all variables, the
treewidth (estimated using a min-fill heuristic), the number
of edges generated by compiling the Bayesian network us-
ing c2d4, and the training time. On each model for which
c2d ran out of memory, we obtained a lower bound by com-
piling a model with fewer splits, obtained by halting the
learning process early. We varied the number of splits un-
til we found the most complex sub-model that could still
be compiled, within 10 splits. For WinMine, the chosen
sub-models had less than one quarter of the original splits.

The test-set log-likelihoods of the AC learners and Win-
Mine are very similar, with WinMine having a slight edge.
This is not surprising, given that WinMine is free to choose
expensive splits. Perhaps more remarkable is that this free-
dom translates to very little improvement in likelihood.
The difference in accuracy between quick and greedy ACs
is negligible except in the case of EachMovie, where the
greedy AC is actually less accurate because it did not con-
verge in the allowed time (72h).

Not surprisingly, WinMine is much faster than the AC
learners. It is worth noting that the cost of learning is

4Available at http://reasoning.cs.ucla.edu/c2d/. We also tried
using the ACE package, but it does not support decision tree CPDs
and, for our models, tabular CPDs would be prohibitively large.

Table 4: Summary of Learned Models

KDD Cup AC-Greedy AC-Quick WinMine
Log-likelih. −2.16 −2.16 −2.16
Edges 382K 365K
Leaves 4574 4463 2267
Avg. parents 13.2 13.0 16.3
Max. parents 37 36 35
Treewidth 38 38 53
c2d edges >18.2M 3664k >39.5M
Time 50h 3h 3m

MSWeb AC-Greedy AC-Quick WinMine
Log-likelih. −9.85 −9.85 −9.69
Edges 204K 256K
Leaves 1353 1870 1710
Avg. parents 2.5 3.1 5.2
Max. parents 114 127 94
Treewidth 114 127 118
c2d edges >23.5M >44.6M >63.5M
Time 8h 3h 2m

EachMovie AC-Greedy AC-Quick WinMine
Log-likelih. −55.7 −54.9 −53.7
Edges 155K 372K
Leaves 4070 6521 4830
Avg. parents 5.0 6.5 8.0
Max. parents 13 17 27
Treewidth 35 54 281
c2d edges 207k 855k >27.3M
Time >72h5 22h 3m

only incurred once, while the cost of inference is incurred
many times. Also, the AC learner directly outputs an arith-
metic circuit, while WinMine’s Bayesian network would
still have to be compiled into one, which can be very time-
consuming. Finally, the quick heuristic offers up to an
order-of-magnitude speedup with similar accuracy; addi-
tional heuristics might offer additional improvements.

5.3 INFERENCE

For each dataset, we used the test data to generate queries
with varied numbers of randomly selected query and evi-
dence variables. Each query asked the probability of the
configuration of the query variables in the test example
conditioned on the configuration of the evidence variables
in the same test example.

We estimate inference accuracy as the mean log probabil-
ity of the test examples’s configuration across all test ex-

5AC-Greedy did not finish running in the maximum allowed
time of 72h. As a result, it has fewer edges and lower log-
likelihood than AC-Quick.

Table 5: Average inference time per query.

Algorithm KDD Cup MSWeb EachMovie
AC-Greedy 194ms 91ms 62ms
AC-Quick 198ms 115ms 162ms
Gibbs-Fast 1.46s 1.89s 7.22s
Gibbs-Medium 11.3s 15.6s 42.5s
Gibbs-Slow 106s 154s 452s
Gibbs-VerySlow 1124s 1556s 3912s

amples. This is an approximation (up to an additive con-
stant) of the Kullback-Leibler divergence between the in-
ferred distribution and the true one, estimated using the
test samples. For KDD Cup and MSWeb, we generated
queries from 1000 test examples; for EachMovie, we gen-
erated queries from all 593 test examples.

For the arithmetic circuits, we used exact inference. For
the Bayesian networks learned using WinMine, we used
Gibbs sampling. We initialized the sampler to a random
state, ran it for a burn-in period, and then collected samples
to estimate the probability of the queried marginal or con-
ditional event. All estimates were smoothed by uniformly
distributing a count of 1 across all states of the query vari-
ables. Since convergence is difficult to diagnose and may
take prohibitively long, we ran Gibbs sampling in four sce-
narios: fast (one chain, 100 burn-in iterations, 1000 sam-
pling iterations); medium (ten chains, 100 burn-in itera-
tions, 1000 sampling iterations); slow (ten chains, 1000
burn-in iterations, 10,000 sampling iterations); and very
slow (ten chains, 10,000 burn-in iterations, 100,000 sam-
pling iterations).

Figure 3 shows the relative accuracy of the different meth-
ods on each dataset. Per-variable query log-likelihood is on
the y axis. In the graphs on the left, each query included
30% of the variables in the domain, conditioned on 0% to
50% of the domain variables as evidence. In the graphs on
the right, the number of query variables varies from 10%
to 50%, conditioned on 30% of the variables in the domain
as evidence. Inference times (averaged over all queries)
are listed in Table 5. Note that AC inference times are in
milliseconds, while Gibbs inference times are in seconds.

