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Abstract
Previous analysis of binary support vector machines
(SVMs) has demonstrated a deep connection between
robustness to perturbations over uncertainty sets and
regularization of the weights. In this paper, we explore
the problem of learning robust models for structured
prediction problems. We first formulate the problem
of learning robust structural SVMs when there are per-
turbations in the sample space, and show how we can
construct corresponding bounds on the perturbations
in the feature space. We then show that robustness to
perturbations in the feature space is equivalent to ad-
ditional regularization. For an ellipsoidal uncertainty
set, the additional regularizer is based on the dual norm
of the norm that constrains the ellipsoidal uncertainty.
For a polyhedral uncertainty set, the robust optimiza-
tion problem is equivalent to adding a linear regular-
izer in a transformed weight space related to the lin-
ear constraints of the polyhedron. We also show that
these constraint sets can be combined and demonstrate
a number of interesting special cases. This represents
the first theoretical analysis of robust optimization of
structural support vector machines. Our experimen-
tal results show that our method outperforms the non-
robust structural SVMs on real world data when the
test data distribution has drifted from the training data
distribution.

1. Introduction
Traditional machine learning methods assume that training
and test data are drawn from the same distribution. How-
ever, in many real-world applications, the distribution is
constantly changing. In some cases, such as spam filter-
ing and fraud detection, an adversary may be actively ma-
nipulating it to defeat the learned model. In others, such as
news and political discussions, the concept changes quickly
over time and we want to be robust to these unpredictable
changes. In both scenarios, it is beneficial to optimize the
model’s performance on not just the training data but on the
worst-case manipulation of the training data, where the ma-
nipulations are constrained to some domain-specific uncer-
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tainty set. For example, in an image classification problem,
the uncertainty set could include minor translations, rota-
tions, noise, or color shifts of the training data. This type
of robust optimization leads to models that perform well on
points that are “close” to those in the training data.

In general, robust optimization addresses optimization
problems in which some degree of uncertainty governs the
known parameters of the model (Ben-Tal & Nemirovski,
1998; 1999; 2000; 2001; Bertsimas & Sim, 2004). Robust
linear programming is central to many of the existing for-
mulations. For example, Bertsimas et al. (2004) show that
when the disturbance of the inputs is restricted to an el-
lipsoid around the true values defined by some norm, then
the robust linear programming problem can be reduced to
a convex cone program. A number of other authors have
explored the application of robust optimization to classi-
fication problems (e.g., (Lanckriet et al., 2003; El Ghaoui
et al., 2003; Bhattacharyya et al., 2004; Shivaswamy et al.,
2006)). Recently, Xu et al. (2009) showed that regular-
ization of support vector machines (SVMs) can be derived
from a robust formulation. However, robustness for struc-
tured prediction models has remained largely unexplored.
Structured prediction problems are characterized by an ex-
ponentially large space of possible outputs, such as parse
trees or graph labelings, making this a much more chal-
lenging problem.

In this paper, we develop a general-purpose technique
for learning robust structural SVMs (Tsochantaridis et al.,
2004). Our basic approach is to consider the worst-case
corruption of the input data within some uncertainty set
and use this to define a robust formulation. This optimiza-
tion problem is often much harder than standard training of
structural SVMs when written directly; we overcome this
obstacle by transforming the robust optimization problem
into a standard structural SVM learning problem with an
additional regularizer. This gives us both robustness and
computational efficiency in the structured prediction set-
ting, as well as establishing an elegant relationship between
robustness and regularization for structural SVMs.

We demonstrate our approach on a new dataset consist-
ing of snapshots of political blogs from 2003 through
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2013, based on the political blogs dataset from Adamic and
Glance (2005). Blogs are classified as liberal or conserva-
tive using both their words and link structure. To make this
more challenging, we train on blogs from 2004 but evalu-
ate on every year, from 2003 to 2013. In this domain, we
define an uncertainty set, show how to construct an appro-
priate regularizer, and show that this regularization can lead
to substantially lower test error than a non-robust model.

2. Notation and Background
x and y denote the vectorized input and the representation
of the structured output in the training data, respectively.
For simplicity of notation, we assume a single training ex-
ample, such as a single social network graph, but our results
easily extend to a set of training examples.

The feature vector φ(x,y) is a function of both inputs and
outputs (and also manipulated input or alternate outputs,
when used as the input argument). We use ∆φ(x,y, ỹ)
to refer to the difference between two feature vectors with
different outputs y and ỹ:

∆φ(x,y, ỹ) ≡ φ(x, ỹ)− φ(x,y).

