
Recursive Random Fields

Daniel Lowd and Pedro Domingos
Department of Computer Science and Engineering

University of Washington, Seattle, WA 98195-2350, USA
{lowd,pedrod}@cs.washington.edu

Abstract
A formula in first-order logic can be viewed as a
tree, with a logical connective at each node, and
a knowledge base can be viewed as a tree whose
root is a conjunction. Markov logic [Richardson
and Domingos, 2006] makes this conjunction prob-
abilistic, as well as the universal quantifiers directly
under it, but the rest of the tree remains purely log-
ical. This causes an asymmetry in the treatment
of conjunctions and disjunctions, and of universal
and existential quantifiers. We propose to over-
come this by allowing the features of Markov logic
networks (MLNs) to be nested MLNs. We call
this representation recursive random fields (RRFs).
RRFs can represent many first-order distributions
exponentially more compactly than MLNs. We per-
form inference in RRFs using MCMC and ICM,
and weight learning using a form of backpropa-
gation. Weight learning in RRFs is more power-
ful than structure learning in MLNs. Applied to
first-order knowledge bases, it provides a very flex-
ible form of theory revision. We evaluate RRFs on
the problem of probabilistic integrity constraints in
databases, and obtain promising results.

1 Introduction
Recent years have seen the development of increasingly pow-
erful combinations of relational and probabilistic representa-
tions, along with inference and learning algorithms for them.
One of the most general representations to date is Markov
logic, which attaches weights to first-order formulas and
views them as templates for features of Markov random fields
[Richardson and Domingos, 2006]. While Markov logic may
be the language of choice for many applications, its unifica-
tion of logic and probability is incomplete. This is because
it only treats the top-level conjunction and universal quanti-
fiers in a knowledge base as probabilistic, when in principle
any logical combination can be viewed as the limiting case
of an underlying probability distribution. In Markov logic,
disjunctions and existential quantifiers remain deterministic.
Thus the symmetry between conjunctions and disjunctions,
and between universal and existential quantifiers, is lost (ex-
cept in the infinite-weight limit).

For example, an MLN with the formula R(X) ∧ S(X) can
treat worlds that violate both R(X) and S(X) as less proba-
ble than worlds that only violate one. Since an MLN acts as
a soft conjunction, the groundings of R(X) and S(X) simply
appear as distinct formulas. (MLNs convert the knowledge
base to CNF before performing learning or inference.) This
is not possible for the disjunction R(X) ∨ S(X): no distinction
is made between satisfying both R(X) and S(X) and satisfying
just one. Since a universally quantified formula is effectively
a conjunction over all its groundings, while an existentially
quantified formula is a disjunction over them, this leads to
the two quantifiers being handled differently.

This asymmetry can be avoided by “softening” disjunction
and existential quantification in the same way that Markov
logic softens conjunction and universal quantification. The
result is a representation where MLNs can have nested MLNs
as features. We call these recursive Markov logic networks,
or recursive random fields (RRFs) for short.

RRFs have many desirable properties, including the abil-
ity to represent distributions like noisy DNF, rules with ex-
ceptions, and m-of-all quantifiers much more compactly than
MLNs. RRFs also allow more flexibilty in revising first-
order theories to maximize data likelihood. Standard methods
for inference in Markov random fields are easily extended to
RRFs, and weight learning can be carried out efficiently using
a variant of the backpropagation algorithm.

RRF theory revision can be viewed as a first-order prob-
abilistic analog of the KBANN algorithm, which initializes
a neural network with a propositional theory and uses back-
propagation to improve its fit to data [Towell and Shavlik,
1994]. A propositional RRF (where all predicates have zero
arity) differs from a multilayer perceptron in that its output
is the joint probability of its inputs, not the regression of a
variable on others (or, in the probabilistic version, its condi-
tional probability). Propositional RRFs are an alternative to
Boltzmann machines, with nested features playing the role of
hidden variables. Because the nested features are determinis-
tic functions of the inputs, learning does not require EM, and
inference does not require marginalizing out variables.

The remainder of this paper is organized as follows. We
begin by discussing MLNs and their limitations. We then in-
troduce RRFs along with inference and learning algorithms
for them, compare them to MLNs, and present preliminary
experimental results.

