
Using Salience to Segment Desktop Activity into Projects

Daniel Lowd
Dept. of Computer Science & Engineering

University of Washington
Seattle, WA 98195-2350 – USA

lowd@cs.washington.edu

Nicholas Kushmerick
Decho Corporation

615 2nd Ave, Suite 280
Seattle, WA 98104-2245 – USA

nicholask@decho.com

ABSTRACT
Knowledge workers must manage large numbers of simulta-
neous, ongoing projects that collectively involve huge num-
bers of resources (documents, emails, web pages, calendar
items, etc). An activity database that captures the relation-
ships among projects, resources, and time can drive a va-
riety of tools that save time and increase productivity. To
maximize net time savings, we would prefer to build such
a database automatically, or with as little user effort as pos-
sible. In this paper, we present several sets of features and
algorithms for predicting the project associated with each ac-
tion a user performs on the desktop. Key to our methods is
salience, the notion that more recent activity is more infor-
mative. By developing novel features that represent salience,
we were able to learn models that outperform both a simple
benchmark and an expert system tuned specifically for this
task on real-world data from five users.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation

Author Keywords
Information workers, time tracking, interruption recovery,
activity recognition, machine learning, logistic regression.

INTRODUCTION
Knowledge workers must deal with an overwhelming amount
of information while multitasking many projects. When man-
aging a large number of resources (such as desktop applica-
tion files, web pages, email and calendar entries), the pri-
mary challenge is finding specific resources. For managing
numerous simultaneous tasks or projects, two challenges are
recovering from interruptions and tracking time.

Over the past two decades, there has been a wide variety
of research addressed at various aspects of these problems,
resulting in numerous software systems to help people man-
age information overload, enhance collaboration, and man-
age their tasks. Email in particular has received considerable
attention; see for example [8, 9, 1, 5, 4]. Our work in this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’09, February 8–11, 2009, Sanibel Island, Florida, USA.
Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00.

paper is part of Smart Desktop, a desktop information man-
agement application for information workers.

Smart Desktop was inspired by the TaskTracer project [12,
3]. TaskTracer treats tasks as virtual collections of related
documents, webpages and email, and uses a variety of heuris-
tic and machine learning techniques to link new information
to their tasks. The TaskTracer user interface allows people
to manage their information in terms of their logical tasks,
instead of in terms of physical storage (email folders and
servers, web and file servers, file system directories, etc).
Both TaskTracer and Smart Desktop work by instrument-
ing the user’s desktop applications. Each time a resource is
opened, brought into or out of focus, closed, etc., we capture
the action with a timestamp. Each of these actions is also
associated with one of the user’s defined projects. These as-
sociations form an activity database of projects, resources,
and time segments that link the two together.

Such an activity database can power many time-saving and
productivity-enhancing technologies. For example, by sort-
ing one’s list of resources by project (instead of by physical
location), users can remember what they were working on
and find information more easily. Also, by summing the
time segments associated with each resource in a project,
users can track how their time is spent.

Since it is too expensive for users to manually specify their
tasks at every moment, Smart Desktop relies on an task pre-
dictor component that attempts to automatically infer the
current project. This classification is based on two kinds of
context: the characteristics of the resource being accessed at
the given moment (words, path, file type, etc.) and aspects
of the user’s ongoing activities (recent projects, resources,
etc.). Predictor accuracy is essential to the overall user ex-
perience: each wrong prediction is either one more error in
the database (hence less accurate information retrieval, time
tracking, etc.), or one more manual user correction.

Unlike traditional classification problems, the project labels
associated with the time segments are not independent and
identically distributed. First, the data drift rapidly: word-
project correlations may arise and then disappear quickly,
and many kinds of projects spring to life or are terminated
very quickly. Second, due to people’s limited multitasking
ability, there is considerable inertia in the active projects that
people are likely to switch between at any given time. Hid-
den Markov and similar models would help, but they only
capture relationships between time segments that are very

close to each other. We solve this problem by developing
novel sets of features to capture salience, the notion that
recent activity is more informative. These features enable
models that can represent both long- and short-range inter-
actions, adapt quickly with limited data, and still be efficient
enough to be unobtrusive for the user.