The value of wTφ(x, ỹ) is called the score of labeling x
as ỹ, for the given model weights w.

∆(y, ỹ) is a scalar distance function, such as Hamming
distance, which is a measure of dissimilarity between the
true and alternate outputs.

We use ‖.‖ to refer to a general norm function and ‖.‖∗ for
the dual norm of ‖.‖, where ‖y‖∗ = sup{yTx|‖x‖ ≤ 1}.

In this paper, we focus on the derivation of robust formu-
lations for 1-slack structural SVM (Joachims et al., 2009).
(With minor changes, the results of this paper can be ap-
plied to n-slack structural SVMs as well, but we skip them
here.) The optimization program of a 1-slack structural
SVM is:

minimize
w,ζ

f(w) + Cζ subject to (1)

ζ ≥ max
ỹ

wT∆φ(x,y, ỹ) + ∆(y, ỹ)

where x is the vector of all input variables, y is the desired
structured query variables, andw is the vector of the model
parameters. The goal is to learn w.

f(w) is a regularization function that penalizes “large”
weights. Depending on the application, f(w) can be any
convex function in general. Semi-homogeneous functions,
such as norms or powers of norms with power value equal
to or greater than 1, are a common choice. (A function f(z)
is semi-homogeneous if and only if f(az) = aαf(z) for
some positive α.) f(w) = 1

2w
Tw is the most commonly

used regularization function.

3. Robust Structural SVMs
In this section, we motivate and define a robust formula-
tion of structural SVMs. We begin by considering how an
adversary might modify an input in order to maximize the
prediction error, and use this to derive a definition of a ro-
bust structural SVM in sample space and feature space.

3.1. Worst-Case/Adversarial Data Manipulation

Adversaries might have a wide range of goals, but in
the worst case they will antagonistically try to reduce
the accuracy of the predictive model. For structural
SVMs, the predicted output is chosen by solving ỹ =
arg maxỹw

Tφ(x, ỹ), where wTφ(x, ỹ) is the classifica-
tion score. Thus, an adversary’s antagonistic goal would
be to replace the true input x with a manipulated version x̃
that maximizes the classification loss ∆(y, ỹ). If the high-
est scoring label is not unique, we assume the adversary
tries to maximize the minimum loss in the set:

maximize
x̃

min
ỹ

∆(y, ỹ), subject to

ỹ ∈ arg max
ỹ 6=y

wTφ(x̃, ỹ)

x̃ ∈ S(x,y) (2)

S(x,y) is a domain-specific uncertainty set, which con-
strains the set of possible corrupt inputs x̃. We always as-
sume that x ∈ S(x,y), which means x can remain un-
changed. The set S(x,y) can contain a wide range of pos-
sible variations, such as the amount of affordable/possible
change in an attribute, or the restrictions that are enforced
on combinations of changes among several attributes.

The bi-level optimization program in (2) is not tractable in
general, especially when x and y have integer components.
A slightly more tractable solution is to relax the program
and only require that ỹ be scored higher than the true output
y:

maximize
x̃,ỹ

∆(y, ỹ), subject to

wTφ(x̃,y) ≤ wTφ(x̃, ỹ)

x̃ ∈ S(x,y) (3)

The maximization in (3) might be infeasible, but its La-
grangian relaxation is always feasible:

maximize
x̃,ỹ

λwT∆φ(x̃,y, ỹ) + ∆(y, ỹ)

subject to x̃ ∈ S(x,y) (4)

We want to attract the reader’s attention to the similarity of
(4), and the nested max operation in the constraint of (1).
In fact, λwT∆φ(x̃,y, ỹ) + ∆(y, ỹ) is a component of the
loss function that the learner wants to minimize. In the next
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subsection, we reformulate the standard 1-slack structural
SVM so that the effect of adversarial manipulation of input
data will be minimized.

3.2. Robust Formulation in Sample Space

Our goal is to find a set of model parameters that per-
form well against the worst-case manipulated input x̃ in the
uncertainty set. We formulate this by replacing the loss-
augmented margin in (1) with the worst-case adversarial
loss obtained by (4):

minimize
w

Cf(w) + sup
x̃∈S(x,y),ỹ

Lλ(w, x̃, ỹ,y) (5)

where Lλ(w, x̃, ỹ,y) = λwT∆φ(x̃,y, ỹ)+∆(y, ỹ). We
replace the maximization with a sup operator to indicate
that the maximum value might not be achieved. Both λ
and C are tunable parameters that can be determined by
cross-validation. In the following lemma we show that it
is possible to tune only one of them by performing a re-
parameterization.