2 Markov Logic Networks
A Markov logic network (MLN) consists of a set of first-order
formulas and weights, {(wi, fi)}, that serve as a template
for constructing a Markov random field. Each feature of the
Markov random field is a grounding of one of the formulas.
The joint probability distribution is therefore:

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)
where ni is the number of true groundings of the ith formula
given this assignment, and Z is a normalization constant so
that the probabilities of all worlds sum to one. Richardson
and Domingos [2006] show that, in finite domains, this gen-
eralizes both first-order logic and Markov random fields.

Another way to think about a Markov logic network is as a
“softening” of a deterministic knowledge base. A first-order
knowledge base can be represented as a conjunction of all
groundings of all of its formulas. MLNs relax this conjunc-
tion by allowing worlds that violate formulas, but assigning a
per-grounding penalty for each violated formula. Worlds that
violate many formulas are therefore possible, but less likely
than those that violate fewer. In this way, inconsistent knowl-
edge bases can still be useful.

However, while MLNs soften conjunctions and universals,
disjunctions and existentials remain deterministic. Just as in
MLNs the probability of a world decreases gradually with the
number of false groundings of a universally quantified for-
mula, so the probability should increase gradually with the
number of true groundings of an existentially quantified for-
mula. RRFs accomplish this.

3 Recursive Random Fields
A recursive random field (RRF) is a log-linear model in which
each feature is either an observable random variable or the
output of another recursive random field. To build up intu-
ition, we first describe the propositional case, then generalize
it to the more interesting relational case. A concrete example
is given in Section 3.3, and illustrated in Figure 1.

3.1 Propositional RRFs
While our primary goal is solving relational problems, RRFs
may be interesting in propositional domains as well. Propo-
sitional RRFs extend Markov random fields and Boltzmann
machines in the same way multilayer perceptrons extend
single-layer ones. The extension is very simple in principle,
but allows RRFs to compactly represent important concepts,
such as m-of-n. It also allows RRFs to learn features via
weight learning, which could be more effective than current
feature-search methods for Markov random fields.

The probability distribution represented by a propositional
RRF is as follows:

P (X = x) =
1
Z0

exp

(∑
i

wifi(x)

)
where Z0 is a normalization constant, to ensure that the prob-
abilities of all possible states x sum to 1. What makes this

different from a standard Markov random field is that the fea-
tures can be built up from other subfeatures to an arbitrary
number of levels. Specifically, each feature is either:

fi(x) = xj (base case), or

fi(x) =
1
Zi

exp

∑
j

wijfj(x)

 (recursive case)

In the recursive case, the summation is over all features fj

referenced by the “parent” feature fi. A child feature, fj ,
can appear in more than one parent feature, and thus an RRF
can be viewed as a directed acyclic graph of features. The
attribute values are at the leaves, and the probability of their
configuration is given by the root. (Note that the probabilistic
graphical model represented by the RRF is still undirected.)

Since the overall distribution is simply a recursive feature,
we can also write the probability distribution as follows:

P (X = x) = f0(x)
Except for Z0 (the normalization of the root feature, f0),

the per-feature normalization constants Zi can be absorbed
into the corresponding feature weights wki in their parent fea-
tures fk. Therefore, the user is free to choose any convenient
normalization, or even no normalization at all.

It is easy to show that this generalizes Markov random
fields with conjunctive or disjunctive features. Each fi ap-
proximates a conjunction when weights wij are very large.
In the limit, fi will be 1 iff the conjunct is true. fi can also
represent disjuncts using large negative weights, along with
a negative weight for the parent feature fk, wki. The nega-
tive weight wki turns the conjunction into a disjunction just
as negation does in De Morgan’s laws. However, one can
also move beyond conjunction and disjunction to represent
m-of-n concepts, or even more complex distributions where
different features have different weights.

Note that features with small absolute weights have little
effect. Therefore, instead of using heuristics or search to
determine which attributes should appear in which feature,
we can include all predicates and let weight learning sort out
which attributes are relevant for which feature. This is sim-
ilar to learning a neural network by initializing it with small
random values. Since the network can represent any logical
formula, there is no need to commit to a specific structure
ahead of time. This is an attractive alternative to the tradi-
tional inductive methods used for learning MRF features.