The ACs were roughly one order of magnitude faster than
the fastest runs of Gibbs sampling, and three orders of mag-
nitude faster than the slowest. Except when the number of
query variables is very small, the ACs also easily domi-
nate even the slowest runs of Gibbs sampling on accuracy.
Because of the approximate inference, the slightly higher
test-set log-likelihood of WinMine’s models does not trans-
late into higher accuracy in answering queries. Presumably,
given enough time Gibbs sampling will eventually catch up
with the ACs in accuracy, but by then it will be many or-
ders of magnitude slower. Further, Gibbs sampling (like
other approximate inference methods) requires tuning for

-0.050

-0.045

-0.040

-0.035

-0.030

0% 10% 20% 30% 40% 50%

L
o
g
 p

ro
b
ab

il
it

y

Evidence variables

KDD Cup

-0.07

-0.06

-0.05

-0.04

-0.03

10% 20% 30% 40% 50%

L
o
g
 p

ro
b
ab

il
it

y

Query variables

KDD Cup

-0.11

-0.09

-0.07

-0.05

-0.03

0% 10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Evidence variables

MSWeb

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Query variables

MSWeb

-0.5

-0.4

-0.3

-0.2

-0.1

0% 10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Evidence variables

EachMovie

-0.5

-0.4

-0.3

-0.2

-0.1

10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Query variables

EachMovie

-0.11

-0.09

-0.07

-0.05

-0.03

0% 10% 20% 30% 40% 50%

L
o
g

 p
ro

b
ab

il
it

y

Evidence variables

MSWeb

AC-G AC-Q Gibbs-F Gibbs-M Gibbs-S Gibbs-V

Figure 3: Conditional log probability per query variable, per query. In the legend, AC-G refers to AC-Greedy and AC-
Q refers to AC-Quick. Gibbs-F, Gibbs-M, Gibbs-S and Gibbs-V refer to the fast, medium, slow, and very slow Gibbs
sampling scenarios, respectively.

best results, and we can never be sure that it has converged.
In contrast, the AC inference is reliable, the time it takes is
predetermined, and the time is short enough for online or
interactive use.

6 CONCLUSION

In the past, work on learning and inference in graphical
models has been largely separate. This has had the some-
what paradoxical result that much computational effort is
often expended to learn accurate models, only to result in
less accurate predictions when approximate inference be-
comes necessary. Our work seeks to ameliorate this by
more closely integrating learning and inference. In par-
ticular, we presented an algorithm for learning arithmetic
circuits by maximizing likelihood with a penalty on circuit
size. This ensures efficient inference while still providing
great modeling flexibility. In experiments on real-world do-
mains, our algorithm outperformed standard Bayesian net-
work learning on both accuracy of query answers and speed
of inference.

Directions for future work include: investigating other al-
gorithms for learning arithmetic circuits; extending our ap-
proach to handle learning with missing data and hidden
variables; applying it to Markov networks, continuous do-
mains, and relational representations; etc.

Acknowledgements

The authors wish to thank Mark Chavira, Adnan Dar-
wiche, and Knot Pipatsrisawat for assistance in properly
applying c2d to our Bayesian networks. This research
was partly funded by a Microsoft Research fellowship
awarded to the first author, DARPA contracts NBCH-
D030010/02-000225, FA8750-07-D-0185, and HR0011-
07-C-0060, DARPA grant FA8750-05-2-0283, NSF grant
IIS-0534881, and ONR grant N-00014-05-1-0313. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or im-
plied, of DARPA, NSF, ONR, or the United States Govern-
ment.

References
Arnborg, S., Corneil, D. W., & Proskurowski, A. (1987).

Complexity of finding embeddings in a k-tree. SIAM J.
Algebraic & Discrete Methods, 8, 277–284.

Blake, C., & Merz, C. J. (2000). UCI repository of machine
learning databases. Dept. ICS, UC Irvine, CA. http://-
www.ics.uci.edu/∼mlearn/MLRepository.html.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D.
(1996). Context-specific independence in Bayesian net-
works. Proc. UAI-96 (pp. 115–123).

Chechetka, A., & Guestrin, C. (2008). Efficient principled
learning of thin junction trees. In NIPS 20.

Chickering, D., Heckerman, D., & Meek, C. (1997). A
Bayesian approach to learning Bayesian networks with
local structure. Proc. UAI-97 (pp. 80–89).

Chickering, D. M. (2002). The WinMine toolkit (Tech.
Rept. MSR-TR-2002-103). Microsoft, Redmond, WA.

Darwiche, A. (2002). A logical approach to factoring belief
networks. Proc. KR-02 (pp. 409–420).

Darwiche, A. (2003). A differential approach to inference
in Bayesian networks. J. ACM, 50, 280–305.

Friedman, N., & Goldszmidt, M. (1996). Learning
Bayesian networks with local structure. Proc. UAI-96
(pp. 252–262).

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.).
(1996). Markov chain Monte Carlo in practice. Chap-
man and Hall.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995).
Learning Bayesian networks. Mach. Learn., 20, 197–
243.

Hulten, G., & Domingos, P. (2002). Mining complex
models from arbitrarily large databases in constant time.
Proc. KDD-02 (pp. 525–531).

Jaeger, M., Nielsen, J., & Silander, T. (2006). Learning
probabilistic decision graphs. Intl. J. Approx. Reasoning,
42, 84–100.

Kohavi, R., Brodley, C., Frasca, B., Mason, L., & Zheng,
Z. (2000). KDD-Cup 2000 organizers’ report: Peeling
the onion. SIGKDD Explorations, 2, 86–98.