Lemma 3.1. For semi-homogeneous f(.), the problem (5)
can be equivalently re-written in the following form:

minimize
w

Cf(w) + sup
x̃∈S(x,y),ỹ

L(w, x̃, ỹ,y) (6)

where L(w, x̃, ỹ,y) = wT∆φ(x̃,y, ỹ) + ∆(y, ỹ)

Proof. Let w′ = λw, and C ′ = C
λα . Then, for a semi-

homogeneous f(.), where f(aw) = aαf(w), we have
Cf(w) = C

λα f(λw). Therefore, by re-parameterization
of w as w′ and C as C ′, (5) can be rewritten as (6).

Problem (6) is similar in form to a standard structural SVM,
except that the inner maximization is done over both x̃ and
ỹ. This is potentially much harder than simply maximiz-
ing over ỹ, since the input often has a much higher dimen-
sion than the output. For example, when labeling a set of
1000 web pages, there are only 1000 labels to predict but
1,000,000 possible hyperlinks that the adversary could add
or remove. In the next subsection, we show that we can
avoid the above-mentioned computational complexity by
instead restricting the variations in the feature space.

3.3. Robustness in Feature Space

Let ∆x be the disturbance in the sample space such that:
x̃ = x+ ∆x. Then, by finite difference approximation1:

φ(x̃,y) = φ(x+ ∆x,y) = φ(x,y) + δ(x̃,y)

φ(x̃, ỹ) = φ(x+ ∆x, ỹ) = φ(x, ỹ) + δ(x̃, ỹ)

1For more on finite difference approximations, refer to
Smith (1985).

Note that we are not introducing any error; both functions
δ(x̃,y) and δ(x̃, ỹ) contain as many high-order approx-
imation terms as needed for achieving infinitesimal error
introduction, although we never unpack these functions. In
fact, the difference between δ(x̃,y) and δ(x̃, ỹ) is particu-
larly important; let δỹ(x,y, x̃) = δ(x̃, ỹ)− δ(x̃,y), then:

φ(x̃, ỹ)− φ(x̃,y)

= φ(x+ ∆x, ỹ)− φ(x+ ∆x,y)

= φ(x, ỹ)− φ(x,y) + δ(x̃, ỹ)− δ(x̃,y)

= ∆φ(x,y, ỹ) + δỹ(x,y, x̃) (7)

Therefore, the manipulation of the input data affects the
margin L(.) in (6) through δỹ(x,y, x̃). In the rest of the
paper, we will use δi to refer to the ith element of the vector
δỹ(x,y, x̃).

Clearly, δỹ depends on the specific choice of the alternate
labeling ỹ, as well as x̃, x, and y. Let ∆2Φ(x,y) be the
set of all variations, over all ỹ and x̃:

∆2Φ(x,y) ≡ {δ = δỹ(x,y, x̃)| ∀x̃ ∈ S(x,y), ỹ}

Note that ∆2Φ(x,y) is independent of ỹ. In the next sec-
tion, we introduce some mechanical procedures for cal-
culating ∆2Φ(x,y) from S(x,y), for certain choices of
S(x,y) and φ(x,y).

Lemma 3.2. Let L1(w, x̃, ỹ,y) = wT∆φ(x̃,y, ỹ) +
∆(y, ỹ), and L2(w, δ, ỹ) = wT (∆φ(x,y, ỹ) + δ) +
∆(y, ỹ). Then we will have:

sup
δ∈∆2Φ(x,y),ỹ

L2(w, δ, ỹ) ≥ sup
x̃∈S(x,y),ỹ

L1(w, x̃, ỹ,y)

Proof sketch. The left-hand side of the inequality is equal
to the right-hand side except that the supremum is taken
over a superset of function values. Thus, the left-hand side
cannot be any less than the right-hand side.

Now, we can rewrite the robust formulation in (6) over vari-
ations in the feature space:

minimize
w

Cf(w) + sup
δ∈∆2Φ(x,y),ỹ

L(w, δ, ỹ) (8)

where L(w, δ, ỹ) = wT (∆φ(x,y, ỹ) + δ) + ∆(y, ỹ).

By Lemma 3.2, the objective of (8) is an upper-bound for
the objective of (6); therefore, the formulation of the prob-
lem in (8) is an approximate, but more tractable, solution
for (6).