An RRF can be seen as a type of multi-layer neural net-
work, in which the node function is exponential (rather than
sigmoidal) and the network is trained to maximize joint like-
lihood. Unlike in multilayer perceptrons, where some ran-
dom variables are inputs and some are outputs, in RRFs all
variables are inputs, and the output is their joint probability.
In other ways, an RRF resembles a Boltzmann machine, but
with the greater flexibility of multiple layers and learnable us-
ing a variant of the back-propagation algorithm. RRFs have
no hidden variables to sum out, since all nodes in the network
have deterministic values, making inference more efficient.

3.2 Relational RRFs
In the relational case, relations over an arbitrary number of
objects take the place of a fixed number of variables. To allow

parameter tying across different groundings, we use parame-
terized features, or parfeatures. We represent the parameter
tuple as a vector, ~g, whose size depends on the arity of the
parfeature. Note that ~g is a vector of logical variables (i.e.,
arguments to predicates) as opposed to the random Boolean
variables x (ground atoms) that represent a state of the world.
We use subscripts to distinguish among parfeatures with dif-
ferent parameterizations, e.g. fi,~g(x) and fi,~g′(x) represent
different groundings of the ith parfeature.

Each RRF parfeature is defined in one of two ways:

fi,~g(x) = Ri(gi1 , . . . , gik) (base case)

fi,~g(x) =
1
Zi

exp

∑
j

wij

∑
~g′

fj,~g,~g′(x)

 (recursive case)

The base case is straightforward: it simply represents the
truth value of a ground relation (as specified by x). There is
one such grounding for each possible combination of param-
eters (arguments) of the parfeature. The recursive case sums
the weighted values of all child parfeatures. Each parameter
gi of a child parfeature is either a parameter of the parent fea-
ture (gi ∈ ~g) or a parameter of a child feature that is summed
out and does not appear in the parent feature (gi ∈ ~g′). (These
~g′ parameters are analogous to the parameters that appear in
the body but not the head of a Horn clause.) Just as sums
of child features act as conjunctions, the summations over ~g′

parameters act as universal quantifiers with Markov logic se-
mantics. In fact, these generalized quantifiers can represent
m-of-all concepts, just as the simple feature sums can repre-
sent m-of-n concepts.

The relational version of a recursive random field is there-
fore defined as follows:

P (X = x) = f0(x)

where X is the set of all ground relations (e.g., R(A, B), S(A)),
x is an assignment of truth values to ground relations, and f0

is the root recursive parfeature (which, being the root, has no
parameters). Since f0 is a recursive parfeature, it is normal-
ized by the constant Z0 to ensure a valid probability distri-
bution. (As in the propositional case, all other Zi’s can be
absorbed into the weights of their parent features, and may
therefore be normalized in any convenient way.)

Any relational RRF can be converted into a propositional
RRF by grounding all parfeatures and expanding all summa-
tions. Each distinct grounding of a parfeature becomes a dis-
tinct feature, but with shared weights.

3.3 RRF Example
To clarify these ideas, let us take the example knowledge base
from Richardson and Domingos [2006]. The domain consists
of three predicates: Smokes(g) (g is a smoker); Cancer(g)
(g has cancer); and Friends(g, h) (g is a friend of h). We
abbreviate these predicates as Sm(g), Ca(g), and Fr(g, h), re-
spectively.

We wish to represent three beliefs: (i) smoking causes can-
cer; (ii) friends of friends are friends (transitivity of friend-
ship); and (iii) everyone has at least one friend who smokes.

(The most interesting belief from Richardson and Domingos
[2006], that people tend to smoke if their friends do, is omit-
ted here for simplicity.) We demonstrate how to represent
these beliefs by first converting them to first-order logic, and
then converting to an RRF.

One can represent the first belief, “smoking causes can-
cer,” in first-order logic as a universally quantified implica-
tion: ∀g.Sm(g) ⇒ Ca(g). This implication can be rewritten
as a disjunction: ¬Sm(g) ∨ Ca(g). From De Morgan’s laws,
this is equivalent to: ¬(Sm(g) ∧ ¬Ca(g)), which can be rep-
resented as an RRF feature:

f1,g(x) =
1
Z1

exp(w1,1Sm(g) + w1,2Ca(g))

where w1,1 is positive, w1,2 is negative, and the feature
weight w0,1 is negative (not shown above). In general, since
RRF features can model conjunction and disjunction, any
CNF knowledge base can be represented as an RRF. A sim-
ilar approach works for the second belief, “friends of people
are friends.”