Lowd, D., & Domingos, P. (2005). Naive Bayes models for
probability estimation. Proc. ICML-05 (pp. 529–536).

Meila, M., & Jordan, M. (2000). Learning with mixtures
of trees. J. Mach. Learn. Research, 1, 1–48.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems. Morgan Kaufmann.

Roth, D. (1996). On the hardness of approximate reason-
ing. Artif. Intel., 82, 273–302.

Srebro, N. (2000). Maximum likelihood Markov networks:
An algorithmic approach. Master’s thesis, MIT, Cam-
bridge, MA.

A PROOFS

In this section, we present a full proof of Theorem 1, which
establishes the correctness of our learning algorithm. The
proof is built up from a number of lemmas that describe
properties of arithmetic circuits, properties of isomorphic
logical circuits, and invariants maintained by LearnAC in
every iteration. The general outline of the proof is as fol-
lows.

Our proof rests heavily on Theorem 1 from Darwiche
(2002), which says that a logical circuit satisfying the prop-
erties of smoothness, determinism, and decomposability,

and whose models are the terms of the network polyno-
mial, can be converted to an arithmetic circuit that com-
putes the network polynomial. We begin by defining anal-
ogous properties of smoothness, determinism, and decom-
posability on arithmetic circuits and showing that they are
satisfied at every step in our algorithm. We use these prop-
erties to prove properties of mutual ancestors along the
way. We then define a mapping from arithmetic to logical
circuits and show that smooth, deterministic, and decom-
posable arithmetic circuits are mapped to logical circuits
with similar properties. Finally, we show that the models of
these logical circuits correspond to the terms of the appro-
priate network polynomial at every stage in the algorithm.
This allows us to apply Darwiche’s Theorem 1 to conclude
that our arithmetic circuits always compute the appropriate
network polynomials.

A.1 BACKGROUND

We begin by restating the central theorem from Darwiche,
along with the necessary supporting definitions:

Theorem 2 (Theorem 1 in (Darwiche, 2002)). Let ∆ be a
smooth d-DNNF which encodes a multi-linear function f .
The arithmetic circuit encoded by ∆ implements the func-
tion f .

A negated normal form (NNF) is a rooted, directed acyclic
graph in which each leaf node is labeled with a literal, true
or false, and each internal node is labeled with a conjunc-
tion ∧ or a disjunction ∨ (Darwiche, 2002). To highlight
the correspondence between arithmetic circuits and NNFs,
we will sometimes refer to NNFs as “logical circuits.”

For a node n in an NNF, V ars(n) refers to the set of all
propositional variables that are descendants of n, and ∆(n)
refers to the formula represented by n and its descendants.

A smooth d-DNNF is an NNF satisfying the three follow-
ing properties, taken directly from Darwiche (2002):

• Smoothness holds when V ars(ni) = V ars(nj) for
any two children ni and nj of an or-node n.

• Determinism holds when ∆(ni) ∧∆(nj) is logically
inconsistent for any two children ni and nj of an or-
node n.

• Decomposability holds when V ars(ni) ∩
V ars(nj) = ∅ for any two children ni and nj

of an and-node n.

The multi-linear function encoded by ∆ is a polynomial in
which each term corresponds to a satisfying assignment, or
model, of ∆. Each term is constructed as the product of all
true variables in the assignment.

The arithmetic circuit encoded by ∆ refers to the circuit ob-
tained by replacing each conjunction with multiplication,

each disjunction with addition, and each negative literal
with 1.

A.2 PROPERTIES OF ARITHMETIC CIRCUITS

We now prove certain properties of arithmetic circuits
which are necessary for proper operation of the algorithm
as well as other later proofs. These properties are analo-
gous to the logical circuit properties defined in the previous
section.

From Section 3, recall that our arithmetic circuits are
rooted, directed acyclic graphs in which leaf nodes are in-
dicators or network parameters, and internal nodes are ad-
dition or multiplication operations.

We use IN(n, V,C) to denote the set of indicator nodes
associated with variable V that are descended from node
n in circuit C. Similarly, PN(n, V,C) denotes the set of
parameter nodes associated with variable V (possibly from
many different conditional distributions) that are descended
from node n in circuit C.. We further define IV (n, C) and
PV (n, C) as the sets of variables corresponding to the in-
dicator and parameter nodes descended from n:

IV (n, C) ={V |IN(n, V,C) 6= ∅}
PV (n, C) ={V |PN(n, V,C) 6= ∅}

These function are parameterized with a circuit as well as
a node in order to allow for distinctions between the prop-
erties of a node before and after a call to SplitAC.

For each of the stated NNF properties, we can define an
analogous property on an arithmetic circuit, C:

• Smoothness holds when IV (ni, C) = IV (nj , C) and
PV (ni, C) = PV (nj , C) for any two children ni and
nj of an addition node n.

• Determinism holds when there is some V such
that IN(ni, V, C) 6= ∅, IN(nj , V, C) 6= ∅, and
IN(ni, V, C) ∩ IN(nj , V, C) = ∅ for any two chil-
dren ni and nj of an addition node n.

• Decomposability holds when IV (ni, C) ∩
IV (nj , C) = ∅ and PV (ni, C)∩PV (nj , C) = ∅ for
any two children ni and nj of a multiplication node
n.