TASK PREDICTION AS A MACHINE LEARNING TASK
Problem Statement. Our goal is to predict the project the
user is currently working on, given the current and previ-
ous actions and the user’s project labels. More formally, we
wish to find a function f that, given a sequence of actions
(a0, . . . , at) and project labels (p0, . . . , pt−1), predicts the
current project, p̂t = f(a0, . . . , at−1, at, p0, . . . , pt−1).

Each action ai corresponds to a desktop event such as open-
ing a file, bringing focus to an application window, clicking
a hyperlink, sending an email, etc. Each project label pi

corresponds to the project the user associates with that ac-
tion. Note that different users may organize their work into
projects in different ways. Furthermore, indentical actions
could be associated with different projects in different con-
texts: opening a browser window for www.iuiconf.org could
either be associated with the project of writing an IUI paper
or the project of planning travel to the IUI conference.

Linear Classifiers. A linear classifier c(x) uses a weighted
set of feature values to discriminative between two or more
classes. In the simplest, two-class case, c(x) = sign(w ·
ψ(x)), where Ψ(x) is a vector of feature values for the in-
stance x. Features may take on any real value, but are com-
monly 0/1-valued to indicate the presence or absense of par-
ticular words or other characteristics. In the multiclass case,
different classes weigh the features differently. The simplest
way to accomplish this would be to use one weight vector
per class, or in our case, project:

c(x) = arg max
p∈P

wp ·Ψ(x) (1)

Equivalently, we could use a single weight vector that en-
compasses all classes and make the feature vector a function
of the class:

c(x) = arg max
p∈P

w ·Ψ(x, p) (2)

Thus far, we have assumed that each weight applies to ex-
actly one class so the number of weights grows linearly with
the classes. However, the second formulation allows for
shared features that have different values for different labels.

For our particular problem, each instance xt is an unlabeled
action plus the history of all previous action/project pairs:
(a0, . . . , at, p0, . . . , pt−1). The set of labels is the set of
user-defined projects, P .

FEATURES
Resource Features. Smart Desktop instruments a wide range
of desktop applications such as web browsers, email clients
and office document applications. Smart Desktop captures a
wide variety of features from a user’s resources. We refer to
these as resource features to distinguish them from features

that depend on the sequence of past actions and resources.
Resource features are grouped into feature types.

The following feature types are general and apply to all re-
sources: Full URI of the resource (e.g., http://www.iuiconf.-
org/stats/index.html; file://c:/nick/budget.xls); Any meaning-
ful sub-path of the URI (e.g., http://www.iuiconf.org/stats,
http://iuiconf.org; file://c:/nick, file://c:); Any word in the ti-
tle of the document, excluding stop words; Any of the first
≈ 100 words in the body of the document, excluding stop
words; and Resource type (e.g., webpage, email, calendar
entry, Excel document, etc.).

In addition, Smart Desktop collects the following feature
types which are specific to email: The sender from the From:
field (e.g., nick@smartdesktop.com); The sender’s domain
(e.g., smartdesktop.com); Any recipient (To:, Cc:, or Bcc:
field); The mixture of sender and all recipients (sorted so
that, for instance, the emails ‘From: Barack; To: John’ and
‘From: John; To: Barack’ have the same feature value); A
unique identifier shared by all emails with a single thread;
The subject line, cleaned of modifiers such as ‘Re:’ and
‘Fwd:’; The name of each attached file; and Folder in which
the email is stored.

Past Project Features. Users typically perform several ac-
tions in the same project before switching tasks. This makes
the last project highly predictive of the next project. We can
incorporate this information with an additional set of fea-
tures. Specifically, for each project p we add a feature to
represent “the last project was p.” We can analogously de-
fine features for the projects of the past k time steps. Larger
values of k give us more contextual information, but suffer
from diminishing returns since projects from further in the
past are less informative. We use k = 4 in our experiments;
additional time steps were not helpful.