The first two beliefs are also handled well by Markov logic
networks. The key advantage of recursive random fields is in
representing more complex formulas. The third belief, “ev-
eryone has at least one friend who smokes,” is naturally rep-
resented by nested quantifiers: ∀g.∃h.Fr(g, h) ∧ Sm(h). This
is best represented as an RRF feature that references a sec-
ondary feature:

f3,g(x) =
1
Z3

exp

(∑
h

w3,1f4,g,h(x)

)

f4,g,h(x) =
1
Z4

exp(w4,1Fr(g, h) + w4,2Sm(h))

Note that in RRFs this feature can also represent a distribution
over the number of smoking friends each person has, depend-
ing on the assigned weights. It’s possible that, while almost
everyone has at least one smoking friend, many people have
at least two or three. With an RRF, we can actually learn this
distribution from data.

This third belief is very problematic for an MLN. First of
all, in an MLN it is purely logical: there’s no change in prob-
ability with the number of smoking friends once that number
exceeds one. Secondly, MLNs do not represent the belief ef-
ficiently. In an MLN, the existential quantifier is converted to
a very large disjunction:

(Fr(g, A) ∧ Sm(A)) ∨ (Fr(g, B) ∧ Sm(B)) ∨ · · ·

If there are 1000 objects in the database, then this disjunction
is over 1000 conjunctions. Further, the MLN will convert this
DNF into CNF form, leading to 21000 CNF clauses from each
grounding of this rule.

These features define a full joint distribution as follows:
P (X = x) = 1

Z0
exp

(∑
g w0,1f1,g(x)+∑

g,h,i w0,2f2,g,h,i(x)∑
g w0,3f3,g(x)

)
Figure 1 diagrams the first-order knowledge base contain-

ing all of these beliefs, along with the corresponding RRF.

¬Sm(g)

!!

Ca(g) ¬Fr(g,h) ¬Fr(h,i) Fr(g,i)

"

g # g,h,i # g

Fr(g,h) Sm(h)

"

$ h

f0

%g f1,g

Sm(g) Ca(g)

w1,4 w1,5

%g,h,i f2,g,h,i

Fr(g,h) Fr(h,i) Fr(g,i)

w2,6 w2,7
w2,8

%g f3,g

Fr(g,h) Sm(h)

%h f9,g,h

w3,9

w9,10 w9,11

w0,1

w0,2

w0,3

¬Sm(g)

!!

Ca(g) ¬Fr(g,h) ¬Fr(h,i) Fr(g,i)

"

g # g,h,i # g

Fr(g,h) Sm(h)

"

$ h

f0

%g f1,g

Sm(g) Ca(g)

w1,4 w1,5

%g,h,i f2,g,h,i

Fr(g,h) Fr(h,i) Fr(g,i)

w2,6 w2,7
w2,8

%g f3,g

Fr(g,h) Sm(h)

%h f9,g,h

w3,9

w9,10 w9,11

w0,1

w0,2

w0,3

Figure 1: Comparison of first-order logic and RRF structures. The RRF structure closely mirrors that of first-order logic, but
connectives and quantifiers are replaced by weighted sums.

4 Inference
Since RRFs generalize MLNs, which in turn generalize finite
first-order logic and Markov random fields, exact inference
is intractable. Instead, we use MCMC inference, in particu-
lar Gibbs sampling. This is straightforward: we sample each
unknown ground predicate in turn, conditioned on all other
ground predicates. The conditional probability of a particular
ground predicate may easily be computed by evaluating the
relative probabilities when the predicate is true and when it is
false.

We speed this up significantly by caching feature sums.
When a predicate is updated, it notifies its parents of the
change so that only the necessary values are recomputed.

Our current implementation of MAP inference uses it-
erated conditional modes (ICM) [Besag, 1986], a simple
method for finding a mode of a distribution. Starting from
a random configuration, ICM sets each variable in turn to its
most likely value, conditioned on all other variables. This
procedure continues until no single-variable change will fur-
ther improve the probability. ICM is easy to implement, fast
to run, and guaranteed to converge. Unfortunately, it has no
guarantee of converging to the most likely overall configura-
tion. Possible improvements include random restarts, simu-
lated annealing, etc.

We also use ICM to find an initial state for the Gibbs sam-
pler. By starting at a mode, we significantly reduce the burn-
in time and achieve better predictions sooner.