A node is smooth, deterministic, and decomposable if the
corresponding properties are satisfied for the particular
node rather. Thus, a circuit is smooth, deterministic, and
decomposable if and only if each of its nodes is smooth,
deterministic, and decomposable.

Since each iteration of LearnAC implicitly depends on the
operation of SplitAC, we must first prove that mutual an-
cestors satisfy the properties SplitAC assumes.

Lemma 3. If C is smooth and decomposable, then every
mutual ancestor (MA) of variable V and distribution D is
a multiplication node with one child that is a V -ancestor
and one that is a D-ancestor.

Proof. By Definition 4, any MA n must be an ancestor of
both V and D. Let nV by a child of n that is also an ances-
tor of V and let nD be a child of n that is also an ancestor
of D. If n was an addition node, then nD would be a V -
ancestor, violating the condition that no child of an MA is
an ancestor of both V and D. Therefore, every MA is a
multiplication node.

By decomposability, n can have at most one child that is
an ancestor of D and one child that is an ancestor of V .
By definition, every MA must have at least one that is an
ancestor of each, and the two cannot be the same.

Let C ′ be the circuit that results from calling
SplitAC(C,S(D,V)). The following lemma describes
how the indicator and parameter nodes descended from
nodes in C ′ relate to those descended from similar
nodes in C. This is important for later proving that the
arithmetic circuits are always smooth, deterministic, and
decomposable.
Lemma 4. If C is smooth, deterministic, and decompos-
able, then for each node n ∈ C:

If n ∈ C ′, then PV (n, C ′) = PV (n, C);
IV (n, C ′) = IV (n, C); and for any domain variable U ,
IN(n, U, C ′) = IN(n, U, C).

If n was copied, then for each copy n′ ∈ C ′, PV (n′, C ′) =
PV (n, C); IV (n′, C ′) = IV (n, C) \ V ; and for any do-
main variable U 6= V , IN(n′, U, C ′) = IN(n, U, C).

Proof. We prove this lemma by induction on the structure
of C ′, showing that if the lemma is true for all children of
n, then it is also true for n.

Base case: If n ∈ C has no children and n ∈ C ′, then
n clearly has identical descendants in C ′ as in C, so all
conditions are satisfied. If n 6∈ C ′, then the lemma does not
apply, since SplitAC never copies nodes without children.

Inductive step: Suppose that the lemma is true for each
child of n ∈ C and that n has one or more children, ni.

Case 1: If n ∈ C ′ and is not an MA, then it was not di-
rectly changed by SplitAC. n has the same children in C
and C ′, and for each child ni, ni ∈ C. We begin by writ-
ing IV (n, C ′) recursively in terms of its children:

IV (n, C ′) =
⋃
i

IV (ni, C
′)

By the inductive hypothesis:

IV (n, C ′) =
⋃
i

IV (ni, C) = IV (n, C)

An identical argument applies to show that PV (n, C ′) =
PV (n, C).

For an arbitrary variable, U :

IN(n, U, C ′) =
⋃
i

IN(ni, U, C ′)

=
⋃
i

IN(ni, U, C)

=IN(n, U, C)

where the second equality follows from the inductive hy-
pothesis.

Case 2: If a copy of n is present in C ′, then let n′ ∈ C ′

be an arbitrary copy of n. From the operation of SplitAC,
the children of n can be partitioned into three disjoint sets:
Nsame, nodes that are also children of n′; Ncopy , nodes
of which a copy is a child of n′; and Nnone, nodes which
are excluded from the children of n′. The children of n′

can similarly be partitioned into two sets: N ′
copy , copies of

nodes that are children of n, and Nsame.

We handle the PV/IV and IN conditions as two separate
sub-cases.

We prove the IN condition first. For an arbitrary variable,
U 6= V :

IN(n, U, C ′) =
⋃
i

IN(ni, U, C ′)

=
⋃
i

IN(ni, U, C)

=IN(n, U, C)

where the second equality follows from the inductive hy-
pothesis.

Addition: Suppose n′ is an addition node. By smooth-
ness, IV (n′i, C

′) = IV (n′j , C
′) for any two children of n′.

Therefore, IV (n′, C ′) = IV (n′i, C
′). n ∈ C must also be

an addition node, so IV (n, C) = IV (ni, C) for any child
of n, ni.

Let n′i be an arbitrary child of n′. If n′i ∈ N ′
copy , then let

ni ∈ Ncopy be the node of which n′i is a copy. By the
inductive hypothesis, IV (n′i, C

′) = IV (ni, C) \ V , so by
substitution, IV (n′, C ′) = IV (n, C) \ V .

Otherwise n′i ∈ Nsame, so by the inductive hypothesis,
IV (n′i, C

′) = IV (n′i, C). In the operation of SplitAC,
children of copied nodes that are ancestors of V are also
copied, so we can conclude that IV (n′i, C) = IV (n′i, C) \
V . By substitution, IV (n′, C) = IV (n, C) \ V . An
identical argument applies to show that PV (n′, C) =
PV (n, C).

