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Abstract
Naive Bayes models have been widely used for clus-
tering and classification. However, they are seldom
used for general probabilistic learning and inference
(i.e., for estimating and computing arbitrary joint,
conditional and marginal distributions). In this pa-
per we show that, for a wide range of benchmark
datasets, naive Bayes models learned using EM have
accuracy and learning time comparable to Bayesian
networks with context-specific independence. Most
significantly, naive Bayes inference is orders of mag-
nitude faster than Bayesian network inference using
Gibbs sampling and belief propagation. This makes
naive Bayes models a very attractive alternative to
Bayesian networks for general probability estima-
tion, particularly in large or real-time domains.

1. Introduction

Bayesian networks can efficiently represent complex prob-
ability distributions, and have received much attention
in recent years (Pearl, 1988). Unfortunately, this effi-
ciency does not extend to inference, which is #P-complete
(Roth, 1996). In practice, methods for exact inference in
Bayesian networks are often too costly, and we have to
resort to approximate methods like Markov chain Monte
Carlo (Gilks et al., 1996) and loopy belief propagation
(Yedidia et al., 2001). However, the application of these
methods is fraught with difficulties: the inference time is
unpredictable, convergence is difficult to diagnose, in some
cases it does not occur, and sometimes incorrect values are
output. As a result, and despite much research, inference
in Bayesian networks remains to a large extent a black art,
and this significantly limits their applicability.

Ideally, we would like to have a representation for joint
probability distributions that is as powerful as Bayesian
networks and no harder to learn, but lends itself to exact
inference in linear time. In this paper, we observe that (per-
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haps surprisingly) such a representation is readily avail-
able, in the form of naive Bayes models. Naive Bayes is
a special form of Bayesian network that is widely used for
classification (Domingos & Pazzani, 1997) and clustering
(Cheeseman & Stutz, 1996), but its potential for general
probabilistic modeling (i.e., to answer joint, conditional
and marginal queries over arbitrary distributions) remains
largely unexploited. Naive Bayes represents a distribution
as a mixture of components, where within each component
all variables are assumed independent of each other. Given
enough components, it can approximate an arbitrary dis-
tribution arbitrarily closely. Inference time is linear inthe
number of components and the number of query variables.
When learned from data, naive Bayes models never con-
tain more components than there are examples in the data,
guaranteeing that inference will be tractable. Whether this
approach leads to models that are as accurate as Bayesian
networks of arbitrary structure is an empirical question, and
in this paper we answer it affirmatively by conducting ex-
tensive experiments in 50 domains. Notice that our main
goal in this paper is to learn accurate models that allow for
fast inference, as opposed to gaining insight into the struc-
ture of probabilistic dependencies in the domain.

We begin by briefly reviewing the necessary background
on Bayesian networks (Section 2). We then describe naive
Bayes models for general probability estimation and our
NBE algorithm for learning them (Section 3). Finally, we
report our experiments and discuss their results (Section 4).

2. Bayesian Networks

A Bayesian network encodes the joint probability distribu-
tion of a set ofn variables,{X1, . . . ,Xn}, as a directed
acyclic graph and a set of conditional probability distribu-
tions (CPDs). Each node corresponds to a variable, and the
CPD associated with it gives the probability of each state
of the variable given every possible combination of states
of its parents. The set of parents ofXi, denotedπi, is the
set of nodes with an arc toXi in the graph. The structure
of the network encodes the assertion that each node is con-
ditionally independent of its non-descendants given its par-
ents. The joint distribution of the variables is thus given by
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P (X1, . . . ,Xn) =
∏n

i=1
P (Xi|πi). For discrete domains,

the simplest form of CPD is a conditional probability table,
but this requires space exponential in the number of par-
ents of the variable. A more scalable approach is to use de-
cision trees as CPDs, taking advantage of context-specific
independencies (Friedman & Goldszmidt, 1996).