5 Learning
Given a particular RRF structure and initial set of weights, we
learn weights using a novel variant of the back-propagation
algorithm. As in traditional back-propagation, the goal is to
efficiently compute the derivative of the loss function with
respect to each weight in the model. In this case, the loss
function is not the error in predicting the output variables, but
rather the joint log likelihood of all variables. We must also
consider the partition function for the root feature, Z0. For
these computations, we extract the 1/Z0 term from f0, and
use f0 refer to the unnormalized feature value.

We begin by discussing the simpler, propositional case. We
abbreviate fi(x) as fi for these arguments. The derivative of
the log likelihood with respect to a weight wij consists of two
terms:

∂ log P (x)
∂wij

=
∂ log(f0/Z0)

∂wij
=

∂ log(f0)
∂wij

− ∂ log(Z0)
∂wij

The first term can be evaluated with the chain rule:
∂ log(f0)

∂wij
=

∂ log(f0)
∂fi

∂fi

∂wij

From the definition of fi (including the normalization Zi):

∂fi

∂wij
= fi

(
fj −

1
Zi

∂Zi

∂wij

)
From repeated applications of the chain rule, the
∂ log(f0)/∂fi term is the sum of all derivatives along
all paths through the network from f0 to fi. Given a path
in the feature graph {f0, fa, . . . , fk, fi}, the derivative
along that path takes the form f0wafawbfb · · ·wkfkwi. We
can efficiently compute the sum of all paths by caching the
per-feature partials, ∂f0/∂fi, analogous to back-propagation.

The second term, ∂ log(Z0)/∂wij , is the expected value of
the first term, evaluated over all possible inputs x′. Therefore,
the complete partial derivative is:

∂ log P (x)
∂wij

=
∂ log(f0(x))

∂wij
− Ex′

[
∂ log(f0(x′))

∂wij

]
where the individual components are evaluated as above.

Computing the expectation is typically intractable, but it
can be approximated using Gibbs sampling. A more efficient
alternative, used by Richardson and Domingos [2006], is to
instead optimize the pseudo-likelihood (P ∗) [Besag, 1975]:

P ∗(X=x) =
n∏

t=1

P (Xt = xt|MBx(Xt))

where MBx(Xt) is the state of the Markov blanket of Xt

in the data. Pseudo-likelihood is a consistent estimator, but
little else is known about its formal properties. It can per-
form poorly when long chains of inference are required, but
worked quite well in our test domain.

The expression for the gradient of the pseudo-log-
likelihood of a propositional RRF is as follows:

∂ log P ∗(X=x)
∂wi

=
n∑

t=1

P (Xt = ¬xt|MBx(Xt))

×
(

∂ log f0

∂wi
−

∂log f0[Xt=¬xt]

∂wi

)
We can compute this by iterating over all query predicates,
toggling each one in turn, and computing the relative likeli-
hood and unnormalized likelihood gradient for that permuted

state. Note that we compute the gradient of the unnormalized
log likelihood as a subroutine in computing the gradient of
the pseudo-log-likelihood. However, we no longer need to
approximate the intractable normalization term, Z.

To learn a relational RRF, we use the domain to instanti-
ate a propositional RRF with tied weights. The number of
features as well as the number of children per feature will de-
pend on the number of objects in the domain. Instead of a
weight being attached to a single feature, it is now attached to
a set of groundings of a parfeature. The partial derivative with
respect to a weight is therefore the sum of the partial deriva-
tives with respect to each instantiation of the shared weight.

6 RRFs vs. MLNs
Both RRFs and MLNs subsume probabilistic models and
first-order logic in finite domains. Both can be trained gen-
eratively or discriminatively using gradient descent, either
to optimize log likelihood or pseudo-likelihood. For both,
when optimizing log likelihood, the normalization constant
Z0 can be approximated using the most probable explanation
or MCMC.

Any MLN can be converted into a relational RRF by trans-
lating each clause into an equivalent parfeature. With suffi-
ciently large weights, a parfeature approximates a hard con-
junction or disjunction over its children. However, when its
weights are sufficiently distinct, a parfeature can take on a
different value for each configuration of its children. This
allows RRFs to compactly represent distributions that would
require an exponential number of clauses in an MLN.

Any RRF can be converted to an MLN by flattening the
model, but this will typically require an exponential number
of clauses. Such an MLN would be intractable for learning or
inference. RRFs are therefore much better at modeling soft
disjunction, existential quantification, and nested formulas.