Multiplication: Now suppose, instead, that n′ is a mul-
tiplication node. We first prove, by contradiction, that
Nnone = ∅. Suppose, to the contrary, that there exists

some ni ∈ Nnone. From the operation of SplitAC, there
are indicator nodes vi and vj such that vj ∈ IN(ni, V, C)
and vi 6∈ IN(ni, V, C). By decomposability and the defi-
nition of IV , since vj ∈ IN(ni, V, C), vi 6∈ IN(nj , V, C)
for any other child of n. Therefore, vi 6∈ IN(n, V,C) and
vj ∈ IN(n, V,C), so n should be omitted from this copy
as well. Since we originally assumed n′ exists, Nnone = ∅.

IV (n′, C ′) can be written recursively as follows:

IV (n′, C ′) =
⋃

n′
i∈Nsame∪N ′

copy

IV (n′i, C
′)

As pointed out in the addition case, children of copied
nodes that are ancestors of V are also copied, so for ni ∈
Nsame, IV (ni, C) = IV (ni, C) \ V . Combined with the
inductive hypothesis, we may conclude:

IV (n′, C ′) =
⋃

ni∈Nsame∪Ncopy

IV (ni, C) \ V

Since Nnone = ∅, adding it to a union changes nothing:

IV (n′, C ′) =
⋃

ni∈Nsame∪Ncopy∪Nempty

IV (ni, C) \ V

Since every child of n is an element of Nsame, Ncopy , or
Nnone, this is the recursive statement of IV (n, C) \ V :

IV (n′, C ′) = IV (n, C) \ V

An identical argument applies to show that PV (n′, C) =
PV (n, C).

Case 3: If n is an MA for the split, then from Lemma 3
we know n is a multiplication node and its children include
exactly one ancestor of D, nD; exactly one ancestor of V ,
nV ; and a set of other children which we will call No.

From the operation of SplitAC, every ni ∈ No is un-
changed by the algorithm, and therefore ni ∈ C ′. nD and
nV , however, are replaced by an addition node, n′+. The
children of n+ are products of some indicator node for V ,
vi; a copy of nV , n′V,i; and a copy of nD, n′D,i.

We can write PV (n, C ′) as:

PV (n, C ′) = PV (n′+, C ′) ∪
⋃

ni∈No

PV (no, C
′)

We describe PV (n′+, C ′) in terms of n′+’s grandchildren:⋃
i

PV (n′D,i, C
′) ∪ PV (n′V,i, C

′) ∪ V

V is included in the union since vi is a child of the ith
child of n+. By the inductive hypothesis, since every
n′D,i and n′V,i is a copy, PV (n′D,i, C

′) = PV (nD, C) and
PV (n′V,i, C

′) = PV (nV , C). We can therefore substitute
and simplify to obtain:

IN(n′+, U, C ′) = PV (nD, C) ∪ PV (nV , C)

Substituting into our previous expresion for PV (n, C ′):

PV (n, C ′) =PV (nV , C) ∪ PV (nD, C)

∪
⋃

ni∈No

PV (no, C
′)

By the inductive hypothesis, PV (no, C
′) = PV (no, C),

so this reduces to the recursive description of PV (n, C).

Our procedure for proving that IN(n, U, C ′) =
IN(n, U, C) is nearly identical. First, we handle the case
where U 6= V .

IN(n, U, C ′) = IN(n′+, U, C ′) ∪
⋃

ni∈No

IN(no, U, C ′)

As before, we describe IN(n′+, U, C ′) in terms of the
grandchildren of n′+:⋃

i

IN(n′D,i, U, C ′) ∪ IN(n′V,i, U, C ′) ∪ vi

Note that we can safely ignore the vi’s, since U 6= V . By
applying the inductive hypothesis and simplifying, we ob-
tain:

IN(n′+, U, C ′) = IN(nD, U, C) ∪ IN(nV , U, C)

We can substitute this into the original expression:

IN(n, U, C ′) =IN(nD, U, C) ∪ IN(nV , U, C)

∪
⋃

ni∈No

IN(no, U, C ′)

which is equivalent to IN(n, U, C). Since IN(n, U, C ′) =
IN(n, U, C) for all U , it follows that IV (n, C ′) =
IV (n, C).

For the case where U = V , SplitAC explicitly includes the
indicator node vi as a grandchild of n+ for each vi that is a
descendant of n. Therefore, the lemma holds for this case
as well.

Lemma 5. At every iteration of LearnAC, C is smooth,
decomposable, and deterministic.

Proof. By induction.

Base case: We first show that the initial circuit is smooth,
deterministic, and decomposable. The initial circuit is a
product of sums of products. The leaves are indicator nodes
for each value of each variable and parameter nodes for
the marginal probability of each variable value. Above this
are multiplication nodes, each the product of one parameter
node and one indicator node, clearly satisfying decompos-
ability. Above this are summations, each summing over
the values and probabilities of a single variable. Since each
child of a given addition node is a parent of values and pa-
rameters for the same variable, all addition nodes satisfy

smoothness. Since the values being summed out are mutu-
ally exclusive, they also satisfy determinism. The top level
multiplication is over marginal distributions for different
variables, so it satisfies decomposability.

Inductive step: Let C be the circuit after the last iteration
of LearnAC and let C ′ be the circuit that results from call-
ing SplitAC(C,S(D,V)). Assuming the circuit, C, was
smooth, deterministic, and decomposable after the last it-
eration of LearnAC, we must show that C ′ is also smooth,
deterministic, and decomposable.