When the structure of the network is known, learning re-
duces to estimating CPD parameters. When some variables
are unobserved in some or all examples, this can be done
using the EM algorithm, which alternates between comput-
ing expectations for the unobserved values using the cur-
rent parameters and computing the maximum likelihood or
MAP parameters using the current expectations (Dempster
et al., 1977). When the structure is unknown, it can be
learned by starting with an empty or prior network and
greedily adding, deleting and reversing arcs to optimize
some score function (Heckerman et al., 1995). Learning
structure given incomplete data requires a computationally
expensive combination of EM and structure search (Fried-
man, 1998).

The goal of inference in Bayesian networks is to answer
arbitrary marginal and conditional queries (i.e., to compute
the marginal distribution of a set of query variables, pos-
sibly conditioned on the values of a set of evidence vari-
ables). Because exact inference is intractable, approxi-
mate methods are often used, of which the most popular
is Gibbs sampling, a form of Markov chain Monte Carlo
(Gilks et al., 1996). A Gibbs sampler proceeds by sam-
pling each non-evidence variable in turn conditioned on its
Markov blanket (parents, children and parents of children).
The distribution of the query variables is then approximated
by computing, for each possible state of the variables, the
fraction of samples in which it occurs. Gibbs sampling can
be very slow to converge, and many variations have been
developed, but choosing and tuning an MCMC variant for
a given application remains a difficult, labor-intensive task.
Diagnosing convergence is also difficult. Another popu-
lar inference method is loopy belief propagation (Yedidia
et al., 2001). In this approach, each node iteratively sends
messages to its neighbors about their expected distribution,
and updates its own. While belief propagation can be faster
than MCMC, it sometimes does not converge, and some-
times converges to incorrect values.

3. Naive Bayes Probability Estimation

Naive Bayes models are so named for their “naive” as-
sumption that all variablesXi are mutually indepen-
dent given a “special” variableC. The joint distribu-
tion is then given compactly byP (C,X1, . . . ,Xn) =
P (C)

∏n
i=1

P (Xi|C). The univariate conditional dis-
tributions P (Xi|C) can take any form (e.g., multino-
mial for discrete variables, Gaussian for continuous ones).

When the variableC is observed in the training data,
naive Bayes can be used for classification, by assigning
test example(X1, . . . ,Xn) to the classC with highest
P (C|X1, . . . ,Xn) (Domingos & Pazzani, 1997). WhenC
is unobserved, data points(X1, . . . ,Xn) can be clustered
by applying the EM algorithm withC as the missing infor-
mation; each value ofC corresponds to a different cluster,
andP (C|X1, . . . ,Xn) is the point’s probability of mem-
bership in clusterC (Cheeseman & Stutz, 1996).

Naive Bayes models can be viewed as Bayesian networks
in which eachXi hasC as the sole parent andC has no
parents. A naive Bayes model with GaussianP (Xi|C) is
equivalent to a mixture of Gaussians with diagonal covari-
ance matrices (Dempster et al., 1977). While mixtures of
Gaussians are widely used for density estimation in con-
tinuous domains, naive Bayes models have seen very little
similar use in discrete and mixed domains. (See Breese
et al. (1998) for one exception in the domain of collabo-
rative filtering.) However, they have some notable advan-
tages for this purpose. In particular, they allow for very ef-
ficient inference of marginal and conditional distributions.
To see this, letX be the set of query variables,Z be the
remaining variables, andk be the number of mixture com-
ponents (i.e., the number of values ofC). We can compute
the marginal distribution ofX by summing outC andZ:

P (X = x) =

k
∑

c=1

∑

z

P (C = c,X = x,Z = z)

=

k
∑

c=1

∑

z

P (c)

|X|
∏

i=1

P (xi|c)

|Z|
∏

j=1

P (zj |c)

=
k

∑

c=1

P (c)

|X|
∏

i=1

P (xi|c)

|Z|
∏

j=1





∑

zj

P (zj |c)





=

k
∑

c=1

P (c)

|X|
∏

i=1

P (xi|c)

where the last equality holds because, for allj,
∑

zj
P (zj |c) = 1. Thus the non-query variablesZ can

simply be ignored when computingP (X = x), and the
time required to computeP (X = x) is O(|X|k), indepen-
dent of |Z|. This contrasts with Bayesian network infer-
ence, which is worst-case exponential in|Z|. Similar con-
siderations apply to conditional probabilities, which can
be computed efficiently as ratios of marginal probabilities:
P (X = x | Y = y) = P (X = x, Y = y)/P (Y = y).