In addition to being “softer” than an MLN clause, an RRF
parfeature can represent many different MLN clauses simply
by adjusting its weights. This makes RRF weight learning
more powerful than MLN structure learning: an RRF with
n + 1 recursive parfeatures (one for the root) can represent
any MLN structure with up to n clauses, as well as many
distributions that an n-clause MLN cannot represent.

This leads to new alternatives for structure learning and
theory revision. In a domain where little background knowl-
edge is available, an RRF could be initialized with small ran-
dom weights and still converge to a good statistical model.
This is potentially much better than MLN structure learning,
which constructs clauses one predicate at a time, and must
adjust weights to evaluate every candidate clause.

When background knowledge is available, we can begin
by initializing the RRF to the background theory, just as
in MLNs. However, in addition to the known dependen-
cies, we can also add dependencies on other parfeatures or
predicates with very small weights. Weight learning can
learn large weights for relevant dependencies and negligi-
ble weights for irrelevant dependencies. This is analagous to
what the KBANN system does using neural networks [Tow-
ell and Shavlik, 1994]. In contrast, MLNs can only do theory
revision through discrete search.

7 Experiments: Probabilistic Integrity
Constraints

Integrity constraints are statements in first-order logic that
are used to detect and repair database errors [Abiteboul et
al., 1995]. Logical statements work well when errors are
few and critical, but are increasingly impractical with noisy
databases such as those that arise from the integration of mul-
tiple databases, information extraction from the web, etc. We
want to make these constraints probabilistic, so we can sta-
tistically infer the types of errors and their sources. To date,
there has been very little work on this problem. (See [Andrit-
sos et al., 2006; Ilyas et al., 2004] for two early approaches.)
This is a natural domain for MLNs and RRFs, since both use
first-order formulas to construct probability distributions over
worlds, or databases.

The two most common types of integrity constraints are
inclusion constraints and functional dependencies. Inclusion
constraints are of the form:

∀x.(∃y.R(x, y)) ⇒ (∃z.S(x, z))

For example, in Company X, R could be the relation
“ProjectLead” (x is in charge of project y) and S could
be the relation “ManagerOf” (x manages employee z). This
constraint says that every project leader manages at least one
other worker. Of course, some employees could manage other
employees without being the lead on any project.

To evaluate MLNs and RRFs on inclusion constraints, we
generated domains consisting of 100 people and 100 projects.
With probability 0.25, a person x is a project leader, and leads
(or co-leads) each project y with probability 0.1. For each
project x leads, x manages employee z with probability 0.05.
Additional managing relationships are generated with a prob-
ability that we vary from 0.001 to 0.1. However, the actual
leadership and management relationships are unobserved: we
only see noisy versions, which are corrupted with a probabil-
ity that we vary from 0.0 to 1.0.

We converted the constraint formula into an MLN and an
RRF as described in previous sections and added the im-
plications ProjectLead(x, y) ⇒ ProjectLead′(x, y) and
ManagerOf(x, z) ⇒ ManagerOf′(x, z), where the predi-
cates with primes are the observed ones. We found that both
MLNs and RRFs worked better when given both directions of
the integrity constraint, since project leaders manage people
and managers lead projects. We learned weights to optimize
pseudo-log-likelihood in all models. The results are shown
in Figure 2. Each data point is an average over 10 train/test
set pairs. RRFs show a consistent advantage over MLNs, be-
cause they can better represent the fact that an employee who
manages many people is probably a project leader, while an
employee who manages few people may not be.

The second type of integrity constraints, functional depen-
dencies, are of the form:

∀x, y1, y2.(∃z1, z2.R(x, y1, z1) ∧ R(x, y2, z2)) ⇒ y1 = y2

In a functional dependency, each x determines a unique y
(or an equivalence set of ys). For example, suppose Com-
pany X has a table of parts suppliers represented by the re-
lation Supplier(TaxID, CompanyName, PartType). A sup-