We demonstrate this for each node n′ ∈ C ′. If
n′ ∈ C and n′ is not an MA, then each of its chil-
dren ni is also in C, since every path to a copied
or created node leads through an MA. By Lemma 4,
PV (ni, C

′) = PV (ni, C), IV (ni, C
′) = IV (ni, C), and

IN(ni, U, C ′) = IN(ni, U, C). By the inductive hypothe-
sis, n′ satisfied smoothness and decomposability before the
split. Since PV , IV , and IN remain the same for all chil-
dren, n must still satisfy smoothness and decomposability.

If n′ is a copy of some n ∈ C, then each of its children
n′i is also a copy of a child of n, ni ∈ C. Consider two
children of n, n′i and n′j , and the corresponding children of
n, ni and nj .

Suppose n′ and n are addition nodes. By Lemma 4,
IV (n′i, C

′) = IV (ni, C)\V . By smoothness, IV (ni, C)\
V = IV (nj , C) \ V . By Lemma 4, IV (nj , C) \
V = IV (n′j , C

′), so by transitivity IV (n′i, C
′) =

IV (n′j , C
′). The same argument can be applied to show

that PV (n′i, C
′) = PV (n′j , C

′), so n′ is smooth.

Since n is deterministic, there must be some U ∈
IV (ni, C) such that IN(nj , U, C) ∩ IN(ni, U, C) = ∅.
If U 6= V , then by applying Lemma 4 and transitivity we
can infer that n′ is deterministic. If U = V , then let vi be
the value of V that the particular copy n′ is conditioned on
during the operation of SplitAC. From determinism and our
choice of V , vi cannot be a descendant of both ni and nj

for ni 6= nj . Since both ni and nj are ancestors of some
indicator of V , but both are not ancestors of vi, at most
one child is copied. Therefore, n′ only has one child and
determinism is trivially satisfied.

This leaves the case of the MAs and newly created nodes.
If n′ is a newly created multiplication node, then its chil-
dren are some indicator node vi and copies n′D,i and n′V,i

of two children the MA, nD and nV . By the inductive
hypothesis, the MA satisfied decomposability before the
split, so IV (nV , C) ∩ IV (nD, C) = ∅ and PV (nV , C) ∩
PV (nD, C) = ∅. By Lemma 4, IV (n′V , C ′) =
IV (nV , C) \ V , IV (n′D, C ′) = IV (nD, C) \ V (and
IV (vi, C

′) = V). The PV are similarly disjoint, demon-
strating that n′ satisfies decomposability.

If n′ is a newly created addition node, then its children are
newly created multiplication nodes, n′i. By their construc-

tion in SplitAC:

IV (n′i, C
′) = V ∪ IV (n′D,i, C

′) ∪ IV (n′V,i, C
′)

From Lemma 4, since each n′D,i and n′V,i is a copy of
the same nD and nV , their IV are identical. There-
fore, IV (n′i, C

′) = IV (n′j , C
′), so n′ is smooth. By

construction, IN(n′i, V, C ′) = vi, so IN(n′j , V, C ′) ∩
IN(n′i, V, C ′) = ∅ and decomposability is satisfied.

Finally, if n′ is an MA node, then two of its children have
been replaced by a new addition node, n′+: IV (n′+, C ′) =∏

i IV (n′i, C
′), where each n′i is a new multiplication

node. Since we already showed that n′+ is smooth:

IV (n′+, C ′) = IV (n′i, C
′)

= V ∪ IV (n′D,i, C
′) ∪ IV (n′V,i, C

′)
= V ∪ (IV (nD, C)− V)

∪(IV (nV , C ′)− V)
= IV (nD, C) ∪ IV (nV , C).

The second equality follows from Lemma 4. Apply-
ing the same argument demonstrates that PV (n′+, C ′) =
PV (nD, C) ∪ PV (nV , C).

Given another child of n′, n′i, from Lemma 4 we know
that IV (n′i, C

′) = IV (ni, C). Therefore, we can write
the intersection as:

IV (n′i, C
′) ∩ IV (n′+)

= IV (ni, C) ∩ (IV (nD, C) ∪ IV (nV , C))
= (IV (ni, C) ∩ IV (nD, C))
∪(IV (ni, C) ∩ IV (nV , C))

The second equality is an application of the distributive law.
Applying the inductive hypothesis that n is decomposable,
we can conclude:

IV (n′i, C
′) ∩ IV (n′+) = ∅ ∪ ∅ = ∅

The same result holds for PV . Given n′i and n′j where nei-
ther is n′+, Lemma 4 and the inductive hypothesis show that
their respective IV and PV are also disjoint. Therefore, n′

satisfies decomposability.

A.3 PROPERTIES OF THE LOGICAL IMAGE

For an arithmetic circuit, C, that represents some Bayesian
network over the variables X1, . . . , Xn, the logical image
of C, L(C), is obtained by replacing addition with disjunc-
tion and multiplication with conjunction. In order to make
the different values of each variable mutually exclusive, we
replace indicator nodes vi with conjunctions of vi and the
negation of every other vj for j 6= i. We make the condi-
tional probability parameters for each variable mutually ex-
clusive with each other using an analagous transformation.
We use L(n, C) to refer to the node in L(C) that replaces

n ∈ C. For non-leaf n′ ∈ L(C), we use L−1(n′,L(C)) to
refer to the node in C that n′ replaced.