In the next section, we will show that for a wide class of
uncertainty sets ∆2Φ(x,y), problem (8) reduces to an op-
timization program which can be solved as efficiently as an
ordinary 1-slack structural SVM.
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4. Mapping the Uncertainty Sets
In many real world problems, there exists some expert
knowledge about the uncertainty sets in the sample space.
For example, for the web page classification problem, a
spammer can modify web pages by adding and removing
words and links, but is constrained by the cost of compro-
mising legitimate web pages, which takes time and effort,
or obfuscating spam pages, which may make them less ef-
fective at gaining clicks. We can approximate this with a
simple budget on the number of words and links the adver-
sary can change over the entire dataset. Even when such
information is not readily available, it may be possible to
infer an uncertainty set from training data. For example, if
our dataset contains outliers, we can pair each outlier (x̃)
with the most similar non-outlier (x) and take the differ-
ences as possible directions of manipulation: ∆x = x̃−x.
The convex hull of these difference vectors (or an approxi-
mation thereof) can be used to define an uncertainty set for
any instance.

Lemma 3.2 states that the robust formulation in feature
space is a reasonable approximation for the robust formu-
lation in the sample space, but it does not suggest any me-
chanical procedure for calculating the uncertainty sets in
feature space from the ones in the sample space. We now
derive such procedures for certain types of uncertainty sets
and feature functions.

Many features of interest, including logical conjunctions,
can be represented as products of several variables. We de-
fine a multinomial feature function as a sum of many such
products:

φC(x,y) =
∑

(cx,cy)∈C

∏
i∈cx

xi
∏
i∈cy

yi (9)

where C is a set of variable groups and (cx, cy) are the in-
dex sets of the attribute and output variables in each group.
Using terminology from Markov networks, we refer to each
of these variable groups as a clique. The summation groups
together many products that share the same pattern into a
single, aggregate feature so that they may be considered
collectively. For example, in web page classification, the
multinomial feature

∑
i xi,jyi could represent the number

of web pages with label 1 that contain word j. This is
equivalent to having many features with tied weights.

To relate uncertainty sets in sample space to uncertainty
sets in feature space, we begin with the following lemma,
which bounds the disturbance of a single feature.

Lemma 4.1. If the feature function φC(x,y) is multino-
mial with 0 ≤ x,y ≤ 1, then its disturbance δC can be
upper-bounded by a function of the variations in the sam-

ple space, according to the following inequality:

|δC |p

αC |C|
p
q

≤
∑
cx∈C

∑
i∈cx

|x̃i − xi|p (10)

where p ≥ 1 is an arbitrary power value and 1
p + 1

q = 1;
α = max

cx∈C
|cx|(p−1); |cx| is the number of evidence vari-

ables in cx; and |C| is the number of different sets cx in
C.

The proof can be found in the supplementary material.

Now we show how to apply Lemma 4.1 to obtain bounds
over all features simultaneously. The next theorem is the
main result of this section.
Theorem 4.2. For multinomial feature functions and
spherical uncertainty sets in the sample space S(x,y) =
{x̃ | ‖x̃ − x‖p ≤ B} (with p ≥ 1), one can construct an
ellipsoidal uncertainty set in the feature space:

∆2Φ(x,y) = {δ| ‖Mδ‖p ≤ 1} (11)

where M is a diagonal matrix with 1

B(dαi)
1
p |Ci|

1
q

at the

(i, i)th position. d, αi, and |Ci| are appropriate constants.

Proof. Assume that P = {C1, . . . , CL} is a set of cliques
that covers all variable xi’s. Note that such a set should ex-
ist; otherwise, some variables are never used in the model.
For each of the cliques, we form a corresponding difference
in the feature function from Eq. (7), and apply Lemma 4.1.
By adding all of the resulting inequalities, we obtain:

∑
Ci∈P

|δCi |p

αi|Ci|
p
q

≤ d
dim(x)∑
i=1

|x̃i − xi|p

= d‖x̃− x‖pp ≤ dBp

⇒
∑
Ci∈P

|δCi |p

Bpdαi|Ci|
p
q

≤ 1

⇒
∑
Ci∈P

(
1

B(dαi)
1
p |Ci|

1
q

|δCi |

)p
≤ 1

where αi = max
cx∈Ci

|cx|(p−1), and |cx| is the number of vari-

ables in cx. Since it is possible that cliques cover overlap-
ping sets of variables, the coefficient d ≥ 1 will be used to
maintain the inequality.

Now let 1

B(dαi)
1
p |Ci|

1
q

be the diagonal entry in matrix M

that corresponds to feature disturbance δCi . For this choice
ofM , ‖Mδ‖p ≤ 1.