A slightly richer model than naive Bayes which still allows
for efficient inference is the mixture of trees, where, in each
cluster, each variable can have one other parent in addition
to C (Meila & Jordan, 2000). However, the time required
to learn mixtures of trees is quadratic instead of linear in
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Table 1.The NBE learning algorithm.

INPUT: training setT , hold-out setH, initial number of compo-
nentsk0, and convergence thresholdsδEM andδAdd.

Initialize M with one component.
k ← k0

repeat
Add k new mixture components toM , initialized usingk

random examples fromT .
Remove thek initialization examples fromT .
repeat

E-step:Fractionally assign examples inT to mixture com-
ponents, usingM .
M-step:Compute maximum likelihood parameters forM ,
using the filled-in data.
If log P (H|M) is best so far, saveM in Mbest.
Every 5 cycles, prune low-weight components ofM .

until log P (H|M) fails to improve by ratioδEM .
M ←Mbest

Prune low weight components ofM .
k ← 2k

until log P (H|M) fails to improve by ratioδAdd.
Execute E-step and M-step twice more onMbest, using exam-
ples from bothH andT .
ReturnMbest.

the number of variables per iteration of EM, and they have
not been extensively studied empirically. Comparing them
with naive Bayes is an item for future research.

In principle, a clustering algorithm like AutoClass (Cheese-
man & Stutz, 1996) could be used to learn naive Bayes
models. However, in our experiments we found AutoClass
to be very slow and inaccurate. This is probably due to
the fact that it was designed for clustering, where the de-
sired number of mixture components is typically very low.
In our case, the goal is accurate joint probability estima-
tion, and this may require a large number of components.
We have thus developed a new algorithm for this purpose,
called NBE (Naive Bayes Estimation). Table 1 shows its
pseudo-code.

NBE is essentially EM wrapped in an outer loop that pro-
gressively adds and prunes mixture components. We model
discrete variables with multinomials and continuous ones
with Gaussians, although other distributions could easily
be added. We first divide the training data into a train-
ing set and a hold-out set. We begin with a single com-
ponent consisting of each variable’s marginal distribution.
In each cycle, we addk new components, using a random
training example to initialize each component as follows.
If the ith variable is discrete, we assign a probability of
(1.0 + 0.1P (xi))/1.1 to its valuexi in the example, and
a probability of0.1P (x′

i)/1.1 to all other values, where
P (x′

i) is the value’s relative frequency in the data. If theith
variable is continuous, we use its valuexi as the mean of

the Gaussian, and 0.4 of its variance in the data as the vari-
ance. Thek seed examples are removed from the data to
avoid overfitting. In each cycle, the number of components
added doubles. If there arem components before the cycle
starts andn new ones are added, the weightP (c) of each
pre-existing component is rescaled bym/(m+n), and each
new component receives an initial weight of1/(m + n).

Within each cycle, we run EM to fit the expanded set of
components until the log likelihood of the held-out data
fails to increase by at least a fractionδEM . At each iter-
ation, we save the current model if it yields the best hold-
out log likelihood so far. After every five steps of EM and
after it ends we prune low-weight components. We accom-
plish this by sorting all components by weight, and keeping
the first components whose weights sum to at least 99.9%.
Since each step of EM takes time linear in the number of
components, pruning can speed up learning significantly.
However, it also imposes an indirect limit on model com-
plexity: any model with 1,000 or more components will
lose at least one component in this step. If the best model
for the data has more than 1,000 components, a higher
pruning threshold should be used.

When an entire refinement step passes with little or no im-
provement on the hold-out set, we run two final steps of
EM on the best model with the held-out data included and
terminate.