If we take the logical image of C and replace conjunction
with multiplication, disjunction with addition, and negated
variables with 1, then we recover an arithmetic circuit that
is equivalent to C. Therefore, from our earlier definitions,
L(C) encodes the arithmetic circuit C.

Recall that ∆(n) refers to the logical formula represented
by n and its descendants. We modify this notation as
∆(n, L), to specify the logical circuit L from which this
subformula is drawn. For notational convenience, we will
abbreviate ∆(L(n, C)) as ∆(n, C), where C is an arith-
metic circuit.

The following lemma states necessary conditions for
∆(n, C) to be true. These will be used several times in
later lemmas.

Lemma 6. IfL(C) is smooth, then ∆(n, C) is false unless:

• For each V ∈ IV (n, C), the literal for exactly one
indicator vi of V is true, and vi ∈ IN(n, V,C)

• For each V ∈ PV (n, C), the literal for exactly one
parameter di of V is true, and di ∈ PN(n, V,C)

Proof. Suppose that V ∈ IV (n, C), and that in a particular
truth assignment, more than one literal for V is true or no
vi ∈ IN(n, V,C) is true. By induction over the structure
of C and L(C), we show that ∆(n, C)) must be false. The
exact same argument can be applied for the second condi-
tion, substituting PV and PN for IV and IN .

Base case: If node n has no children and V ∈ IV (n, C),
then n must be an indicator node vi. Recall that L(vi, C)
is a conjunction over the literals for each value of variable
V , where only vi appears non-negated. By the pigeon-hole
principle, if more than one literal of V is true, then one
of them must be negated in the conjunction, so ∆(vi, C)
is false. In the second case, if no vj ∈ IN(vi, V, C) is
true, then vi is false. Since L(vi, C) is a conjunction that
includes vi, this implies that ∆(vi, C) is false.

Inductive step: Suppose the lemma holds for all children
of n. Consider first the case where L(n, C) is a conjunc-
tion. Since V ∈ IV (n, C), n must have some child ni

such that V ∈ IV (ni, C). If no vi ∈ IN(n, V,C) is true,
then no vi ∈ IN(ni, V, C) is true either. By the inductive
hypothesis, ∆(ni, C) is false, so the conjunction ∆(n, C)
is false. If more than one literal for V is true, then by the
inductive hypothesis, ∆(ni, C) is false, and hence ∆(n, C)
is false.

Otherwise, L(n, C) is a disjunction. Since V ∈ IV (n, C)
and L(C) is smooth, for every child ni, V ∈ IV (ni, C).
If more than one literal for V is true, then by the inductive

hypothesis, every child ∆(ni, C) is false, so the disjunc-
tion ∆(n, C) is false. If no literal vi ∈ IN(n, V,C) is true,
then no vi ∈ IN(ni, V, C) is true either. By the induc-
tive hypothesis, every ∆(ni, C) is false, so ∆(n, C) is also
false.

Lemma 7. The logical image of a smooth, deterministic,
and decomposable arithmetic circuit is a smooth d-DNNF.

Proof. Given an arithmetic circuit, C, L(C) is clearly an
NNF. To show that it is a smooth d-DNNF, we must show
that L(C) satisfies smoothness, determinism, and decom-
posability.

Every conjunction or disjunction n′ ∈ L(C) is a replace-
ment for some node n ∈ C. For each n ∈ C, we
will demonstrate that the replacement n′ ∈ L(C) satisfies
smoothness, determinism, and decomposability.

If n ∈ C has fewer than two children, then n′ ∈ L(C) must
either be a conjunction of literals representing all indicator
or parameter nodes for a particular variable, or it must be a
disjunction or conjunction with fewer than two children. In
the former case, no two children represent the same literal
so decomposability is satisfied and neither smoothness nor
determinism applies. In the latter case, smoothness, deter-
minism, and decomposability are all trivially satisfied by
n′.

Otherwise, let ni and nj be two arbitrary children of n, and
let n′i and n′j be the corresponding replacements in L(C).

Suppose that an indicator vk (or parameter dk) of variable
V is in V ars(n′i), the set of all literals in the subgraph
rooted at n′i. n′i must be a parent or ancestor of a parent
of vk (or dk). Parents of literal nodes are conjunctions that
were handled earlier, in the case where n has fewer than
two children. Therefore, n′i is an ancestor of a parent of
vk’s literal (or dk’s), which is a conjunction that replaced
some vl (or dl) in C. In the original circuit, ni is there-
fore an ancestor of vl (or dl). We use this fact as a starting
point for proving decomposability, smoothness, and deter-
minism.

If n is a multiplication node, then by decomposability,
V 6∈ IV (nj) (or PV (nj)), since V ∈ IV (ni) (or IV (ni)).
From how the logical image is constructed, vk (or dk)
6∈ V ars(n′j), where vk (dk) is any literal for an indica-
tor (parameter) of V . Since the child nodes and descendant
of n′i were arbitrary, V ars(n′i) ∩ V ars(n′j) = ∅, and n′

satisfies decomposability.

Otherwise, n is an addition node. By smoothness, V ∈
IV (nj) (or PV (nj)). From the construction of the logical
image, n′i and n′j must both be ancestors of every indica-
tor (or parameter) node for V . Since the child node was
arbitrary, V ars(n′i) ⊂ V ars(n′j). Since n′i and n′j are ar-
bitrary, by symmetry V ars(n′j) ⊂ V ars(n′i). Therefore,
V ars(n′i) = V ars(n′j), so n′ satisfies smoothness.