We have an example of applying Theorem 4.2 in Section
6.2, which will show how this construction works in prac-
tice.
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Corollary 4.3. If S(x,y) = {x̃ | ‖x̃ − x‖1 ≤ B}, then
M can be constructed by setting 1

Bd as its (i, i)th element,
which results in a tighter upper bound.

The proof can be found in the supplementary material.

5. Robust Optimization Programs
Our main contribution in this paper is achieving robust for-
mulations that can be efficiently solved. We do this by
demonstrating a connection between robustness to certain
perturbations in feature space and certain types of weight
regularization. In this section we derive formulations for
achieving robust weight learning in structural SVMs when
∆2Φ(x,y) is an ellipsoid, a polyhedron, or the intersection
of an ellipsoid and a polyhedron.

5.1. Ellipsoidal Constrained Uncertainty

We first consider the case when the uncertainty set
∆2Φ(x,y) is ellipsoidal. Recall that any ellipsoid can be
represented in the form of {t | ‖Mt‖ ≤ 1}, where ‖.‖ is
the relevant norm.

Theorem 5.1. For ∆2Φ(x,y) = {δ | ‖Mδ‖ ≤ 1} where
M is positive definite, the optimization program of the ro-
bust structural SVM in (8) reduces to the following regular-
ized formulation of the ordinary 1-slack structural SVM:

minimize
w,ζ

Cf(w) + ‖M−1w‖∗ + ζ (12)

subject to
ζ ≥ sup

ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

where ‖.‖∗ is the dual norm of ‖.‖.

Proof. We begin with the robust formulation of a structural
SVM from (8), where the uncertainty set of δ is defined by
the ellipsoid ‖Mδ‖ ≤ 1:

minimize
w

Cf(w) + sup
‖Mδ‖≤1,ỹ

L(w, δ, ỹ)

Let ν = Mδ, so that δ = M−1ν. Then we will have:

sup
‖Mδ‖≤1,ỹ

L(w, δ, ỹ)

= sup
‖Mδ‖≤1,ỹ

wT (∆φ(x,y, ỹ) + δ) + ∆(y, ỹ)

= sup
‖Mδ‖≤1

wT δ + sup
ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

= sup
‖ν‖≤1

wTM−1ν + sup
ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

By definition of the dual norm, sup‖ν‖≤1(wTM−1)ν =

‖M−Tw‖∗. Since M−1 is also a definite matrix, it is

symmetric; therefore, ‖M−Tw‖∗ = ‖M−1w‖∗.

= ‖M−1w‖∗ + sup
ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

By substitution, the rest of the proof is straightforward.

Note that Theorem 5.1 can still be applied when M is not
positive definite by using the Moore-Penrose inverse ofM
instead of the regular inverse. The result in Theorem 5.1
uses the technique of robust linear programming with ar-
bitrary norms that is introduced in Bertsimas et al. (2004).
This theorem can also be seen as a generalization of Theo-
rem 3 in Xu et al. (2009) to structural SVMs. Theorem 5.1
shows the direct connection between the robust formula-
tion and regularization of the non-robust formulation for
structural SVMs.

Corollary 5.2. For disturbances of the form ‖δ‖ ≤ B in
the feature space, with B being a maximum budget for the
applicable changes and ‖.‖ being an arbitrary norm, ro-
bustness can be achieved by adding the regularization func-
tion B‖w‖∗ to the objective.

Proof. Since ‖δ‖/B ≤ 1 ⇒ ‖ 1
Bδ‖ = ‖ 1

B Iδ‖ ≤ 1.
Let M = 1

B I , then M−1 = BI . Thus, ‖M−1w‖∗ =
‖BIw‖∗ = B‖w‖∗. By Theorem 5.1, B‖w‖∗ is the ap-
propriate regularization function.

Note that M can also be seen as a tuning parameter. In
particular, if there is a low-dimensional representation of
M , then tuningM might be an option.

The commonly used L2 regularization can be in fact inter-
preted as a regularization function that enforces robustness
to disturbances in the feature space that are restricted to a
hypersphere.

Corollary 5.3. If f(w) = 0, then setting M = 1
C I and

‖.‖ = ‖.‖2 will recover the commonly used L2-regularized
structural SVM.

Proof. If M = 1
C I , then M−1 = CI . Note that the L2

norm is dual to itself. Therefore, f(w) + ‖M−1w‖∗2 =
0 + ‖CIw‖2 = C‖w‖2.

