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Proof of Lemma 4.1:

Proof. We form 5%(3!;, y, ) (from Eq. (7) in the paper):
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For an individual elements of the vector § as expanded in
(1), we can apply Holder’s inequality to the right-hand side:
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where st = 1. Since | .,HiECy Yy — Hiecy y;]9 < 1, we
will have: chec | Hie(:y yiijEcy y;|? < |C|, therefore:
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After applying Lemma A and raising both sides of the in-
equality to the power of p, we will have:
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where o = ma)é\cx|(”_1), and |c,| is the number of vari-
€

ables in c,. O

The proof of Lemma 4.1 depends on the following lemma:
Lemma A. For any sequence aq,...,a,,b1,...,b,, such

that 0 < a;,b; < 1, we have |[];_, a; —

‘ [T bil?
nP=D 3T lai — bilP.
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Proof. For n = 1, the inequality is trivial. Let u; =
n/2 n/2 n

Hll_:{ Jaiv Uz = HzL:{ : bi, v1 = Hi:Ln/2J+1 a;, and

V2 = H?ZL,L/QJ_H a;. Also it is a known fact that | f +¢g|P <

20-L(|f|P + |g|P) g, f € R. We have:
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by recursive application of the above procedure, the prod-
ucts can be decomposed at most log, n times. Therefore,

201053 o, b
i=1

n n

\Hai*Hbi\p <
i=1 i=1
n
= np—lzmi_bi‘]?
i=1

Proof of Corollary 4.3:

Proof. We begin with the result of Theorem 4.3, where

— 1 s the coeficient of variations in the feature
corresponding to clique C;. Since p = 1 then ¢ = oo, and

. — (p—1) =1:
@i = max|cy|
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Also in (2), set p = 1 and g = oo.
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Since, max., ec | Hiecy Ui — HiECy y;| = 1, we will be
using a tighter upper-bound. O

Proof of Proposition 5.7:

Proof. We prove the case when regularization function is
|w|| = ||w]|s (the proofs for || M ~1w|| o and || M~ w||;
are very similar, but for simplicity we chose this case). Re-
call that the optimization program of the robust structural
SVM is:

minir?ize af(w)+co||lw|lec +& subjectto  (3)
w

§ = max w’ (p(2,§) - $(x,y)) + Ay, )
It can be re-written as:
mig{lg}ltize crf(w) 4+ cot +&  subject to
¢ 2 max w” (¢(2.5) — Bl@.y)) + Ay, 5)
w; <t, —w; <t Vwy

In vector form we can write these constraints as: w < 1¢
and —w < 1t. Clearly, there are two vectors s and s, for
which:

w+s1=1t == w=1lt-s5
—w4+s=1t = w=s3—1t
Let v+ = [sT sI ¢J7, m = dimw, I,
[Im><m Qme Ole]’ 152 = [Qme Im><m Omxl]’ and

I, = [lem, O1xm 1]'
t = I,7y). By substitution:

(16 S1 = IS17’ S = Is;‘Ya

w = 1It'7 - Isl'Y = (1It - Isl)’y

ISz'Y -1y = (IS2 - 1It)’7

which implies (11; — I, )y = (Is, — 11;)7, therefore:
(2x1I;—1Is, —I5,)y = 0, orequivalently v € N'(2x11;—
I,, — I,,), where N(.) returns the null-space of the input
matrix. Let columns of matrix B span N'(2 * 11, — I, —
I,,), also let v = B, we will have w = (11 — I, ) BA.
Let A= BT(1I;—1I,,)" and b = I, then we can rewrite
Problem (3) as:

w

mi{1>ir51i§ze c1f(ATX) + b XA+ ¢ subject to

€ = max AT A(9(w,§) ~ $(.9)) + Ay, 9)

Note that since (2 x 11y — Iy, — Is,)B = 0, we will have
(1I; —1,,)B = (Is, — 11;) B, and A can be transpose of
any of them. O