Salience Features. Recent activity within a project could
be very different from the long-term trends. We expect a
good model to recognize the similarity between current ac-
tivity and recent activities, and to use this evidence in project
prediction. We can represent this trend with a new set of
features, each representing the fact that one of the resource
features of a particular type was last seen with a particular
project. This represents the fact that a feature in the current
instance has a “salient” relationship to a particular project.
Instead of having a separate salience feature for each of the
original features, we use one salience feature for each feature
type. If multiple features of a particular type last appeared
with the same project, then we simply increase the value of
the associated salience feature.

For example, suppose the user opens a web page with ti-
tle words “international” and “conference,” and with body
words “call” and “papers.” The last event with the title word
“international” was in the Travel project, so we give the
salience feature Title-Travel a value of 1. For “conference,”
“call,” and “papers,” the last events were in the Publications
project, so the Title-Publications feature takes on a value of 1
and the Body-Publications fature takes on a value of 2. This

informs the classifier that “papers” has recent associations
with Publications, even if it has appeared more often with
the Office Supplies project in the past.

Shared Salience Features. The previous feature sets were
designed to be multiplied by the number of projects when
constructing the full feature vector, Ψ(x, p). This allows
projects to weight different features differently. The down-
sides to such an approach are the large number of weights,
which increases the risk of overfitting, and the strict depen-
dence on the exact set of projects, preventing us from gener-
alizing to new projects or different users.

We can avoid those problems using shared salience features.
This allows us to represent complex, changing project de-
scriptions with just a small number of weights that can be
transferred to other users. We construct a shared salience
feature for each type of resource feature. These features have
different values for different projects but are weighted the
same across all of them. The value of each shared salience
feature is the number of observed features of a particular
type that were seen most recently with a particular project.

Specifically, let the salience feature si(at, pt) be defined as
the number of features f for which: f is resource feature
present in at; f is of type i; and pt = pj , where j is the
index of the most recent previous time segment for which
f was present in aj . If our feature function Ψ(x, p) uses
only these shared salience features, then we can write the
prediction as follows:

f(x) = arg max
p

w ·Ψ(x, p) = arg max
p̂t

∑
i

wisi(at, p̂t)

ALGORITHMS
We now describe methods for learning the weight vector,
w, from data. With the online methods, naive Bayes and
the passive-aggressive algorithm, we adjust the weights after
seeing each new labeled example. With the offline methods,
logistic regression and support vector machines, we learn
weights using training data from other users and apply the
weights to the target user. We also discuss a manually con-
structed expert system.

Naive Bayes. Naive Bayes (NB) is a statistical model that
assumes all features Ψ(xt) in a classification problem are
independent given the class:

P (p̂t|Ψ(xt)) =
1
Zt
P (p̂t)

∏
i

P (Ψi(xt)|p̂t)

where Zt is a normalization constant so that all probabili-
ties sum to one, and Ψi refers to the ith feature of xt. The
marginal probabilities P (p̂t) indicate the relative frequency
with which each project is seen, and the conditional proba-
bilities P (Ψi(xt)|p̂t) indicate the frequency for seeing each
feature with each class. These are estimated from counts in
the training data and can be updated in constant time as more
data is seen. We used the multinomial model [11], in which
the product

∏
i ranges over only those features for which

Ψi(xt) is true. This tends to work better than the alternative
Bernoulli model for sparse features. The multinomial model

also supports features that appear multiple times in a single
resource by including the corresponding probability multiple
times in the product. This allows us to handle salience fea-
tures which may have values greater than one. We smoothed
all estimated probabilities with a Laplace correction, adding
one to each count.

To see that naive Bayes is equivalent to a linear model, con-
sider the log probability1, which is a sum over all true fea-
tures weighted by log probability. Therefore, naive Bayes is
a special case of our multiclass linear model, where the fea-
ture and weight vectors are defined as follows: Each feature
in the vector Ψ(x, p) is a conjunction Ψi(x) ∧ (p = pj) for
some feature index i and project index j, and the matching
weight in w is the log probability: logP (Ψi|pj). We incor-
porate the class priors via “dummy” features, true∧(p = pj),
with weight logP (pj). Note that since naive Bayes is de-
signed to work with a fixed feature vector, it is somewhat less
flexible than our general multiclass formulation and does not
naturally support shared salience features.