Corollary 5.4. Robustness to variations restricted by a
Mahalanobis norm ‖δ‖S =

√
δTSδ ≤ 1, where S is

positive definite, is equivalent to adding the regularization
function ‖w‖S−1 =

√
wTS−1w to the objective.

Proof. Let S = UΛUT be the spectral decomposition
of S. Set M = UΛ

1
2UT and the norm ‖.‖ to ‖.‖2.

Then ‖Mδ‖2 =
√
δTMTMδ =

√
δTM2δ =

√
δTSδ.

Therefore the resulting regularization function will be
‖M−1w‖∗2 = ‖M−1w‖2 =

√
wTM−TM−1w =
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wTUΛ−

1
2UTUΛ−

1
2UTw =

√
wTUΛ−1UTw =√

wTS−1w = ‖w‖S−1 , Note that UTU = I because
U is a unitary matrix.

5.2. Polyhedral Constrained Uncertainty

For some problems, an ellipsoid may not be a good rep-
resentation of the uncertainty set, but almost any convex
uncertainty set can be approximated by a polyhedron. In
this subsection we consider the situations in which we are
aware of the shape of the polyhedral constraints on the vari-
ations in the feature space; i.e., ∆2Φ(x,y) = {δ|Aδ ≤
b}. The next theorem shows that polyhedral uncertainty
sets are equivalent to linear regularization in a transformed
feature space. We begin with a supporting lemma.

Lemma 5.5. If x ∈ S(x,y), then for the corresponding
∆2Φ(x,y) = {δ|Aδ ≤ b}, b is a non-negative vector.

Proof. x ∈ S(x,y), and φ(x̃, ỹ)− φ(x̃,y) = φ(x, ỹ)−
φ(x,y) + δ. Therefore, when x̃ = x then δ = 0, so
we should have 0 ∈ ∆2Φ(x,y). Therefore, for δ = 0,
Aδ = A0 ≤ b; i.e., b ≥ 0.

Theorem 5.6. For ∆2Φ(x,y) = {δ|Aδ ≤ b}, the opti-
mization program of the robust structural SVM in (8) re-
duces to the following ordinary 1-slack structural SVM

minimize
λ≥0,ζ

Cf(ATλ) + λT b+ ζ (13)

subject to ζ ≥ sup
ỹ
λTA∆φ(x,y, ỹ) + ∆(y, ỹ)

Proof. By substituting the uncertainty set ∆2Φ(x,y) =
{δ|Aδ ≤ b} into the optimization program (8), we obtain:

minimize
w≥0

Cf(w) + sup
Aδ≤b,ỹ

L(w, δ, ỹ) (14)

We can rewrite sup
Aδ≤b,ỹ

L(w, δ, ỹ) as:

sup
Aδ≤b,ỹ

wT (∆φ(x,y, ỹ) + δ) + ∆(y, ỹ)

= sup
Aδ≤b

wT δ + sup
ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

We perform a Lagrangian relaxation onAδ ≤ b:

= inf
λ≥0

sup
δ

(wT δ − λTAδ + λT b)

+ sup
ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

= inf
λ≥0

(
λT b+ sup

δ
(wT − λTA)δ

)
+ sup

ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

Note that the value of the sup
δ

(wT − λTA)δ will be +∞,

unless w = ATλ, therefore:

=


inf
λ≥0

λT b+ sup
ỹ

[wT∆φ(x,y, ỹ) + ∆(y, ỹ)]

if w = ATλ

+∞ otherwise.

Therefore (14) can be rewritten as:

minimize
w≥0

Cf(w) + inf
λ≥0

λT b+

sup
ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ)

subject to w = ATλ (15)

By substitutingw withATλ, (15) can be equivalently writ-
ten as (13). Note that by Lemma (5.5), the value of b is is
always non-negative, so no value of λ can lead the value
of the objective in the outer minimization to negative infin-
ity.

It is a known fact that maximization (or minimization) of
L1 and L∞ norms of affine functions can be converted to
linear programs (Boyd & Vandenberghe, 2004). In the fol-
lowing proposition, we state that both Theorem 5.1 and
Theorem 5.6 will lead to equivalent optimization programs
in these cases.

Proposition 5.7. If the disturbances in the feature space
are restricted by some ellipsoid that is defined by L1 or L∞
norms, then the optimization program that is generated by
Theorem 5.1 can be equivalently transformed to one that is
generated by Theorem 5.6

The proof can be found in the supplementary materials.

5.3. Ellipsoidal/Polyhedral Conjunction

In some cases, the uncertainty set in feature space may re-
semble an ellipsoid but with additional linear constraints.
We can model this as the intersection of an ellipsoid and
a polyhedron. The following theorem describes how such
uncertainty sets can be transformed into regularizers.