4. Empirical Evaluation

We now describe our empirical evaluation of NBE’s learn-
ing time, inference time and accuracy. Full details
of the experiments are given in an online appendix at
http://www.cs.washington.edu/ai/nbe. This appendix in-
cludes source code for our implementations of NBE and
Bayesian network inference, the NBE models and Bayesian
networks learned in each domain, a detailed description of
the parameter settings and experimental methodology used,
and a more complete set of experimental results.

4.1. Datasets

We used 47 datasets from the UCI repository (Blake &
Merz, 1998), ranging in number of variables from five to
618, and in size from 57 examples to 67,000. The datasets
are listed in Table 2. Although many of these datasets were
designed for classification, learning the joint distribution
over all variables remains an interesting problem. (This is
confirmed by the fact that the number of mixture compo-
nents found by NBE was typically much greater than the
number of classes in the original data. For example, Letter
Recognition contains 26 classes, but NBE learned a model
with over 600 components.) In addition, we used two col-
laborative filtering datasets (Jester (Goldberg et al., 2001)
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and EachMovie1) and the KDD Cup 2000 clickstream pre-
diction dataset (Kohavi et al., 2000). Collaborative filter-
ing and clickstream prediction are examples of tasks where
probabilistic modeling is potentially very useful, but itsap-
plicability is severely limited by the need for short, pre-
dictable inference times. (For example, an e-commerce site
like Amazon.com has millions of users, and needs to gen-
erate recommendations and click predictions in fractions of
a second.)

Each dataset was partitioned into a training set and a test
set. If a standard partition already existed, we used it. Oth-
erwise, we assigned examples to the test set with probabil-
ity 0.1. On datasets with fewer than 2,000 examples, we
performed ten-fold cross-validation instead of using a sin-
gle train-test split. From each training set we selected a
standard hold-out set, to be used by all algorithms for over-
fitting avoidance. In the case of cross-validated datasets,
one hold-out set was generated for each of the ten splits.
Training examples were randomly selected for inclusion
in the hold-out set with a probability that depended on the
overall size of the training set. For training sets with fewer
than 3,000 examples, we used one third of the training data;
for more than 10,000 examples, we used one tenth; for in-
between sizes, we used 1,000 examples.

4.2. Training

We used NBE with 50 initial components for training sets
of over 1,500 examples, and 10 initial components for
smaller training sets. We usedδEM = 0.0001 andδAdd =
0.001, based on performance in preliminary experiments.

We compared our naive Bayes models to Bayesian net-
works with context-specific independence, learned using
Microsoft Research’s WinMine Toolkit, which is arguably
the best available software for learning Bayesian networks
(Chickering, 2002). WinMine effectively learns a proba-
bilistic decision tree for each node as a function of the oth-
ers, interleaving the induction of all trees, and ensuring at
each step that no cycles are created. WinMine finds a local
maximum of the Bayesian score function it uses. Unlike
NBE, it does not use hidden variables. Rather than attempt
to infer missing values, WinMine treats “missing” as a dis-
tinct value, and we configured NBE to do the same. We
used all default settings for WinMine,2 except forκ, which
is used to control overfitting and is effectively the penalty
for adding an arc to the network. The default value forκ is

1Provided by Compaq, http://research.compaq.com/SRC/-
eachmovie/. We used a 10% subset to speed up learning, and
decreased sparsity by converting the 0–5 movie rating scale into
Boolean “like” (4–5) and “dislike” (0–3) values.

2–acyclic flag; min=10, bdu=−1, ksqmarg=−1, maxin=−1,
maxout=−1; all variables are “input-output,” and have tree-
multinomial distributions (continuous variables were pre-
discretized; see below).
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Figure 1.Learning times for NBE and WinMine. Each point rep-
resents one of the 50 datasets.