Passive-Aggressive Algorithm. The passive-aggressive al-
gorithm (PA) [2] is an online max-margin method with a
simple update rule reminiscent of the perceptron. For an
instance (xt, pt), the margin mt is the minimum difference
between the score assigned to the true label pt and the score
assigned to any other label, p′t:

mt = min
p′

t 6=pt

wt · (Ψ(xt, pt)−Ψ(xt, p
′
t)) (3)

Maximizing the margin is equivalent to minimizing the mag-
nitude of the weight vector while maintaining a margin of 1.
If an example falls within the margin, then PA incurs a loss
proportional to how much the margin constraint is violated:

lt =
{

0 mt ≥ 1
1−mt otherwise (4)

This is often referred to as the hinge loss.

The passive-aggressive algorithm is so named because, when
the loss is zero, it passively leaves the weight vector un-
changed; and, when the loss is greater than zero, it aggres-
sively adjusts the weight vector so that pt no longer violates
the margin constraint this last instance (xt, pt) satisfies the
margin constraint for p′t. (In the multiclass case, it is possi-
ble for some other p′′t 6= p′t to still violate the margin con-
straint.) Of the many possible weight updates that would
satisfy the margin, PA chooses the one that minimizes the
distance from the old weight vector. This happens to have a
simple, closed-form solution:

wt+1 = wt + τt(Ψ(xt, pt)−Ψ(xt, p
′
t)) (5)

where,

τt =
lt

‖Ψ(xt, pt)−Ψ(xt, p′t)‖2 + 1
2C

C is a parameter for limiting the rate at which the weights
are updated. In the limit as C approaches infinity, the update
1Since log is a monotonic function, this has no affect on the
arg max.

rule exactly satisfies the margin constraint. With smaller val-
ues of C, the weights will remain closer to their previous
values, mitigating the effect of noise.

For a full description of the passive-aggressive algorithm,
analysis, etc. see Crammer et al. [2].

Logistic Regression. Logistic regression (LR) is the dis-
criminative analog of naive Bayes. Instead of modeling the
full joint probability of the features and project label, it mod-
els the conditional probability of the project label given the
features:

P (p|xt) =
1
Zt

exp(w ·Ψ(xt, p))

As with naive Bayes, the log probability is a linear function:

logP (p|xt) = w ·Ψ(xt, p)− logZt

When predicting the most likely project, the effect of the log
partition function, logZt, can be ignored because it is con-
stant across all classes. Given a set of training examples,
finding a weight vector to maximize their conditional like-
lihood is a convex optimization problem that can be solved
with methods such as the quasi-Newton L-BFGS algorithm
[10]. To avoid overfitting, we follow the common practice
of applying a zero-mean Gaussian prior to each weight (ef-
fectively an L2 norm).

Support Vector Machines. Like PA, support vector ma-
chines (SVMs) [13] are a max-margin method. Let h(w) be
the hinge loss (Equations 3 and 4) summed over the entire
set of training examples:

h(w) =
∑

t

max
p′ 6=pt

max(0, 1 + w · (Ψ(xt, p
′)−Ψ(xt, pt)))

Support vector machines (SVMs) optimize a weighted sum
of this total hinge loss and the magnitude of the weight vec-
tor, where the parameter C trades off generalization with
training set accuracy: ‖w‖ + Ch(w). Note that, unlike PA
which updates with each new example, SVMs find a single
weight vector w for all instances (xt, pt). There are many
different algorithms for solving this optimization problem.

Expert System. A final approach is to construct a fully cus-
tom solution using a combination of expert knowledge and
educated guesses. This has the potential advantage of pro-
viding a much better fit to the problem. However, such sys-
tems are also more complex and expensive to build. Fur-
thermore, expert knowledge may be wrong or incomplete,
failing to properly capture important patterns in the data.
The advantage or disadvantage of choosing an expert sys-
tem often comes down to the availability of knowledge ver-
sus data. Many of the people developing Smart Desktop are
also regular users of the product and fall within the target de-
mographic of knowledge workers. Therefore, experts were
plentiful while data was sparse, and so the expert system ap-
proach made sense.

The hand-crafted predictor developed for Smart Desktop uses
case-based reasoning to generate a prediction from a diverse
set of features. The cases consider the file type, the context

in which the action takes place, and whether or not enough
information is available to make a reliable prediction from
a single type of feature. Features believed to be more reli-
able are given higher priority. For some cases, predictions
according to several different feature sets are combined.