Theorem 5.8. For ∆2Φ(x,y) = {δ|‖Mδ‖ ≤ 1,Aδ ≤
b}, the optimization program of the robust structural SVM
in (8) reduces to the following ordinary 1-slack structural
SVM:

minimize
w,λ≥0,ζ

Cf(w) + ‖M−1(w −ATλ)‖∗ + bTλ+ ζ

subject to
ζ ≥ sup

ỹ
wT∆φ(x,y, ỹ) + ∆(y, ỹ) (16)

The proof of Theorem 5.8 is a combination of the proofs
of Theorems 5.1 and 5.6. First, we perform the Lagrangian
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relaxation as in the proof of 5.6, and then we add the dual of
M−1(w−ATλ) (the coefficient of δ) as the regularization
term.

The results in Theorems 5.1, 5.6, and 5.8 apply to binary
and multi-class SVMs as well simply by restricting the
space of y to a small set of values. For Theorem 5.1, this
reduces to results proved by Xu et al. (2009). For the later
theorems, we are not aware of any analogous previous work
for binary or multi-class SVMs.

Some limiting cases of Theorem 5.8 are also interesting.
For example, for a (geometrically) infinitely large polyhe-
dron Aδ ≤ b (e.g., elements of the vector b are infinitely
large), λ must be 0, which recovers the regularization term
‖M−1w‖∗ introduced in Theorem 5.1.

Let λ1, . . . , λm be the eigenvalues of M . If min(λi) →
+∞ (for example, a diagonal matrix with very large num-
bers on the diagonal), then as a result δ → 0 in the robust
formulation. Intuitively, this means that the uncertainty set
only contains the unmodified input x. In this case, M−1

approaches the zero matrix, and as a result the regulariza-
tion term ‖M−1(w −ATλ)‖∗ fades as expected. On the
other hand, if max(λi)→ 0, then ‖M−1(w−ATλ)‖∗ ≈
‖LMI(w−ATλ)‖∗ = LM‖(w−ATλ)‖∗, whereLM →
+∞. Therefore, the constraint w = ATλ must be satis-
fied, leading to (13).

6. Experiments
We demonstrate the utility of our approach by applying it
to a collective classification problem.

6.1. Dataset

We introduce a new dataset based on the political blogs
dataset collected by Adamic and Glance (2005). The orig-
inal dataset consists of 1490 blogs and their network struc-
ture from the 2004 presidential election period. Each blog
is labeled as liberal or conservative. We expanded this
dataset by crawling the actual blog texts in different years
to obtain a vector of 250 word features for each blog in each
yearly snapshot from 2003 to 2013. We used the internet
archive website (https://archive.org/web/) to obtain snap-
shots of each blog in each year. We selected the snapshot
closest to October 10th of each year and removed blogs that
were inactive for an 8 month window (4 months before and
after October 10th).

The political affiliation of a blog can thus be inferred from
both the words on the blog and its hyperlink relationships
to other blogs, which are likely to have similar political
views. Since political topics evolve quickly over time, we
expect a significant amount of concept drift over the years,
especially over the word features. Since the test distribution

is evolving significantly, we might expect a robust model to
outperform a non-robust model when trained and tested on
different years.2

6.2. Problem Formulation

In our experiments, we use both word features and link fea-
tures. We construct one multinomial feature for each word
i and label k, φik(x,y) =

∑
j x

w
jiyjk, where xwji = 1 if the

jth blog contains the ith word, and yjk = 1 if the jth blog
has label k. We also construct a link feature for each label
k: φk(x,y) =

∑
ij x

e
ijyikyjk, where xeij = 1 if there is a

link from the ith blog to the jth blog.

For our constraints, we assume that the number of words
added or removed is bounded by some budget, Bw, and the
number of edges by another budget, Be. Thus, letting xw

be vector of all word-related variables, ‖x̃w−xw‖1 ≤ Bw.
Similarly, ‖x̃e − xe‖1 ≤ Be.