0.01, but the best value can vary greatly from one dataset
to another. Since we use a hold-out set to avoid overfitting
in NBE, we felt it was appropriate to use the same hold-out
set to automatically tuneκ. We began with a conservative
value of 0.0001, which leads to very simple models, and it-
eratively increased it by factors of 10. In each iteration, we
trained a model using the training set (with the hold-out set
removed), and tested it on the hold-out set. When the log
likelihood of the hold-out set began to decrease, the process
was halted. We then trained a model with the best-known
value ofκ, using all training data, including hold-out.

As a simple baseline algorithm, we used the marginal dis-
tribution of each variable. This is equivalent to a naive
Bayes model with only one component.

Both NBE and WinMine can readily handle continuous
variables. However, in our experiments Gibbs sampling
with continuous variables was so slow as to make a large-
scale study infeasible. We therefore discretized all contin-
uous variables into five equal-frequency bins.

4.3. Learning Time

We measured the learning time for both methods on all
datasets, running under Windows XP on a 2.6 GHz P4
with 1 GB of RAM. For most datasets, learning times were
within an order of magnitude of each other, with neither
method performing consistently better. Learning times for
each model on each dataset are shown in Figure 1.

NBE is not faster than WinMine because, while it does
no structure search, it uses EM, which can take substan-
tial time to converge. If both models were required to learn
with missing data, rather than making “missing” a distinct
value, these results might look very different. Because
NBE already incorporates EM and allows for fast infer-
ence, it can readily handle missing data. In contrast, com-
bining EM with structure learning for Bayesian networks
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Figure 2.Comparison of log likelihoods. Error bars are four stan-
dard deviations.

can be extremely slow (Friedman, 1998).

4.4. Modeling Accuracy

For each dataset, we compared the log likelihoods of the
test data given each model. For cross-validated datasets,
we averaged log likelihoods over the ten splits. The results
are shown in Table 2. All log likelihoods were computed
using natural logarithms.

NBE’s models were more accurate than WinMine’s on 23
of the 50 datasets. Using a two-tailed paired t-test (p =
0.05), NBE performed significantly better on 15 datasets
and WinMine performed better on 22. Though many dif-
ferences were statistically significant, the actual differences
in accuracy were typically very small. Figure 2 compares
the average log likelihoods for NBE and WinMine on all 50
datasets, after dividing each log likelihood by the number
of variables in its dataset. WinMine does much better on
the Isolated Letter Speech and Musk datasets, but the oth-
ers are very close. While NBE showed no clear advantage
here, neither did WinMine: both remained competitive.

4.5. Query Speed and Accuracy

In many applications, we are interested in inferring the dis-
tribution of one or more variables, possibly conditioned on
some evidence. For example, we may wish to determine
the probability of a set of diseases, given a set of symptoms
as evidence. For such applications, we are interested in the
speed and accuracy of marginal and conditional queries.

4.5.1. INFERENCEMETHODS

For NBE, we used linear-time exact inference, as described
in Section 3. Because exact inference in Bayesian networks
can take exponential time, we used the most popular ap-
proximation algorithms: Gibbs sampling and belief propa-
gation. WinMine does not include any inference routines,