EVALUATION
Data. The data Smart Desktop uses is, by its very nature,
quite personal. Few persons or companies are comfortable
with disclosing the text of every email read or written, or
the URL of every website visited over a span of time. We
dealt with this problem by obfuscating the data from five
regular users of the Smart Desktop product, all employees
of the company. The obfuscation replaces most words with
a randomly generated replacement string of the same length.
Words with special meaning, such as stop words, were left
as-is. The goal was to provide as much anonymity as possi-
ble while still obtaining the exact same results that we would
on non-anonymized data. In order to create a gold standard,
each user cleaned the project labels for a complete two-week
period. Each user had from 161–1181 resources distributed
over 26–40 projects; these resources were about 2

5 email, 2
5

web pages, and 1
5 files. We collected from 465–5036 time

segments of activity data for each user.

Methodology. We make the simplifying assumption that
users immediately correct all wrong predictions as they use
the system. This allows us to use the labels from all previous
time segments in predicting the current time segment.

We evaluated each algorithm on each user’s data with many
different feature combinations. For brevity, we associate sets
of features with one-letter codes: R for resource features, P
for past project features, S for salience features, s for shared
salience features, and s’ for shared salience features with in-
finite weight on the URI feature. The infinite weight forces
the last known project to be predicted for resources that have
been seen before, effectively assuming that each resource is
associated with a single project. When using resource fea-
tures (R), we make the same assumption, which greatly re-
duces the errors of NB and PA. The feature combinations we
used are listed in Table 1.

For NB and PA, we started with an empty model and learned
the parameters online for various feature set combinations.
PA turned out to be very sensitive to the C parameter, so we
tuned it separately for each feature set and user, using the
value that worked best for the majority of the other users. For
LR and SVM, we used a leave-one-out procedure in which
we trained a different set of weights for each user using the
databases of the other four users. LR and SVM used only
the shared salience features, since the other features do not
generalize across different users. We learned LR weights
using the limited-memory quasi-Newton algorithm L-BFGS
[10]. For the SVM weights, we used the SVM-Struct API by
Joachims [6] to run the algorithm described in [7]. We have
little danger of overfitting with so few weights, so we used
a large value of C = 100 in order to focus on training-set
accuracy more than generalization. The expert system ran
on the same simulated events as our algorithms.

Table 1. Errors on each user’s data.
Method Features Total User 1 2 3 4 5
Baseline 1215 229 161 508 192 126

NB R 1096 267 141 402 178 108
R+P 1002 220 139 368 168 107
R+S 941 184 143 328 170 116
R+S+P 923 176 142 323 167 115

PA R 914 187 131 321 168 107
R+P 899 171 127 321 169 111
R+S 1091 216 157 399 192 127
R+S+P 1090 217 155 397 194 127
s 1116 214 123 494 178 107
s’ 910 172 130 348 159 101
R+s’ 885 167 128 329 159 102
R+P+s’ 882 166 128 327 158 103

LR s 1047 155 121 508 158 105
s’ 871 155 121 332 158 105

SVM s 1011 142 115 501 149 104
s’ 815 142 115 305 149 104

Expert 910 149 147 335 167 112

We compared these algorithms to a a simple baseline algo-
rithm. The baseline predicts the project last associated with
the current URI if it was seen before. Otherwise, it pre-
dicts the last project for the current resource type, or the last
project if we are seeing a resource type for the first time.

Results. In Table 1, we list the number of errors each algo-
rithm made on each user’s data, as well as the totals across
all users. This represents the number of corrections users
would have to make over a two-week period of time in order
to maintain a fully accurate database.

For naive Bayes, the additional information in the past project
and salience features clearly makes a difference: with the ad-
ditional features, NB is competitive with the expert system.
This is impressive for such a simple algorithm.