From determinism, there must be some variable V such
that ni and nj are both ancestors of one or more indicator
nodes for V , but no indicator node vk is the descendant of
both. Suppose n′i is true for a particular assignment of truth
values to logical variables. By Lemma 6 and determinism,
some descendant vk of ni must be true, where vk is not a
descendant of cj . By Lemma 6, n′j can only be true when
exactly one indicator variable of V is true. Since we have
selected vk to be true and vk is not a descendant of nj , by
Lemma 6 n′j is false. Therefore, n′j is false whenever n′i is
true, so n′i and c′j are logically inconsistent. Since the child
nodes were arbitrary, n′ satisfies determinism.

Lemma 8. After each iteration of LearnAC, the models
of L(C) are the terms of the network polynomial for a
Bayesian network constructed by starting with an empty
network and applying the same splits that were applied to
C up to that iteration.

For a logical formula ∆, we will use the notation ∆[x/y]
to refer to the logical formula obtained by replacing every
occurrence of x in ∆ with y.

Proof. (By induction.)

Base case: The initial circuit is a product of marginal dis-
tributions, equivalent to a Bayesian network with no arcs.

Inductive step: Suppose that, after k iterations, the models
of L(C) are the terms of the network polynomial for some
Bayesian network, B. In the (k + 1)st iteration, LearnAC
selects and applies some split S(D,V). Let B′ and C ′ be
the resulting Bayesian network and arithmetic circuit. The
network polynomial of B′ is identical to that of B except
that in every term containing an indicator of V , vi, and a pa-
rameter of distribution D, dj , the parameter dj is replaced
by di,j . We will demonstrate that the models of L(C ′) are
exactly these terms.

Let m be a mutual ancestor of D and V in C. From
Lemma 3 and the logical image transformation,

∆(m,C) = ∆(nD, C) ∧∆(nV , C) ∧ (
∧
o∈O

∆(o, C))

where nD is the D-ancestor, nV is the V -ancestor, and O
is the set of all other children. Now consider how m is
changed by calling SplitAC(C,S(D,V)). By construction,

∆(m,C ′) =
∨
j

(∆(vj , C
′) ∧∆(n′Dj

, C ′) ∧∆(n′Vj
, C ′))

∧

(∧
o∈O

∆(o, C ′)

)

where n′D,j and n′V,j are copies of nD and nV , respectively.
Since neither o ∈ O nor any descendent of o is changed
by the split,

∧
o∈O ∆(o, C ′) =

∧
o∈O ∆(o, C). We will

abbreviate this disjunction as ∆(O).

From Lemma 6, the literal of exactly one indicator for V
is true in every model of ∆(m,C) and ∆(m,C ′). Let us
restrict m to the case where a particular vi is true. Note that
we only need to apply the substitution to ancestors of vi:

∆(m,C)[vi/>] = ∆(O) ∧∆(nD, C) ∧∆(nV , C)[vi/>]
∆(m,C ′)[vi/>] = ∆(O) ∧∆(n′Di

, C ′) ∧∆(n′Vi
, C ′)

Note that we have excluded the children of n+ that are con-
ditioned on other values of V , vj 6= vi, since the indicators
are mutually exclusive.

From the operation of SplitAC, the subtree rooted at n′Vi
is

a copy of the subtree rooted at nV , excluding vi and ev-
ery node that is an ancestor of some vj but not vi. When
we apply the substitution [vi/>], vi becomes redundant.
From Lemma 6, the other excluded nodes are all false
when vi is true. From decomposability, the other excluded
nodes are never children of conjunctions or the parent con-
junction would also be excluded. Therefore, the other
excluded nodes are false children of disjunctions, which
means they can be ignored when vi is true. Since every
excluded node is either redundant or irrelevant when vi is
true, ∆(n′Vi

, C ′) = ∆(nV , C)[vi/>].

By construction ∆(nDi , C
′) is identical to ∆(nD, C) ex-

cept with the parameter nodes of D replaced by those of
Di. Since nD is the only child of m that is an ancestor of
D, we can conclude:

∆(m,C ′)[vi/>]
= ∆(O) ∧∆(n′Di

, C ′) ∧∆(nV , C)[vi/>]
= ∆(m,C)[vi/>, dj/di,j]

Since every path from the root to D goes through some m,
and since only mutual ancestors and their descendants were
changed by SplitAC,

L(C ′)[vi/>] = L(C)[vi/>, dj/di,j]

Since some vi is true in every model of L(C) and L(C ′)
(by Lemmas 5, 6, and 7), the models of L(C ′) are the terms
of the updated network polynomial.

A.4 Proof of Theorem 1

We now prove the following theorem, first stated in Sec-
tion 4:

Theorem 1. After each iteration of LearnAC, C computes
the network polynomial of a Bayesian network constructed
by starting with an empty network and applying the same
splits that were applied to C up to that iteration.

Proof. By Lemma 5, C ′ is smooth, deterministic, and de-
composable. From Lemma 7, we know that its logical im-
age L(C ′) is a smooth d-DNNF. By Lemma 8, the models
of L(C ′) are the terms of the updated network polynomial.

It follows from the previous two statements and Theorem 1
from Darwiche (2002) that C ′ computes the network poly-
nomial of B with the split S(D,V).