Table 2.Average log likelihoods on benchmark datasets.
Name NBE WM Marg.
1985 Auto Imp. −25.68 −24.55 −36.16
Abalone −7.25 −7.27 −13.91
Adult −13.00 −12.72 −15.96
Annealing −10.78 −10.24 −15.08
Anon. MSWeb −9.91 −9.69 −11.36
Audiology −16.15 −15.65 −18.98
Auto MPG −9.17 −9.10 −12.72
Breast Cancer Wisc. −36.57 −31.33 −48.95
BUPA −9.86 −9.87 −10.16
Car −7.82 −7.70 −8.30
Census −11.03 −10.79 −15.16
Chess Endgames −10.79 −9.72 −15.11
Connect-4 −15.08 −13.90 −20.63
Contracept. Choice −9.24 −9.30 −10.13
Credit Screening −15.26 −14.78 −17.34
Forest Cover Type −16.03 −14.46 −22.91
Glass Identification −11.04 −11.57 −13.20
Hepatitis −17.68 −17.81 −18.78
House Votes −9.90 −10.52 −14.04
Housing −13.22 −13.08 −19.50
Image Segmentation −11.74 −11.29 −24.49
Ionosphere −37.49 −37.64 −52.29
Iris Types −5.06 −5.28 −7.38
Iso. Letter Speech −798.70 −542.06 −912.89
King Rook vs. King −11.22 −11.52 −13.14
Labor Negotiations −21.04 −19.93 −19.79
Landsat −26.70 −24.42 −59.54
Letter Recognition −15.73 −16.48 −26.93
Monks Problem #1 −6.72 −6.57 −6.78
Musk −183.41 −125.44 −261.68
New Thyroid −7.61 −8.00 −8.83
Nursery −9.53 −9.44 −10.60
Page Blocks −9.24 −9.33 −16.46
Pima Diabetes −11.98 −11.84 −12.59
Pois. Mushrooms −9.15 −9.22 −22.66
Promoter −78.81 −79.18 −79.37
Servo −6.83 −6.65 −7.70
Shuttle −6.96 −6.96 −11.98
Solar Flare −5.22 −5.32 −7.01
Soybean Large −18.12 −17.25 −37.32
Spambase −13.38 −13.53 −16.85
Splice Junction −79.98 −80.01 −83.28
Thyroid (comb.) −12.97 −12.37 −16.50
Tic-Tac-Toe −9.02 −9.64 −10.26
Waveform −29.17 −29.49 −34.90
Yeast −10.18 −10.21 −10.87
Zoo −6.53 −7.23 −11.77
EachMovie −121.63 −120.94 −173.47
Jester −95.44 −96.29 −130.20
KDD Cup 2000 −2.10 −2.23 −2.41

so we implemented them ourselves. All algorithms (includ-
ing NBE inference) were implemented in C++, profiled,
and optimized for speed. (We spent considerably more time
optimizing Gibbs sampling and belief propagation than op-
timizing NBE inference.) The Gibbs sampler is initialized
by sampling each variable given its parents. This is fol-
lowed by burn-in and mixing. During the latter, counts are
updated every time a query variable is sampled. Source
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code for Gibbs sampling and belief propagation is provided
in the online appendix.

It was very difficult to select a Gibbs sampling scheme that
would be fair in terms of both speed and accuracy: running
too few iterations would reduce accuracy, and running too
many would reduce speed. In the end, we decided to use
fixed numbers of iterations because the method is simple,
interpretable, and not subject to subtle interactions between
datasets and convergence diagnostics. We ran three Gibbs
sampling scenarios: a single chain with 100 burn-in itera-
tions and 1,000 sampling iterations per chain; 10 separate
chains, again with 100 burn-in iterations and 1,000 sam-
pling iterations; and 10 chains with 1,000 burn-in iterations
and 10,000 sampling iterations per chain. Each iteration
consisted of sampling every free variable. In preliminary
experiments, further increasing the number of iterations did
not help significantly.

For single-variable queries, we used Rao-Blackwellisation:
instead of giving a unit count to the sampled state of a vari-
able, we gave each state a partial count equal to its prob-
ability conditioned on the Markov blanket. This yields in-
creased accuracy with fewer samples. To avoid configu-
rations with zero probability, we gave each configuration
a fractional prior count, with all prior counts summing to
one. For example, in a query over 100 possible configura-
tions, we gave each state an initial count of 0.01.

We implemented the standard belief propagation algorithm
(Yedidia et al., 2001) over a Bayesian network by first con-
verting it into a pairwise Markov network. Unfortunately,
when the local decision-tree models are converted to poten-
tial function matrices, we may see an exponential blow-up
in size. Belief propagation thus failed on many of the larger
datasets, where it would have required gigabytes of mem-
ory just to store the pairwise Markov network. In some
cases, we were able to compensate by applying belief prop-
agation to a simpler model. We generated simpler mod-
els by training alternate networks using smaller values of
κ, down to0.0001. If belief propagation would not run
on the original Bayesian network in under 1 GB of RAM,
we used the most complex network where it could. In this
manner, we were able to apply belief propagation to 40 of
the 50 datasets. Because belief propagation only computes
conditional probabilities of single variables, we omittedit
from the experiments with multiple variables. As a con-
vergence criterion, we stopped when no probability at any
node changed by more than 1% from one iteration to the
next. Decreasing this threshold to 0.1% did not signifi-
cantly change our results.