In order to construct the uncertainty set in the feature space,
we follow the construction procedure in Theorem 4.2 and
then apply Corollary 4.3. For the word features φik and
edge features φk we can construct separate uncertainty sets:

|δik| ≤
∑
i

|x̃wik − xwik|

⇒
∑
k

|δik| ≤
∑
i,k

|x̃wik − xwik| = ‖x̃w − xw‖ ≤ Bw

|δek| ≤
∑
i,j

|x̃eij − xeij | = ‖x̃e − xe‖ ≤ Be

In our domain there are two classes, liberal and conserva-
tive, so k ∈ {0, 1}. As a result:

∑1
k=0

∑
i
|δik|
2Bw

≤ 1, and∑1
k=0

|δek|
2Be
≤ 1. Summing the equalities and dividing by

two:

∑
i,k

|δik|
4Bw

+
∑
k

|δek|
4Be

≤ 1

Finally, let δ = [δ11, . . . , δnm, δe0, δe1]T , where m =
250 is the number of word attributes that are chosen
from training data, and n is the number of the nodes in
the graph. Then, M is a diagonal matrix with entries
[ 1
4Bw

, . . . , 1
4Bw

, 1
4Be

, 1
4Be

], so we will have ‖Mδ‖1 ≤ 1.
Note that, in this uncertainty translation, the base case of
Lemma 4.1 holds in the first place, so the inequality is in
its tightest form.

2The expanded political blogs dataset and our robust
SVM implementation can be downloaded from the fol-
lowing URL: http://ix.cs.uoregon.edu/˜lowd/
robustsvmstruct.

http://ix.cs.uoregon.edu/~lowd/robustsvmstruct
http://ix.cs.uoregon.edu/~lowd/robustsvmstruct
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6.3. Methods and Results

We partitioned the blogs into three separate sub-networks
and used three-way cross-validation, training on one sub-
network, using the next as a validation set for tuning pa-
rameters, and evaluating on the third. We used mutual in-
formation to select the 250 most informative words sepa-
rately for each training set. However, rather than training,
tuning, and testing on the same year, we trained and tuned
on the snapshot from 2004 and evaluated the models on
every snapshot from 2003 to 2013.

Standard structural SVMs have one parameter C that
needs to be tuned. The robust method has an addi-
tional regularization parameter C ′ = 1/Be = 1/Bw
which scales the strength of the robust regularization.3

We chose these parameters from the semi-logarithmic set
{0, .001, .002, .005, .1, . . . , 10, 20, 50}. We intentionally
added 0 to this set to allow removing one of the regular-
ization terms. We learned parameters using a cutting plane
method, implemented using the Gurobi optimization en-
gine 5.60 (2014) for running all integer and quadratic pro-
grams. We ran for 50 iterations and selected the weights
from the iteration with the best performance on the tuning
set.

Figure 1 shows the average error rate of the robust and
non-robust formulations in each year. In 2004, both have
very similar accuracy. This is not surprising, since they
were tuned for this particular year. In years before and af-
ter 2004, the error rate increases for both models. How-
ever, the error rate of the robust model is often substan-
tially lower than the non-robust model. We attribute this
to the fact that the robust model has additional L∞ regu-
larization (since L∞ is the dual of the L1 uncertainty set
used). This prevents the model from relying too much on
a small set of features that may change, such as a particu-
lar political buzzword that might go out of fashion. These
results demonstrate that robust methods for learning struc-
tural SVMs can lead to large improvements in accuracy,
even when we do not have an explicit adversary or a per-
fect model of the perturbations.

7. Related Work
In this paper, the big picture of our formulation for robust-
ness in the presented algorithms is based on a minimax for-
mulation, where the learner minimizes a loss function and,
at the same time, the antagonistic adversary tries to max-
imize the same quantity. Some related work has focused
on designing classifiers that are robust to adversarial per-
turbation of the input data in a minimax formulation. For
example, Globerson and Roweis (2006) introduce a clas-

3In general, Be and Bw could be tuned separately, but we did
not do this in our experiments.
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Figure 1. Average prediction error of robust and non-robust mod-
els trained on year 2004 and evaluated on years 2003-2013.

sifier that is robust to feature deletion. Teo et al. (2008)
extend this to any adversarial manipulation that can be ef-
ficiently simulated. Livni et al. (2012) show that a mini-
max formulation of robustness in the presence of stochas-
tic adversaries results in L2 (Frobenius for matrix weights)
regularization, and for the multi-class case results in two-
infinity regularization of the model weights. Torkamani
and Lowd (2013), show that for associative Markov net-
works, robust weight learning for collective classification
can be efficiently done with a convex quadratic program.

Xu et al.’s work on robustness and regularization (2009) is
the most related previous work, which analyzes the con-
nection between robustness and regularization in binary
SVMs. Our work goes well beyond these results (and the
ones mentioned in the introduction) by analyzing arbitrary
structural SVMs and showing how they can be made robust
without directly simulating the adversary, by choosing the
appropriate regularization function.
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