The passive-aggressive algorithm is more accurate than NB
overall, using either the R or R+P feature sets. The many
salience features (S), however, seem to “distract” PA from
more informative features, significantly reducing accuracy.
PA already captures some salience information indirectly,
since its weights are adjusted to fit the most recent instance,
not cumulative statistics as in naive Bayes. PA achieves its
greatest accuracy with the help of shared salience features (s
or s’), which have the advantage of being fewer and more in-
formative than the those of S. Using a fixed large weight for
the URI shared salience feature, as with s’, seems to work
much better than learning it online, as with s. With the fea-
ture sets R+s’ or R+P+s’, PA beats the expert system for four
out of five users.

Logistic regression and support vector machines perform best
overall, with SVMs showing a modest advantage. The prob-
abilities produced by logistic regression might still be useful
for decision-making applications, but SVMs excel at accu-
racy. The success of these algorithms suggests that shared
salience features are effective and that their weights general-
ize well across different users.

Except for User 3, fixing a large weight for the URI shared

salience feature has no effect on the results. This is what one
might expect, since few resources are associated with more
than one project. To determine what makes User 3 so dif-
ferent, we compared models learned on User 3’s data to the
models learned on the other users’ combined data. We found
that the weights for three of the 14 feature types (’From:’
address, mail folder, and attachment filename) had opposite
signs. This demonstrates that features that work well for one
user may not work well for another. Giving a large weight
to the URI shared salience feature overruled many of these
mistakes. In a longer-term study, some automatic adaptation
might be possible by training on the user’s own data.

Overall, we can conclude that salience is important in seg-
menting desktop activities, and that surprisingly simple mod-
els can outperform even carefully engineered expert systems
in this domain. Our best-performing method, SVM, made
10% fewer errors and was more accurate than the expert sys-
tem for every user. We also observed that differences in how
users organize their activity into projects can lead to large
differences in the optimal feature weights. Given months of
data, the best approach might be to train LR or SVM on the
user’s own data.

REFERENCES
1. W. Cohen, V. Carvalho, and T. Mitchell. Learning to classify email

into speech acts. In Proc. Conf. Empirical Methods in Natural
Language Processing, Barcelona, 2004.

2. K. Crammer, O. Dekel, S. Shalev-shwartz, and Y. Singer. Online
passive-aggressive algorithms. Journal of Machine Learning
Research, 7:2006, 2006.

3. A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin,
L. Li, and J. L. Herlocker. Tasktracer: A desktop environment to
support multi-tasking knowledge workers. In Proc. Int. Conf. on
Intelligent User Interfaces, San Diego, CA, 2005.

4. M. Dredze and H. Wallach. User models for email activity
management. In Workshop on Ubiquitous User Modeling, Int. Conf.
Intelligent User Interfaces, 2008.

5. Y. Huang, D. Govindaraju, T. Mitchell, V. Carvalho, and W. Cohen.
Inferring ongoing activities of workstation users by clustering email.
In Proc. Conf. Email and Anti-Spam, Mountain View, CA, 2004.

6. T. Joachims. Making large-scale SVM learning practical, chapter 11.
MIT Press, Cambridge, MA, 1999.

7. T. Joachims. Learning to align sequences: A maximum-margin
approach. Technical report, Cornell University, 2003.

8. R. Khoussainov and N. Kushmerick. Email task management: An
iterative relational learning approach. In Proc. Conf. Email and
Anti-Spam, 2005.

9. N. Kushmerick and T. Lau. Automated email activity management:
An unsupervised learning approach. In Proc. Int. Conf. Intelligent
User Interfaces, 2005.

10. D. C. Liu and J. Nocedal. On the limited memory BFGS method for
large scale optimization. Mathematical Programming, 45(3):503–528,
1989.

11. A. Mccallum. A comparison of event models for Naive Bayes text
classification. In In AAAI-98 Workshop on Learning for Text
Categorization, pages 41–48. AAAI Press, 1998.

12. J. Shen, L. Li, T. Dietterich, and J. Herlocker. A hybrid learning
system for recognizing user tasks from desk activities and email
messages. In Proc. Int. Conf. Intelligent User Interfaces, pages 86–92,
Sydney, Australia, 2006.

13. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
New York, NY, 1995.

	INTRODUCTION
	TASK PREDICTION AS A MACHINE LEARNING TASK
	FEATURES
	ALGORITHMS
	EVALUATION
	REFERENCES