4.5.2. EXPERIMENTAL METHODS

To assess the relative performance of NBE and Bayesian
networks, we generated marginal, single-variable condi-

tional, and multiple-variable conditional queries for each
of the datasets. In each case, we started with up to 1,000
examples from the test set and created random queries by
removing the values of one or more randomly-chosen vari-
ables, termed the free variables. Each inference method
computed the joint distribution over a subset of these called
the query variables. We refer to other removed variables as
hidden, and the remaining variables as the evidence.

We estimate inference accuracy on a particular query as the
log likelihood of the configuration in the original test ex-
ample. This is a very rough approximation of the Kullback-
Leibler (K-L) divergence between the inferred distribution
and the true one, estimated using a single sample. As we
average over many queries, our estimate asymptotically ap-
proaches the average K-L divergence, making this a reason-
able accuracy estimate.

The differences among the three query scenarios are the
number of query, hidden, and evidence variables. In the
marginal experiments, we compute the marginal distribu-
tion of one to five variables, conditioning on no evidence
variables. This represents the greatest challenge to Gibbs
sampling, due to the large number of hidden variables that
must be summed out. In the conditional experiments, we
used one to five free variables, leaving the rest as evidence.
For the single-variable case, the distribution of each free
variable was computed independently, treating the other
variables as hidden. This is the only scenario of the three
for which we could include belief propagation, since the
others include multivariate queries. In the multiple vari-
able case, we computed the joint distribution of all one to
five free variables.

4.5.3. QUERY SPEED

Query speed varied drastically depending on dataset and
scenario, but NBE was almost always fastest, usually by
several orders of magnitude. Speed results for two of the
three scenarios are summarized in Figure 3.

On marginal queries, Gibbs sampling with 10 chains of
10,000 sampling iterations took between one second and
half an hour per marginal query. For this reason, we only
had time for 100 queries per dataset using this Gibbs sam-
pling configuration. In contrast, NBE never averaged more
than 3 milliseconds per query. Even the fastest configura-
tion of Gibbs sampling was 100 to 150,000 times as slow;
the slowest was 6,000 to 188 million times as slow.

Gibbs sampling ran much faster on the conditional exper-
iments, since it had at most five free variables to sample.
Even so, its running time remained orders of magnitude
slower than NBE in the average case. On the Letter Recog-
nition dataset, 10 chains of 10,000 iterations took Gibbs
sampling 23 seconds per query with five free variables,
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Figure 3.Query speed for marginal and conditional queries, relative to NBE. Ofthe different number of query or free variables, we
chose the number yielding the lowest ratios. Time ratios are plotted on a logarithmic scale. Datasets are ordered by increasing time ratio;
indices refer to thenth smallest ratio, not to particular datasets. Note that belief propagation onlyproduced results for 40 datasets; on
the remaining 10, it required excessive memory (> 1 GB).

while NBE never averaged more than 30 milliseconds per
query. Multiple and single variable cases had very similar
running times for Gibbs sampling, since the number of free
variables was unchanged.

Belief propagation was fastest on three datasets, but its
overall performance remained mediocre due to the over-
head of large state spaces in the generated Markov network.
At its worst, it averaged 45 seconds per query with five free
variables on the Shuttle dataset.

4.5.4. QUERY ACCURACY

For each scenario and each number of query or free vari-
ables, we tallied the number of datasets on which NBE
was more accurate than each Bayesian network inference
method used. This summary is displayed in Table 3. Recall
that for marginal and multiple-variable conditional queries
we varied the number of query variables, while for single-
variable conditional queries we varied the number of free
variables.