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 0.2 0.4 0.6 0.8 1

P
se

u
d
o
-l

o
g
-l

ik
e
li

h
o
o
d

Noise level

RRF
MLN

-4500

-4000

-3500

-3000

-2500

-2000

-1500

 0.001 0.01 0.1

P
se

u
d
o
-l

o
g
-l

ik
e
li

h
o
o
d

Prob. of management relation

RRF
MLN

-200
-180
-160
-140
-120
-100
-80
-60
-40

 0 0.2 0.4 0.6 0.8 1

P
se

u
d
o
-l

o
g
-l

ik
e
li

h
o
o
d

Noise level

RRF
MLN

-70
-65
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
se

u
d
o
-l

o
g
-l

ik
e
li

h
o
o
d

Equivalent names per company

RRF
MLN

Figure 2: Log-pseudo-likelihood of RRFs and MLNs for the inclusion constraints and functional dependencies. For inclusion
constraints, we vary the probability of corrupting each observed relation, ProjectLead′(x, y) and Manages′(x, z) (far left)
and the probability of adding extra Manages(x, z) tuples (mid-left). For functional dependencies, we vary the probability of
corrupting the company name of a supplier (mid-right) and the number of equivalent names per company (far right).

plier that supplies multiple types of parts may appear multi-
ple times, but each tax ID should always be associated with
the same company name or set of equivalent company names
(e.g., “Microsoft,” “Microsoft, Inc.,” and “MSFT” are all
equivalent). If there is noise in the database, logic alone
cannot say which company names are equivalent and which
are errors.

For evaluating functional dependencies, we generated a
database with 30 tax IDs, 30 company names (partitioned into
equivalence sets of size k), and 30 part types. Each tax ID is
associated with one set of equivalent company names, uni-
formly selected from the 30/k name groups. For each com-
pany name a tax ID uses, we generated part types z that the
company supplies with probability 0.25. This simulates the
merging of k distinct databases, each with its own company
naming scheme but with shared identifiers for the other fields.
As a final step, we randomly corrupted company names with
a probability that we varied from 0.0 to 1.0.

The task was to predict which pairs of company names
were equivalent, given the supplier table. The results are
shown in Figure 2. With multiple databases at moderate lev-
els of noise, RRFs outperform MLNs. We attribute this to
RRFs’ ability to represent the fact that two company names
are more likely to be equivalent if they both appear multiple
times with the same tax ID, and to learn the appropriate form
of this dependence.

8 Conclusion
Recursive random fields overcome some salient limitations
of Markov logic. While MLNs only model uncertainty over
conjunctions and universal quantifiers, RRFs also model un-
certainty over disjunctions and existentials, and thus achieve a
deeper integration of logic and probability. Inference in RRFs
can be carried out using Gibbs sampling and iterated condi-
tional modes, and weights can be learned using a variant of
the back-propagation algorithm.

The main disadvantage of RRFs relative to MLNs is re-
duced understandability. One possibility is to extract MLNs
from RRFs with techniques similar to those used to extract
propositional theories from KBANN models. Another im-

portant problem for future work is scalability. Here we plan
to adapt many of the MLN optimizations to RRFs.

Most importantly, we intend to apply RRFs to real datasets
to better understand how they work in practice, and to see if
their greater representational power yields better models.

Acknowledgments
This work was supported by a National Science Founda-
tion Graduate Research Fellowship awarded to the first au-
thor, DARPA grant FA8750-05-2-0283 (managed by AFRL),
DARPA contract NBCH-D030010, NSF grant IIS-0534881,
and ONR grant N00014-05-1-0313. The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies, either expressed or implied, of DARPA, NSF,
ONR, or the United States Government.

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison-Wesley, 1995.
[Andritsos et al., 2006] P. Andritsos, A. Fuxman, and R.

Miller. Clean answers over dirty databases: A probabilistic
approach. In Proc. ICDE-06, page 30, 2006

[Besag, 1975] J. Besag. Statistical analysis of non-lattice
data. The Statistician, 24:179-195, 1975.

[Besag, 1986] J. Besag. On the statistical analysis of dirty
pictures. J. Royal Stat. Soc. B, 48:259–302, 1986.

[Ilyas et al., 2004] I. Ilyas, V. Markl, P. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of correlations
and soft functional dependencies. In Proc. SIGMOD-04,
pages 647–658, 2004.

[Richardson and Domingos, 2006] M. Richardson and
P. Domingos. Markov logic networks. Machine Learning,
62:107–136, 2006.

[Towell and Shavlik, 1994] G. Towell and J. Shavlik.
Knowledge-based artificial neural networks. Artificial
Intelligence, 70:119–165, 1994.