For marginal queries, NBE was consistently more accurate
than Gibbs sampling on most datasets. We were surprised
to find that NBE was always more accurate on Musk and
sometimes more accurate on Isolated Letter Speech, the
two datasets for which WinMine had the clearest advan-
tage in log likelihood. This suggests that Gibbs sampling
may not have converged on these datasets. They were also
the slowest for Gibbs sampling, requiring 10 minutes and
half an hour per query, respectively. This illustrates the fact
that NBE may be preferable to Bayesian networks even in
some domains that are better modeled by the latter, because
their inference time may be unacceptable.

NBE did worse on the single-variable conditional queries,

Table 3.Number of datasets (out of 50) for which NBE inference
was more accurate than Gibbs sampling and belief propagation

#Query/free vars. 1 2 3 4 5
Marginal queries
– 1 chain, 1k samples 38 40 41 47 47
– 10 chains, 1k samples 28 36 39 39 41
– 10 chains, 10k samples 23 29 31 30 29
Single-var. conditional
– 1 chain, 1k samples 18 17 20 18 23
– 10 chains, 1k samples 18 15 20 16 21
– 10 chains, 10k samples 18 15 20 15 20
– Belief propagation 31 36 30 34 30
Multiple-var. conditional
– 1 chain, 1k samples 18 19 25 26 26
– 10 chains, 1k samples 18 19 23 22 24
– 10 chains, 10k samples 18 18 23 21 22

always losing to Gibbs sampling on a majority of the
datasets. However, the losses were not overwhelming. Fig-
ure 4 compares the log likelihoods of NBE and Gibbs sam-
pling with five free variables. (Graphs with one to four free
variables are very similar.) As in overall accuracy, most log
likelihoods are very close, with a few outliers (Isolated Let-
ter Speech, Forest Cover Type, Musk, and Breast Cancer
Wisc.) that favor Bayesian networks. Figure 4 also shows
that increasing the number of chains from one to 10 and
the sampling iterations from 1,000 to 10,000 only affected
two of the 50 datasets. This suggests that Gibbs sampling
for conditional queries on most of the datasets converges
quickly.

Belief propagation was about as accurate as NBE when it
could be run, but its failure to run on 10 of the 50 datasets
was a critical weakness. We counted these failures as wins
for NBE.
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Figure 4.Comparison of the log likelihoods of NBE and Gibbs
sampling on single-variable conditional queries with five free
variables. For each dataset, we plot a pair of points correspond-
ing to two Gibbs sampling configurations: one chain with 1,000
sampling iterations and ten chains with 10,000 sampling iterations
each. Each pair is connected by a line, but these lines are only vis-
ible when the results of the two experiments are different. Error
bars are omitted for clarity.

In multiple-variable conditional queries, the log likelihoods
of NBE and Gibbs sampling were close, with a few out-
liers, similar to the single-variable results depicted in Fig-
ure 4. Gibbs sampling’s accuracy is somewhat worse in
the multiple-variable case, although that is partially reme-
died by running Gibbs sampling for longer. This is also ex-
pected: since the multivariate distributions have more states
than the single-variable ones, each state will tend to have
fewer counts and therefore a less accurate probability esti-
mate. As we increase the number of inferred variables, the
situation only becomes worse for Gibbs sampling, while
NBE is unaffected.

Accuracy apart, it could be argued that Bayesian network
structure gives more insight into the domain than a naive
Bayes model. However, the learned structure’s high sensi-
tivity to variations in the training set makes its significance
questionable. On the NBE side, valuable insight can be ob-
tained from the clusters formed, their relative sizes, and the
variables with the most unbalanced distributions in each.

5. Conclusion

This paper proposes naive Bayes models as an alternative to
Bayesian networks for general probability estimation tasks.
Experiments on a large number of datasets show that the
two take similar time to learn and are similarly accurate, but
naive Bayes inference is orders of magnitude faster. Direc-
tions for future work include refining our NBE algorithm,
extending it to relational domains, and applying it to new
real-world problems. The NBE source code is available at
http://www.cs.washington.edu/ai/nbe.
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